Advertisement
data management platform architecture: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data management platform architecture: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh. |
data management platform architecture: Salesforce Data Architecture and Management Ahsan Zafar, 2021-07-30 Learn everything you need to become a successful data architect on the Salesforce platform Key Features Adopt best practices relating to data governance and learn how to implement them Learn how to work with data in Salesforce while maintaining scalability and security of an instance Gain insights into managing large data volumes in Salesforce Book Description As Salesforce orgs mature over time, data management and integrations are becoming more challenging than ever. Salesforce Data Architecture and Management follows a hands-on approach to managing data and tracking the performance of your Salesforce org. You'll start by understanding the role and skills required to become a successful data architect. The book focuses on data modeling concepts, how to apply them in Salesforce, and how they relate to objects and fields in Salesforce. You'll learn the intricacies of managing data in Salesforce, starting from understanding why Salesforce has chosen to optimize for read rather than write operations. After developing a solid foundation, you'll explore examples and best practices for managing your data. You'll understand how to manage your master data and discover what the Golden Record is and why it is important for organizations. Next, you'll learn how to align your MDM and CRM strategy with a discussion on Salesforce's Customer 360 and its key components. You'll also cover data governance, its multiple facets, and how GDPR compliance can be achieved with Salesforce. Finally, you'll discover Large Data Volumes (LDVs) and best practices for migrating data using APIs. By the end of this book, you'll be well-versed with data management, data backup, storage, and archiving in Salesforce. What you will learn Understand the Salesforce data architecture Explore various data backup and archival strategies Understand how the Salesforce platform is designed and how it is different from other relational databases Uncover tools that can help in data management that minimize data trust issues in your Salesforce org Focus on the Salesforce Customer 360 platform, its key components, and how it can help organizations in connecting with customers Discover how Salesforce can be used for GDPR compliance Measure and monitor the performance of your Salesforce org Who this book is for This book is for aspiring architects, Salesforce admins, and developers. You will also find the book useful if you're preparing for the Salesforce Data Architecture and Management exam. A basic understanding of Salesforce is assumed. |
data management platform architecture: Data Management at Scale Piethein Strengholt, 2020-07-29 As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata |
data management platform architecture: NoSQL Distilled Pramod J. Sadalage, Martin Fowler, 2013 'NoSQL Distilled' is designed to provide you with enough background on how NoSQL databases work, so that you can choose the right data store without having to trawl the whole web to do it. It won't answer your questions definitively, but it should narrow down the range of options you have to consider. |
data management platform architecture: Architecting Modern Data Platforms Jan Kunigk, Ian Buss, Paul Wilkinson, Lars George, 2018-12-05 There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability |
data management platform architecture: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution. |
data management platform architecture: Data Architecture Charles Tupper, 2011-05-09 Data Architecture: From Zen to Reality explains the principles underlying data architecture, how data evolves with organizations, and the challenges organizations face in structuring and managing their data. Using a holistic approach to the field of data architecture, the book describes proven methods and technologies to solve the complex issues dealing with data. It covers the various applied areas of data, including data modelling and data model management, data quality, data governance, enterprise information management, database design, data warehousing, and warehouse design. This text is a core resource for anyone customizing or aligning data management systems, taking the Zen-like idea of data architecture to an attainable reality. The book presents fundamental concepts of enterprise architecture with definitions and real-world applications and scenarios. It teaches data managers and planners about the challenges of building a data architecture roadmap, structuring the right team, and building a long term set of solutions. It includes the detail needed to illustrate how the fundamental principles are used in current business practice. The book is divided into five sections, one of which addresses the software-application development process, defining tools, techniques, and methods that ensure repeatable results. Data Architecture is intended for people in business management involved with corporate data issues and information technology decisions, ranging from data architects to IT consultants, IT auditors, and data administrators. It is also an ideal reference tool for those in a higher-level education process involved in data or information technology management. - Presents fundamental concepts of enterprise architecture with definitions and real-world applications and scenarios - Teaches data managers and planners about the challenges of building a data architecture roadmap, structuring the right team, and building a long term set of solutions - Includes the detail needed to illustrate how the fundamental principles are used in current business practice |
