Advertisement
dag in data engineering: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle |
dag in data engineering: Data Engineering with Google Cloud Platform Adi Wijaya, 2024-04-30 Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you. |
dag in data engineering: Data Engineering for Machine Learning Pipelines Pavan Kumar Narayanan, |
dag in data engineering: Google Cloud Platform for Data Engineering Alasdair Gilchrist, Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable. |
dag in data engineering: Data Engineering with AWS Cookbook Trâm Ngọc Phạm, Gonzalo Herreros González, Viquar Khan, Huda Nofal, 2024-11-29 Master AWS data engineering services and techniques for orchestrating pipelines, building layers, and managing migrations Key Features Get up to speed with the different AWS technologies for data engineering Learn the different aspects and considerations of building data lakes, such as security, storage, and operations Get hands on with key AWS services such as Glue, EMR, Redshift, QuickSight, and Athena for practical learning Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPerforming data engineering with Amazon Web Services (AWS) combines AWS's scalable infrastructure with robust data processing tools, enabling efficient data pipelines and analytics workflows. This comprehensive guide to AWS data engineering will teach you all you need to know about data lake management, pipeline orchestration, and serving layer construction. Through clear explanations and hands-on exercises, you’ll master essential AWS services such as Glue, EMR, Redshift, QuickSight, and Athena. Additionally, you’ll explore various data platform topics such as data governance, data quality, DevOps, CI/CD, planning and performing data migration, and creating Infrastructure as Code. As you progress, you will gain insights into how to enrich your platform and use various AWS cloud services such as AWS EventBridge, AWS DataZone, and AWS SCT and DMS to solve data platform challenges. Each recipe in this book is tailored to a daily challenge that a data engineer team faces while building a cloud platform. By the end of this book, you will be well-versed in AWS data engineering and have gained proficiency in key AWS services and data processing techniques. You will develop the necessary skills to tackle large-scale data challenges with confidence.What you will learn Define your centralized data lake solution, and secure and operate it at scale Identify the most suitable AWS solution for your specific needs Build data pipelines using multiple ETL technologies Discover how to handle data orchestration and governance Explore how to build a high-performing data serving layer Delve into DevOps and data quality best practices Migrate your data from on-premises to AWS Who this book is for If you're involved in designing, building, or overseeing data solutions on AWS, this book provides proven strategies for addressing challenges in large-scale data environments. Data engineers as well as big data professionals looking to enhance their understanding of AWS features for optimizing their workflow, even if they're new to the platform, will find value. Basic familiarity with AWS security (users and roles) and command shell is recommended. |
dag in data engineering: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required. |
dag in data engineering: Financial Data Engineering Tamer Khraisha, 2024-10-09 Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, formats, technological constraints, identifiers, entities, standards, regulatory requirements, and governance. This book offers a comprehensive, practical, domain-driven approach to financial data engineering, featuring real-world use cases, industry practices, and hands-on projects. You'll learn: The data engineering landscape in the financial sector Specific problems encountered in financial data engineering The structure, players, and particularities of the financial data domain Approaches to designing financial data identification and entity systems Financial data governance frameworks, concepts, and best practices The financial data engineering lifecycle from ingestion to production The varieties and main characteristics of financial data workflows How to build financial data pipelines using open source tools and APIs Tamer Khraisha, PhD, is a senior data engineer and scientific author with more than a decade of experience in the financial sector. |
dag in data engineering: Data Engineering with Databricks Cookbook Pulkit Chadha, 2024-05-31 Work through 70 recipes for implementing reliable data pipelines with Apache Spark, optimally store and process structured and unstructured data in Delta Lake, and use Databricks to orchestrate and govern your data Key Features Learn data ingestion, data transformation, and data management techniques using Apache Spark and Delta Lake Gain practical guidance on using Delta Lake tables and orchestrating data pipelines Implement reliable DataOps and DevOps practices, and enforce data governance policies on Databricks Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a Senior Solutions Architect at Databricks, Data Engineering with Databricks Cookbook will show you how to effectively use Apache Spark, Delta Lake, and Databricks for data engineering, starting with comprehensive introduction to data ingestion and loading with Apache Spark. What makes this book unique is its recipe-based approach, which will help you put your knowledge to use straight away and tackle common problems. You’ll be introduced to various data manipulation and data transformation solutions that can be applied to data, find out how to manage and optimize Delta tables, and get to grips with ingesting and processing streaming data. The book will also show you how to improve the performance problems of Apache Spark apps and Delta Lake. Advanced recipes later in the book will teach you how to use Databricks to implement DataOps and DevOps practices, as well as how to orchestrate and schedule data pipelines using Databricks Workflows. You’ll also go through the full process of setup and configuration of the Unity Catalog for data governance. By the end of this book, you’ll be well-versed in building reliable and scalable data pipelines using modern data engineering technologies.What you will learn Perform data loading, ingestion, and processing with Apache Spark Discover data transformation techniques and custom user-defined functions (UDFs) in Apache Spark Manage and optimize Delta tables with Apache Spark and Delta Lake APIs Use Spark Structured Streaming for real-time data processing Optimize Apache Spark application and Delta table query performance Implement DataOps and DevOps practices on Databricks Orchestrate data pipelines with Delta Live Tables and Databricks Workflows Implement data governance policies with Unity Catalog Who this book is for This book is for data engineers, data scientists, and data practitioners who want to learn how to build efficient and scalable data pipelines using Apache Spark, Delta Lake, and Databricks. To get the most out of this book, you should have basic knowledge of data architecture, SQL, and Python programming. |
dag in data engineering: Data Pipelines with Apache Airflow Bas P. Harenslak, Julian de Ruiter, 2021-04-27 This book teaches you how to build and maintain effective data pipelines. Youll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. -- |
dag in data engineering: Ultimate Azure Data Engineering Ashish Agarwal, 2024-07-22 TAGLINE Discover the world of data engineering in an on-premises setting versus the Azure cloud KEY FEATURES ● Explore Azure data engineering from foundational concepts to advanced techniques, spanning SQL databases, ETL processes, and cloud-native solutions. ● Learn to implement real-world data projects with Azure services, covering data integration, storage, and analytics, tailored for diverse business needs. ● Prepare effectively for Azure data engineering certifications with detailed exam-focused content and practical exercises to reinforce learning. DESCRIPTION Embark on a comprehensive journey into Azure data engineering with “Ultimate Azure Data Engineering”. Starting with foundational topics like SQL and relational database concepts, you'll progress to comparing data engineering practices in Azure versus on-premises environments. Next, you will dive deep into Azure cloud fundamentals, learning how to effectively manage heterogeneous data sources and implement robust Extract, Transform, Load (ETL) concepts using Azure Data Factory, mastering the orchestration of data workflows and pipeline automation. The book then moves to explore advanced database design strategies and discover best practices for optimizing data performance and ensuring stringent data security measures. You will learn to visualize data insights using Power BI and apply these skills to real-world scenarios. Whether you're aiming to excel in your current role or preparing for Azure data engineering certifications, this book equips you with practical knowledge and hands-on expertise to thrive in the dynamic field of Azure data engineering. WHAT WILL YOU LEARN ● Master the core principles and methodologies that drive data engineering such as data processing, storage, and management techniques. ● Gain a deep understanding of Structured Query Language (SQL) and relational database management systems (RDBMS) for Azure Data Engineering. ● Learn about Azure cloud services for data engineering, such as Azure SQL Database, Azure Data Factory, Azure Synapse Analytics, and Azure Blob Storage. ● Gain proficiency to orchestrate data workflows, schedule data pipelines, and monitor data integration processes across cloud and hybrid environments. ● Design optimized database structures and data models tailored for performance and scalability in Azure. ● Implement techniques to optimize data performance such as query optimization, caching strategies, and resource utilization monitoring. ● Learn how to visualize data insights effectively using tools like Power BI to create interactive dashboards and derive data-driven insights. ● Equip yourself with the knowledge and skills needed to pass Microsoft Azure data engineering certifications. WHO IS THIS BOOK FOR? This book is tailored for a diverse audience including aspiring and current Azure data engineers, data analysts, and data scientists, along with database and BI developers, administrators, and analysts. It is an invaluable resource for those aiming to obtain Azure data engineering certifications. TABLE OF CONTENTS 1. Introduction to Data Engineering 2. Understanding SQL and RDBMS Concepts 3. Data Engineering: Azure Versus On-Premises 4. Azure Cloud Concepts 5. Working with Heterogenous Data Sources 6. ETL Concepts 7. Database Design and Modeling 8. Performance Best Practices and Data Security 9. Data Visualization and Application in Real World 10. Data Engineering Certification Guide Index |
dag in data engineering: Analytics Engineering with SQL and Dbt Rui Pedro Machado, Helder Russa, 2023-12-08 With the shift from data warehouses to data lakes, data now lands in repositories before it's been transformed, enabling engineers to model raw data into clean, well-defined datasets. dbt (data build tool) helps you take data further. This practical book shows data analysts, data engineers, BI developers, and data scientists how to create a true self-service transformation platform through the use of dynamic SQL. Authors Rui Machado from Monstarlab and Hélder Russa from Jumia show you how to quickly deliver new data products by focusing more on value delivery and less on architectural and engineering aspects. If you know your business well and have the technical skills to model raw data into clean, well-defined datasets, you'll learn how to design and deliver data models without any technical influence. With this book, you'll learn: What dbt is and how a dbt project is structured How dbt fits into the data engineering and analytics worlds How to collaborate on building data models The main tools and architectures for building useful, functional data models How to fit dbt into data warehousing and laking architecture How to build tests for data transformations |
dag in data engineering: Azure Data Engineer Associate Certification Guide Newton Alex, 2022-02-28 Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book. |