data management platform architecture: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources. |
data management platform architecture: Software Architecture for Big Data and the Cloud Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, Bruce Maxim, 2017-06-12 Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data |
data management platform architecture: Data Architecture: A Primer for the Data Scientist W.H. Inmon, Daniel Linstedt, Mary Levins, 2019-04-30 Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the bigger picture and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. - New case studies include expanded coverage of textual management and analytics - New chapters on visualization and big data - Discussion of new visualizations of the end-state architecture |
data management platform architecture: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
data management platform architecture: Scalable Big Data Architecture Bahaaldine Azarmi, 2015-12-31 This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term Big Data, from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern. |
data management platform architecture: In-Memory Data Management Hasso Plattner, Alexander Zeier, 2012-04-17 In the last fifty years the world has been completely transformed through the use of IT. We have now reached a new inflection point. This book presents, for the first time, how in-memory data management is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. This book provides the technical foundation for processing combined transactional and analytical operations in the same database. In the year since we published the first edition of this book, the performance gains enabled by the use of in-memory technology in enterprise applications has truly marked an inflection point in the market. The new content in this second edition focuses on the development of these in-memory enterprise applications, showing how they leverage the capabilities of in-memory technology. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes. |
data management platform architecture: The Machine Learning Solutions Architect Handbook David Ping, 2022-01-21 Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development Book DescriptionWhen equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you’ll need to become one. You’ll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You’ll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. By the end of this book, you’ll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional. What you will learn Apply ML methodologies to solve business problems Design a practical enterprise ML platform architecture Implement MLOps for ML workflow automation Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using an AI service and a custom ML model Use AWS services to detect data and model bias and explain models Who this book is for This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. You’ll need basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts before you get started with this handbook. |
data management platform architecture: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value. |
data management platform architecture: Guide to Enterprise IT Architecture Col Perks, Tony Beveridge, 2007-06-02 An up-to-date and comprehensive overview of information and database systems design and implementation. The book provides an accessible presentation and explanation of technical architecture for systems complying with TOGAF standards, the accepted international framework. Covering nearly the full spectrum of architectural concern, the authors also illustrate and concretize the notion of traceability from business goals, strategy through to technical architecture, providing the reader with a holistic and commanding view. The work has two mutually supportive foci. First, information technology technical architecture, the in-depth, illustrative and contemporary treatment of which comprises the core and majority of the book; and secondly, a strategic and business context. |
data management platform architecture: The Open Group Architecture Framework TOGAF Version 9 The Open Group, 2015-01-01 The Open Group Architecture Framework (TOGAF) is a framework a detailed method and a set of supporting tools for developing an enterprise architecture, developed by members of The Open Group Architecture Forum (www.opengroup.org/architecture). As a comprehensive, open method for enterprise architecture, TOGAF Version 9 complements, and can be used in conjunction with, other frameworks that are more focused on specific aspects of architecture or for vertical sectors such as Government, Defense, and Finance. TOGAF may be used freely by any organization wishing to develop an enterprise architecture for use within that organization (subject to the Conditions of Use). This book is divided into seven main parts : PART I (Introduction) This part provides a high-level introduction to the key concepts of enterprise architecture and in particular the TOGAF approach. It contains the definitions of terms used throughout TOGAF and release notes detailing the changes between this version and the previous version of TOGAF. PART II (Architecture Development Method) This is the core of TOGAF. It describes the TOGAF Architecture Development Method (ADM) a step-by-step approach to developing an enterprise architecture. PART III (ADM Guidelines & Techniques) This part contains a collection of guidelines and techniques available for use in applying TOGAF and the TOGAF ADM. PART IV (Architecture Content Framework) This part describes the TOGAF content framework, including a structured metamodel for architectural artifacts, the use of re-usable architecture building blocks, and an overview of typical architecture deliverables. PART V (Enterprise Continuum & Tools) This part discusses appropriate taxonomies and tools to categorize and store the outputs of architecture activity within an enterprise. PART VI (TOGAF Reference Models) This part provides a selection of architectural reference models, which includes the TOGAF Foundation Architecture, and the Integrated Information Infrastructure Reference Model (III-RM). PART VII (Architecture Capability Framework) This part discusses the organization, processes, skills, roles, and responsibilities required to establish and operate an architecture function within an enterprise. |