dag in data engineering: Test Data Engineering Kojiro Shojima, 2022-08-13 This is the first technical book that considers tests as public tools and examines how to engineer and process test data, extract the structure within the data to be visualized, and thereby make test results useful for students, teachers, and the society. The author does not differentiate test data analysis from data engineering and information visualization. This monograph introduces the following methods of engineering or processing test data, including the latest machine learning techniques: classical test theory (CTT), item response theory (IRT), latent class analysis (LCA), latent rank analysis (LRA), biclustering (co-clustering), and Bayesian network model (BNM). CTT and IRT are methods for analyzing test data and evaluating students’ abilities on a continuous scale. LCA and LRA assess examinees by classifying them into nominal and ordinal clusters, respectively, where the adequate number of clusters is estimated from the data. Biclustering classifies examinees into groups (latent clusters) while classifying items into fields (factors). Particularly, the infinite relational model discussed in this book is a biclustering method feasible under the condition that neither the number of groups nor the number of fields is known beforehand. Additionally, the local dependence LRA, local dependence biclustering, and bicluster network model are methods that search and visualize inter-item (or inter-field) network structure using the mechanism of BNM. As this book offers a new perspective on test data analysis methods, it is certain to widen readers’ perspective on test data analysis. |
dag in data engineering: Data Engineering with Scala and Spark Eric Tome, Rupam Bhattacharjee, David Radford, 2024-01-31 Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate data Key Features Transform data into a clean and trusted source of information for your organization using Scala Build streaming and batch-processing pipelines with step-by-step explanations Implement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD) Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learn Set up your development environment to build pipelines in Scala Get to grips with polymorphic functions, type parameterization, and Scala implicits Use Spark DataFrames, Datasets, and Spark SQL with Scala Read and write data to object stores Profile and clean your data using Deequ Performance tune your data pipelines using Scala Who this book is for This book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies. |
dag in data engineering: Automated Machine Learning on AWS Trenton Potgieter, Jonathan Dahlberg, 2022-04-15 Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more Key FeaturesExplore the various AWS services that make automated machine learning easierRecognize the role of DevOps and MLOps methodologies in pipeline automationGet acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challengesBook Description AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production. What you will learnEmploy SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning processUnderstand how to use AutoGluon to automate complicated model building tasksUse the AWS CDK to codify the machine learning processCreate, deploy, and rebuild a CI/CD pipeline on AWSBuild an ML workflow using AWS Step Functions and the Data Science SDKLeverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)Discover how to use Amazon MWAA for a data-centric ML processWho this book is for This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book. |
dag in data engineering: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
dag in data engineering: Data Engineering with AWS Gareth Eagar, 2023-10-31 Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered. Key Features Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Stay up to date with a comprehensive revised chapter on Data Governance Build modern data platforms with a new section covering transactional data lakes and data mesh Book DescriptionThis book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability. You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You’ll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS. By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!What you will learn Seamlessly ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Load data into a Redshift data warehouse and run queries with ease Visualize and explore data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Build transactional data lakes using Apache Iceberg with Amazon Athena Learn how a data mesh approach can be implemented on AWS Who this book is forThis book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along. |
dag in data engineering: Apache Airflow Best Practices Dylan Intorf, Dylan Storey, Kendrick van Doorn, 2024-10-31 Confidently orchestrate your data pipelines with Apache Airflow by applying industry best practices and scalable strategies Key Features Understand the steps for migrating from Airflow 1.x to 2.x and explore the new features and improvements in version 2.x Learn Apache Airflow workflow authoring through real-world use cases Uncover strategies to operationalize your Airflow instance and pipelines for resilient operations and high throughput Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData professionals face the monumental task of managing complex data pipelines, orchestrating workflows across diverse systems, and ensuring scalable, reliable data processing. This definitive guide to mastering Apache Airflow, written by experts in engineering, data strategy, and problem-solving across tech, financial, and life sciences industries, is your key to overcoming these challenges. It covers everything from the basics of Airflow and its core components to advanced topics such as custom plugin development, multi-tenancy, and cloud deployment. Starting with an introduction to data orchestration and the significant updates in Apache Airflow 2.0, this book takes you through the essentials of DAG authoring, managing Airflow components, and connecting to external data sources. Through real-world use cases, you’ll gain practical insights into implementing ETL pipelines and machine learning workflows in your environment. You’ll also learn how to deploy Airflow in cloud environments, tackle operational considerations for scaling, and apply best practices for CI/CD and monitoring. By the end of this book, you’ll be proficient in operating and using Apache Airflow, authoring high-quality workflows in Python for your specific use cases, and making informed decisions crucial for production-ready implementation.What you will learn Explore the new features and improvements in Apache Airflow 2.0 Design and build data pipelines using DAGs Implement ETL pipelines, ML workflows, and other advanced use cases Develop and deploy custom plugins and UI extensions Deploy and manage Apache Airflow in cloud environments such as AWS, GCP, and Azure Describe a path for the scaling of your environment over time Apply best practices for monitoring and maintaining Airflow Who this book is for This book is for data engineers, developers, IT professionals, and data scientists who want to optimize workflow orchestration with Apache Airflow. It's perfect for those who recognize Airflow’s potential and want to avoid common implementation pitfalls. Whether you’re new to data, an experienced professional, or a manager seeking insights, this guide will support you. A functional understanding of Python, some business experience, and basic DevOps skills are helpful. While prior experience with Airflow is not required, it is beneficial. |
dag in data engineering: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting |
dag in data engineering: Ad-hoc, Mobile, and Wireless Networks Xiang-Yang Li, Symeon Papavassiliou, Stefan Ruehrup, 2012-07-04 This book constitutes the refereed proceedings of the 11th International Conference on Ad-hoc, Mobile, and Wireless Networks, ADHOC-NOW 2012 held in Belgrade, Serbia, July 9-11, 2012. The 36 revised full papers presented were carefully reviewed and selected from 76 submissions. The accepted papers cover a wide spectrum of traditional networking topics ranging from routing to the application layer, to localization in various networking environments such as wireless sensor and ad-hoc networks, and give insights in a variety of application areas. |
dag in data engineering: Practicing Trustworthy Machine Learning Yada Pruksachatkun, Matthew Mcateer, Subho Majumdar, 2023-01-03 With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable. Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world. You'll learn: Methods to explain ML models and their outputs to stakeholders How to recognize and fix fairness concerns and privacy leaks in an ML pipeline How to develop ML systems that are robust and secure against malicious attacks Important systemic considerations, like how to manage trust debt and which ML obstacles require human intervention |
dag in data engineering: Machine Learning on Kubernetes Faisal Masood, Ross Brigoli, 2022-06-24 Build a Kubernetes-based self-serving, agile data science and machine learning ecosystem for your organization using reliable and secure open source technologies Key Features Build a complete machine learning platform on Kubernetes Improve the agility and velocity of your team by adopting the self-service capabilities of the platform Reduce time-to-market by automating data pipelines and model training and deployment Book Description MLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver business value for their organization. You'll begin by understanding the different components of a machine learning project. Then, you'll design and build a practical end-to-end machine learning project using open source software. As you progress, you'll understand the basics of MLOps and the value it can bring to machine learning projects. You will also gain experience in building, configuring, and using an open source, containerized machine learning platform. In later chapters, you will prepare data, build and deploy machine learning models, and automate workflow tasks using the same platform. Finally, the exercises in this book will help you get hands-on experience in Kubernetes and open source tools, such as JupyterHub, MLflow, and Airflow. By the end of this book, you'll have learned how to effectively build, train, and deploy a machine learning model using the machine learning platform you built. What you will learn Understand the different stages of a machine learning project Use open source software to build a machine learning platform on Kubernetes Implement a complete ML project using the machine learning platform presented in this book Improve on your organization's collaborative journey toward machine learning Discover how to use the platform as a data engineer, ML engineer, or data scientist Find out how to apply machine learning to solve real business problems Who this book is for This book is for data scientists, data engineers, IT platform owners, AI product owners, and data architects who want to build their own platform for ML development. Although this book starts with the basics, a solid understanding of Python and Kubernetes, along with knowledge of the basic concepts of data science and data engineering will help you grasp the topics covered in this book in a better way. |
dag in data engineering: The Ultimate Guide to Snowpark Shankar Narayanan SGS, Vivekanandan SS, 2024-05-30 Develop robust data pipelines, deploy mature machine learning models, and build secure data apps with Snowflake Snowpark using Python Key Features Get to grips with Snowflake Snowpark’s basic and advanced features Implement workloads in domains like data engineering, data science, and data applications using Snowpark with Python Deploy Snowpark in production with practical examples and best practices Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionSnowpark is a powerful framework that helps you unlock numerous possibilities within the Snowflake Data Cloud. However, without proper guidance, leveraging the full potential of Snowpark with Python can be challenging. Packed with practical examples and code snippets, this book will be your go-to guide to using Snowpark with Python successfully. The Ultimate Guide to Snowpark helps you develop an understanding of Snowflake Snowpark and how it enables you to implement