data management platform architecture: SOA Source Book The Open Group, 2020-06-11 Software services are established as a programming concept, but their impact on the overall architecture of enterprise IT and business operations is not well-understood. This has led to problems in deploying SOA, and some disillusionment. The SOA Source Book adds to this a collection of reference material for SOA. It is an invaluable resource for enterprise architects working with SOA.The SOA Source Book will help enterprise architects to use SOA effectively. It explains: What SOA is How to evaluate SOA features in business terms How to model SOA How to use The Open Group Architecture Framework (TOGAF ) for SOA SOA governance This book explains how TOGAF can help to make an Enterprise Architecture. Enterprise Architecture is an approach that can help management to understand this growing complexity. |
data management platform architecture: The Enterprise Cloud James Bond, 2015-05-19 Despite the buzz surrounding the cloud computing, only a small percentage of organizations have actually deployed this new style of IT—so far. If you're planning your long-term cloud strategy, this practical book provides insider knowledge and actionable real-world lessons regarding planning, design, operations, security, and application transformation. This book teaches business and technology managers how to transition their organization's traditional IT to cloud computing. Rather than yet another book trying to sell or convince readers on the benefits of clouds, this book provides guidance, lessons learned, and best practices on how to design, deploy, operate, and secure an enterprise cloud based on real-world experience. Author James Bond provides useful guidance and best-practice checklists based on his field experience with real customers and cloud providers. You'll view cloud services from the perspective of a consumer and as an owner/operator of an enterprise private or hybrid cloud, and learn valuable lessons from successful and less-than-successful organization use-case scenarios. This is the information every CIO needs in order to make the business and technical decisions to finally execute on their journey to cloud computing. Get updated trends and definitions in cloud computing, deployment models, and for building or buying cloud services Discover challenges in cloud operations and management not foreseen by early adopters Use real-world lessons to plan and build an enterprise private or hybrid cloud Learn how to assess, port, and migrate legacy applications to the cloud Identify security threats and vulnerabilities unique to the cloud Employ a cloud management system for your enterprise (private or multi-provider hybrid) cloud ecosystem Understand the challenges for becoming an IT service broker leveraging the power of the cloud |
data management platform architecture: XML Data Management Akmal B. Chaudhri, Awais Rashid, Roberto Zicari, 2003 In this book, you will find discussions on the newest native XML databases, along with information on working with XML-enabled relational database systems. In addition, XML Data Management thoroughly examines benchmarks and analysis techniques for performance of XML databases. This book is best used by students that are knowledgeable in database technology and are familiar with XML. |
data management platform architecture: Hadoop Application Architectures Mark Grover, Ted Malaska, Jonathan Seidman, Gwen Shapira, 2015-06-30 Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing |
data management platform architecture: Refactoring Databases Scott W. Ambler, Pramod J. Sadalage, 2006-03-03 Refactoring has proven its value in a wide range of development projects–helping software professionals improve system designs, maintainability, extensibility, and performance. Now, for the first time, leading agile methodologist Scott Ambler and renowned consultant Pramodkumar Sadalage introduce powerful refactoring techniques specifically designed for database systems. Ambler and Sadalage demonstrate how small changes to table structures, data, stored procedures, and triggers can significantly enhance virtually any database design–without changing semantics. You’ll learn how to evolve database schemas in step with source code–and become far more effective in projects relying on iterative, agile methodologies. This comprehensive guide and reference helps you overcome the practical obstacles to refactoring real-world databases by covering every fundamental concept underlying database refactoring. Using start-to-finish examples, the authors walk you through refactoring simple standalone database applications as well as sophisticated multi-application scenarios. You’ll master every task involved in refactoring database schemas, and discover best practices for deploying refactorings in even the most complex production environments. The second half of this book systematically covers five major categories of database refactorings. You’ll learn how to use refactoring to enhance database structure, data quality, and referential integrity; and how to refactor both architectures and methods. This book provides an extensive set of examples built with Oracle and Java and easily adaptable for other languages, such as C#, C++, or VB.NET, and other databases, such as DB2, SQL Server, MySQL, and Sybase. Using this book’s techniques and examples, you can reduce waste, rework, risk, and cost–and build database systems capable of evolving smoothly, far into the future. |