workloads in data engineering, data science, and data applications within the Data Cloud. From configuration and coding styles to workloads such as data manipulation, collection, preparation, transformation, aggregation, and analysis, this guide will equip you with the right knowledge to make the most of this framework. You'll discover how to build, test, and deploy data pipelines and data science models. As you progress, you’ll deploy data applications natively in Snowflake and operate large language models (LLMs) using Snowpark container services. By the end of this book, you'll be able to leverage Snowpark's capabilities and propel your career as a Snowflake developer to new heights.What you will learn Harness Snowpark with Python for diverse workloads Develop robust data pipelines with Snowpark using Python Deploy mature machine learning models Explore the process of developing, deploying, and monetizing native apps using Snowpark Deploy and operate containers in Snowpark Discover the pathway to adopting Snowpark effectively in production Who this book is for This book is for data engineers, data scientists, developers, and data practitioners seeking an in-depth understanding of Snowpark’s features and best practices for deploying various workloads in Snowpark using the Python programming language. Basic knowledge of SQL, proficiency in Python, an understanding of data engineering and data science basics, and familiarity with the Snowflake Data Cloud platform are required to get the most out of this book. |
dag in data engineering: Proceedings of the 13th International Conference on Computer Engineering and Networks Yonghong Zhang, Lianyong Qi, Qi Liu, Guangqiang Yin, Xiaodong Liu, 2024-01-03 This book aims to examine innovation in the fields of computer engineering and networking. The text covers important developments in areas such as artificial intelligence, machine learning, information analysis, communication system, computer modeling, internet of things. This book presents papers from the 13th International Conference on Computer Engineering and Networks (CENet2023) held in Wuxi, China on November 3-5, 2023. |
dag in data engineering: Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive Peter Jones, 2024-10-19 Immerse yourself in the realm of big data with Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive, your definitive guide to mastering two of the most potent technologies in the data engineering landscape. This book provides comprehensive insights into the complexities of Apache Hadoop and Hive, equipping you with the expertise to store, manage, and analyze vast amounts of data with precision. From setting up your initial Hadoop cluster to performing sophisticated data analytics with HiveQL, each chapter methodically builds on the previous one, ensuring a robust understanding of both fundamental concepts and advanced methodologies. Discover how to harness HDFS for scalable and reliable storage, utilize MapReduce for intricate data processing, and fully exploit data warehousing capabilities with Hive. Targeted at data engineers, analysts, and IT professionals striving to advance their proficiency in big data technologies, this book is an indispensable resource. Through a blend of theoretical insights, practical knowledge, and real-world examples, you will master data storage optimization, advanced Hive functionalities, and best practices for secure and efficient data management. Equip yourself to confront big data challenges with confidence and skill with Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive. Whether you're a novice in the field or seeking to expand your expertise, this book will be your invaluable guide on your data engineering journey. |
dag in data engineering: Advances in Web-Age Information Management Quing Li, Guoren Wang, Ling Feng, 2004-06-30 This book constitutes the refereed proceedings of the 5th International Conference on Web-Age Information Management, WAIM 2004, held in Dalian, China in July 2004. The 57 revised full papers and 23 revised short and industrial papers presented together with 3 invited contributions were carefully reviewed and selected from 291 submissions. The papers are organized in topical sections on data stream processing, time series data processing, security, mobile computing, cache management, query evaluation, Web search engines, XML, Web services, classification, and data mining. |
dag in data engineering: Designing Deep Learning Systems Chi Wang, Donald Szeto, 2023-07-18 Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. Designing Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It’s full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. In Designing Deep Learning Systems, you’ll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting—and lucrative—career as a deep learning engineer. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. |
dag in data engineering: Mastering Databricks Lakehouse Platform Sagar Lad, Anjani Kumar, 2022-07-11 Enable data and AI workloads with absolute security and scalability KEY FEATURES ● Detailed, step-by-step instructions for every data professional starting a career with data engineering. ● Access to DevOps, Machine Learning, and Analytics wirthin a single unified platform. ● Includes design considerations and security best practices for efficient utilization of Databricks platform. DESCRIPTION Starting with the fundamentals of the databricks lakehouse platform, the book teaches readers on administering various data operations, including Machine Learning, DevOps, Data Warehousing, and BI on the single platform. The subsequent chapters discuss working around data pipelines utilizing the databricks lakehouse platform with data processing and audit quality framework. The book teaches to leverage the Databricks Lakehouse platform to develop delta live tables, streamline ETL/ELT operations, and administer data sharing and orchestration. The book explores how to schedule and manage jobs through the Databricks notebook UI and the Jobs API. The book discusses how to implement DevOps methods on the Databricks Lakehouse platform for data and AI workloads. The book helps readers prepare and process data and standardizes the entire