data management platform architecture: Modern Big Data Architectures Dominik Ryzko, 2020-03-31 Provides an up-to-date analysis of big data and multi-agent systems The term Big Data refers to the cases, where data sets are too large or too complex for traditional data-processing software. With the spread of new concepts such as Edge Computing or the Internet of Things, production, processing and consumption of this data becomes more and more distributed. As a result, applications increasingly require multiple agents that can work together. A multi-agent system (MAS) is a self-organized computer system that comprises multiple intelligent agents interacting to solve problems that are beyond the capacities of individual agents. Modern Big Data Architectures examines modern concepts and architecture for Big Data processing and analytics. This unique, up-to-date volume provides joint analysis of big data and multi-agent systems, with emphasis on distributed, intelligent processing of very large data sets. Each chapter contains practical examples and detailed solutions suitable for a wide variety of applications. The author, an internationally-recognized expert in Big Data and distributed Artificial Intelligence, demonstrates how base concepts such as agent, actor, and micro-service have reached a point of convergence—enabling next generation systems to be built by incorporating the best aspects of the field. This book: Illustrates how data sets are produced and how they can be utilized in various areas of industry and science Explains how to apply common computational models and state-of-the-art architectures to process Big Data tasks Discusses current and emerging Big Data applications of Artificial Intelligence Modern Big Data Architectures: A Multi-Agent Systems Perspective is a timely and important resource for data science professionals and students involved in Big Data analytics, and machine and artificial learning. |
data management platform architecture: Complex Systems Design & Management Daniel Krob, Lefei Li, Xinguo Zhang, Junchen Yao, Mengyu Guo, 2023-10-29 This book contains all refereed papers accepted during the 14th International Conference on Complex Systems Design & Management CSD&M 2023 that took place in Beijing, People’s Republic of China by the end October 2023. Mastering complex systems requires an integrated understanding of industrial practices as well as sophisticated theoretical techniques and tools. This explains the creation of an annual go-between European and Asian forum dedicated to academic researchers and industrial actors working on complex industrial systems architecting, modeling and engineering. These proceedings cover the most recent trends in the emerging field of complex systems, both from an academic and professional perspective. A special focus was put this year on “New Trends in Complex Systems Engineering.” The CSD&M series of conferences were initiated under the guidance of CESAM Community in Europe, managed by CESAMES. Its Asian version took place in Singapore for three consecutive sessions during 2014 and 2018. The fourth Asian edition was held in Beijing in hybrid with the Chinese Society of Aeronautics and Astronautics (CSAA) as the co-organizer in 2021. Since 2023, its European and Asian conferences merge into one, taking place in China and Europe in turn. CESAM Community aims in organizing the sharing of good practices in systems architecting and model-based systems engineering (MBSE) and certifying the level of knowledge and proficiency in this field through the CESAM certification. The CESAM systems architecting, and model-based systems engineering (MBSE) certification is especially currently the most disseminated professional certification in the world in this domain through more than 3,000 real complex system development projects on which it was operationally deployed and around 10,000 engineers who were trained on the CESAM framework at international level. |
data management platform architecture: Applied Architecture Patterns on the Microsoft Platform Second Edition Andre Dovgal, Gregor Noriskin, Dmitri Olechko, 2014-07-25 Presented in a scenario-driven tutorial way, we lead you through fictitious example problems and present you with the best solutions. This book is intended for architects, developers, and managers who need to improve their knowledge of the Microsoft application platform. This book will appeal to anyone, especially consultants, who want to get up to speed on selecting the most appropriate platform for a particular problem. A good understanding of the general Windows platform and development technologies would be helpful. |