ML lifecycle, right from experimentation to production. The book doesn't just stop here; instead, it teaches how to directly query data lake with your favourite BI tools like Power BI, Tableau, or Qlik. Some of the best industry practices on building data engineering solutions are also demonstrated towards the end of the book. WHAT YOU WILL LEARN ● Acquire capabilities to administer end-to-end Databricks Lakehouse Platform. ● Utilize Flow to deploy and monitor machine learning solutions. ● Gain practical experience with SQL Analytics and connect Tableau, Power BI, and Qlik. ● Configure clusters and automate CI/CD deployment. ● Learn how to use Airflow, Data Factory, Delta Live Tables, Databricks notebook UI, and the Jobs API. WHO THIS BOOK IS FOR This book is for every data professional, including data engineers, ETL developers, DB administrators, Data Scientists, SQL Developers, and BI specialists. You don't need any prior expertise with this platform because the book covers all the basics. TABLE OF CONTENTS 1. Getting started with Databricks Platform 2. Management of Databricks Platform 3. Spark, Databricks, and Building a Data Quality Framework 4. Data Sharing and Orchestration with Databricks 5. Simplified ETL with Delta Live Tables 6. SCD Type 2 Implementation with Delta Lake 7. Machine Learning Model Management with Databricks 8. Continuous Integration and Delivery with Databricks 9. Visualization with Databricks 10. Best Security and Compliance Practices of Databricks |
dag in data engineering: Readings in Agents Michael N. Huhns, Munindar P. Singh, 1998 This book collects the most significant literature on agents in an attempt top forge a broad foundation for the field. Includes papers from the perspectives of AI, databases, distributed computing, and programming languages. The book will be of interest to programmers and developers, especially in Internet areas. |
dag in data engineering: An Introduction to Healthcare Informatics Peter Mccaffrey, 2020-07-29 An Introduction to Healthcare Informatics: Building Data-Driven Tools bridges the gap between the current healthcare IT landscape and cutting edge technologies in data science, cloud infrastructure, application development and even artificial intelligence. Information technology encompasses several rapidly evolving areas, however healthcare as a field suffers from a relatively archaic technology landscape and a lack of curriculum to effectively train its millions of practitioners in the skills they need to utilize data and related tools. The book discusses topics such as data access, data analysis, big data current landscape and application architecture. Additionally, it encompasses a discussion on the future developments in the field. This book provides physicians, nurses and health scientists with the concepts and skills necessary to work with analysts and IT professionals and even perform analysis and application architecture themselves. - Presents case-based learning relevant to healthcare, bringing each concept accompanied by an example which becomes critical when explaining the function of SQL, databases, basic models etc. - Provides a roadmap for implementing modern technologies and design patters in a healthcare setting, helping the reader to understand both the archaic enterprise systems that often exist in hospitals as well as emerging tools and how they can be used together - Explains healthcare-specific stakeholders and the management of analytical projects within healthcare, allowing healthcare practitioners to successfully navigate the political and bureaucratic challenges to implementation - Brings diagrams for each example and technology describing how they operate individually as well as how they fit into a larger reference architecture built upon throughout the book |
dag in data engineering: Database and Expert Systems Applications Norman Revell, 2007-08-21 This volume constitutes the refereed proceedings of the 18th International Conference on Database and Expert Systems Applications held in September 2007. Papers are organized into topical sections covering XML, data and information, datamining and data warehouses, database applications, WWW, bioinformatics, process automation and workflow, knowledge management and expert systems, database theory, query processing, and privacy and security. |
dag in data engineering: Database and Expert Systems Applications Hendrik Decker, Lenka Lhotská, Sebastian Link, Marcus Spies, Roland R. Wagner, 2014-08-20 This two volume set LNCS 8644 and LNCS 8645 constitutes the refereed proceedings of the 25th International Conference on Database and Expert Systems Applications, DEXA 2014, held in Munich, Germany, September 1-4, 2014. The 37 revised full papers presented together with 46 short papers, and 2 keynote talks, were carefully reviewed and selected from 159 submissions. The papers discuss a range of topics including: data quality; social web; XML keyword search; skyline queries; graph algorithms; information retrieval; XML; security; semantic web; classification and clustering; queries; social computing; similarity search; ranking; data mining; big data; approximations; privacy; data exchange; data integration; web semantics; repositories; partitioning; and business applications. |
dag in data engineering: Guide to Advanced Empirical Software Engineering Forrest Shull, Janice Singer, Dag I. K. Sjøberg, 2007-11-21 This book gathers chapters from some of the top international empirical software engineering researchers focusing on the practical knowledge necessary for conducting, reporting and using empirical methods in software engineering. Topics and features include guidance on how to design, conduct and report empirical studies. The volume also provides information across a range of techniques, methods and qualitative and quantitative issues to help build a toolkit applicable to the diverse software development contexts |
dag in data engineering: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
dag in data engineering: Mastering Apache Airflow Cybellium Ltd, Empower Your Data Workflow Orchestration and Automation Are you ready to embark on a journey into the world of data workflow orchestration and automation with Apache Airflow? Mastering Apache Airflow is your comprehensive guide to harnessing the full potential of this powerful platform for managing complex data pipelines. Whether you're a data engineer striving to optimize workflows or a business analyst aiming to streamline data processing, this book equips you with the knowledge and tools to master the art of Airflow-based workflow automation. |
dag in data engineering: Google Machine Learning and Generative AI for Solutions Architects Kieran Kavanagh, 2024-06-28 Architect and run real-world AI/ML solutions at scale on Google Cloud, and discover best practices to address common industry challenges effectively Key Features Understand key concepts, from fundamentals through to complex topics, via a methodical approach Build real-world end-to-end MLOps solutions and generative AI applications on Google Cloud Get your hands on a code repository with over 20 hands-on projects for all stages of the ML model development lifecycle Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost companies today are incorporating AI/ML into their businesses. Building and running apps utilizing AI/ML effectively is tough. This book, authored by a principal architect with about two decades of industry experience, who has led cross-functional teams to design, plan, implement, and govern enterprise cloud strategies, shows you exactly how to design and run AI/ML workloads successfully using years of experience from some of the world’s leading tech companies. You’ll get a clear understanding of essential fundamental AI/ML concepts, before moving on to complex topics with the help of examples and hands-on activities. This will help you explore advanced, cutting-edge AI/ML applications that address real-world use cases in today’s market. You’ll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You’ll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process. By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.What you will learn Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark Source, understand, and prepare data for ML workloads Build, train, and deploy ML models on Google Cloud Create an effective MLOps strategy and implement MLOps workloads on Google Cloud Discover common challenges in typical AI/ML projects and get solutions from experts Explore vector databases and their importance in Generative AI applications Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows Who this book is for This book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. Although this book is suitable for both beginners and experienced practitioners, basic knowledge of Python and ML concepts is required. The book focuses on how AI/ML is used in the real world on Google Cloud. It briefly covers the basics at the beginning to establish a baseline for you, but it does not go into depth on the underlying mathematical concepts that are readily available in academic material. |
dag in data engineering: Machine Learning Engineering with Python Andrew P. McMahon, 2023-08-31 Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain Key Features This second edition delves deeper into key machine learning topics, CI/CD, and system design Explore core MLOps practices, such as model management and performance monitoring Build end-to-end examples of deployable ML microservices and pipelines using AWS and open-source tools Book DescriptionThe Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized model factory for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.What you will learn Plan and manage end-to-end ML development projects Explore deep learning, LLMs, and LLMOps to leverage generative AI Use Python to package your ML tools and scale up your solutions Get to grips with Apache Spark, Kubernetes, and Ray Build and run ML pipelines with Apache Airflow, ZenML, and Kubeflow Detect drift and build retraining mechanisms into your solutions Improve error handling with control flows and vulnerability scanning Host and build ML microservices and batch processes running on AWS Who this book is for This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you’re not a developer but want to manage or understand the product lifecycle of these systems, you’ll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career. |
dag in data engineering: Encyclopedia of Information Science and Technology, First Edition Khosrow-Pour, D.B.A., Mehdi, 2005-01-31 Comprehensive coverage of critical issues related to information science and technology. |
dag in data engineering: Advances in Information Technology Research and Application: 2011 Edition , 2012-01-09 Advances in Information Technology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Information Technology. The editors have built Advances in Information Technology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Information Technology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Information Technology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/. |
dag in data engineering: Database and Expert Systems Applications Gerald Quirchmayr, Erich Schweighofer, Trevor J.M. Bench-Capon, 1998-08-14 This book constitutes the refereed proceedings of the 9th International Conference on Database and Expert Systems Applications, DEXA'98, held in Vienna, Austria, in August 1998. The 81 revised full papers presented were carefully selected from a total of more than 200 submissions. The papers are organized in sections on active databases, object-oriented systems, data engineering, information retrieval, workflow and cooperative systems, spatial and temporal aspects, document management, spatial databases, adaptation and view updates, genetic algorithms, cooperative and distributed environments, interaction and communication, transcation, advanced applications, temporal aspects, oriented systems, partitioning and fragmentation, database queries, data, data warehouses, knowledge discovery and data mining, knowledge extraction, and knowledge base reduction for comprehension and reuse. |
Nyheter i dag - Oppdatert 24 timer i døgnet - Dagbladet
Dagbladet Nyheter rapporterer de største hendelsene innenriks og utenriks året rundt. Viktige felt er krim, samfunnsliv, politikk og undersøkende journalistikk.
Nyheter i dag: Dagbladet med dagens nyheter 24 timer i døgnet
Nyhetsnettsted med 1.2 millioner daglige lesere. Oppdateres døgnet rundt med nyheter fra inn- og utland, kultur, sport og underholdning.
Russland og Ukraina-konflikten: Siste nyheter og sanksjoner
Dagbladet gir deg siste nytt og sanksjoner om Russland og Ukraina-konflikten.
Dagbladet - forside
Ned 20 kilo: - Spiser is hver dag! Ser flyet: - Å, herregud! Postadresse: Boks 1184 Sentrum, 0107 Oslo; Besøksadresse: Karvesvingen 1, 0579 Oslo; Sentralbord: 24 00 10 00; Kundeservice …
Ny rekord på bekmørk dag - Dagbladet
Jan 19, 2025 · REKORD PÅ MØRK DAG: Det ble satt ny rekord på Fornebu, men det hjelper lite for håndballgutta. Foto: Bjørn Langsem / Dagbladet
Dag Solstads bisettelse i Oslo Domkirke - Dagbladet
Apr 1, 2025 · OSLO DOMKIRKE (Dagbladet): Tirsdag 1. april ble forfatterlegenden Dag Solstad bisatt i Oslo Domkirke. Solstad døde 83 år gammel 14. mars.
Sport - Dagbladet
Få de beste og viktigste sportsnyhetene fra Norge og utlandet. Vi dekker de store mesterskapene, de beste arrangementene og de viktigste nyhetene fra all idrett.
Ny død beboer glemt på sykehjem - Dagbladet
Jan 13, 2025 · Samme dag ble den døde kroppen hennes tatt til et kjølelager i underetasjen av sykehjemmet, hvor hun ble glemt i seks måneder før det ble oppdaget. Kvinnen var uten …
Jubel og smell: - Rasende - Dagbladet
Oct 5, 2024 · Diogo Jota (27) ble den store helten for Liverpool, men skade på stjernespiller satte en liten stopper for utelukkende jubel. - Det er dramatisk.
- Hun blir nok skremt - Dagbladet
Dec 14, 2024 · Lucas Chanavat gjør alt rett i dag, men er likevel sjanseløs når trønderen setter på turboen. Det lukter VM-medalje av det Erik Valnes gjør der også, som er den som følger …
Nyheter i dag - Oppdatert 24 timer i døgnet - Dagbladet
Dagbladet Nyheter rapporterer de største hendelsene innenriks og utenriks året rundt. Viktige felt er krim, samfunnsliv, politikk og undersøkende journalistikk.
Nyheter i dag: Dagbladet med dagens nyheter 24 timer i døgnet
Nyhetsnettsted med 1.2 millioner daglige lesere. Oppdateres døgnet rundt med nyheter fra inn- og utland, kultur, sport og underholdning.
Russland og Ukraina-konflikten: Siste nyheter og sanksjoner
Dagbladet gir deg siste nytt og sanksjoner om Russland og Ukraina-konflikten.
Dagbladet - forside
Ned 20 kilo: - Spiser is hver dag! Ser flyet: - Å, herregud! Postadresse: Boks 1184 Sentrum, 0107 Oslo; Besøksadresse: Karvesvingen 1, 0579 Oslo; Sentralbord: 24 00 10 00; Kundeservice …
Ny rekord på bekmørk dag - Dagbladet
Jan 19, 2025 · REKORD PÅ MØRK DAG: Det ble satt ny rekord på Fornebu, men det hjelper lite for håndballgutta. Foto: Bjørn Langsem / Dagbladet
Dag Solstads bisettelse i Oslo Domkirke - Dagbladet
Apr 1, 2025 · OSLO DOMKIRKE (Dagbladet): Tirsdag 1. april ble forfatterlegenden Dag Solstad bisatt i Oslo Domkirke. Solstad døde 83 år gammel 14. mars.
Sport - Dagbladet
Få de beste og viktigste sportsnyhetene fra Norge og utlandet. Vi dekker de store mesterskapene, de beste arrangementene og de viktigste nyhetene fra all idrett.
Ny død beboer glemt på sykehjem - Dagbladet
Jan 13, 2025 · Samme dag ble den døde kroppen hennes tatt til et kjølelager i underetasjen av sykehjemmet, hvor hun ble glemt i seks måneder før det ble oppdaget. Kvinnen var uten …
Jubel og smell: - Rasende - Dagbladet
Oct 5, 2024 · Diogo Jota (27) ble den store helten for Liverpool, men skade på stjernespiller satte en liten stopper for utelukkende jubel. - Det er dramatisk.
- Hun blir nok skremt - Dagbladet
Dec 14, 2024 · Lucas Chanavat gjør alt rett i dag, men er likevel sjanseløs når trønderen setter på turboen. Det lukter VM-medalje av det Erik Valnes gjør der også, som er den som følger …