data management platform architecture: TOGAF® Version 9.1 The Open Group, 2011-01-01 For trainers free additional material of this book is available. This can be found under the Training Material tab. Log in with your trainer account to access the material. TOGAF is a framework - a detailed method and a set of supporting tools - for developing an enterprise architecture, developed by members of The Open Group Architecture Forum. TOGAF Version 9.1 is a maintenance update to TOGAF 9, addressing comments raised since the introduction of TOGAF 9 in 2009. It retains the major features and structure of TOGAF 9, thereby preserving existing investment in TOGAF, and adds further detail and clarification to what is already proven.It may be used freely by any organization wishing to develop an enterprise architecture for use within that organization (subject to the Conditions of Use). This Book is divided into seven parts: Part I - Introduction This part provides a high-level introduction to the key concepts of enterprise architecture and in particular the TOGAF approach. It contains the definitions of terms used throughout TOGAF and release notes detailing the changes between this version and the previous version of TOGAF. Part II - Architecture Development Method This is the core of TOGAF. It describes the TOGAF Architecture Development Method (ADM) a step-by-step approach to developing an enterprise architecture. Part III - ADM Guidelines & Techniques This part contains a collection of guidelines and techniques available for use in applying TOGAF and the TOGAF ADM. Part IV - Architecture Content Framework This part describes the TOGAF content framework, including a structured metamodel for architectural artifacts, the use of re-usable architecture building blocks, and an overview of typical architecture deliverables. Part V - Enterprise Continuum & Tools This part discusses appropriate taxonomies and tools to categorize and store the outputs of architecture activity within an enterprise. Part VI - TOGAF Reference Models This part provides a selection of architectural reference models, which includes the TOGAF Foundation Architecture, and the Integrated Information Infrastructure Reference Model (III-RM). Part VII Architecture Capability Framework This section looks at roles, Governance, compliance skills and much more practical guidance |
data management platform architecture: Networks and Systems Management Iosif G. Ghetie, 2012-12-06 The deployment of communications networks and distributed computing systems requires the use of open, standards-based, integrated management systems. During the last five years, the overall industry effort to develop, enhance, and integrate man agement systems has crystallized in the concept of management platforms. Manage ment platforms are software systems which provide open, multi vendor, multiprotocol distributed management services. They allow multiple management applications to run over core platform services which constitute the essential part of the management platform framework. This book provides a comprehensive analysis of the features and technical character istics of distributed management platforms by examining both qualitative and quanti tative management capabilities required by each management platform service. The analysis covers the management platform run-time environment, the operational aspects of using management platforms, the development environment, which con sists of software toolkits that are used to build management applications, the imple mentation environment, which deals with testing interoperability aspects of using management platforms, and of course the distributed applications services which plat forms make available to management applications. Finally, the analysis covers the capabilities of several management applications, either generic or specific to devices or resources which run on top of management platforms. |
data management platform architecture: Combining Business Process Management and Enterprise Architecture for Better Business Outcomes Claus T. Jensen, Owen Cline, Martin Owen, IBM Redbooks, 2011-03-31 This IBM® Redbooks® publication explains how to combine business process management (BPM) and Enterprise Architecture (EA) for better business outcomes. This book provides a unique synergistic approach to BPM and EA, based on a firm understanding of the life cycles of the enterprise and the establishment of appropriate collaboration and governance processes. When carried out together, BPM provides the business context, understanding, and metrics, and EA provides the discipline to translate business vision and strategy into architectural change. Both are needed for sustainable continuous improvement. This book provides thought leadership and direction on the topic of BPM and EA synergies. Although technical in nature, it is not a typical IBM Redbooks publication. The book provides guidance and direction on how to collaborate effectively across tribal boundaries rather than technical details about IBM software products. The primary audience for this book is leaders and architects who need to understand how to effectively combine BPM and EA to drive, as a key differentiator, continuous improvement and transformational change with enterprise scope. |
data management platform architecture: Proceedings of the 2023 9th International Conference on Architectural, Civil and Hydraulic Engineering (ICACHE 2023) Dayong Li, Yu Zhang, Yalin Luan, 2024-01-28 This is an open access book. As an annual conference held successfully in the past 8 years, 2023 9th International Conference on Architectural, Civil and Hydraulic Engineering (ICACHE 2023) will be held by China University of Petroleum(East China)on October 13-15, 2023 in Qingdao, China. ICACHE 2023 is hosted by China University of Petroleum(East China)and organized by College of Pipeline and Civil Engineering, China University of Petroleum(East China)and supported by China University of Mining & Technology, Beijing, Shandong University of Science and Technology, Sun Yat-sen University, Central South University, Fujian Agriculture and Forestry University, Southeast University, Eshragh Institute of Higher Education, Shandong Chambroad HoldingGroup Co., Ltd., Qingdao Times Design Co., Ltd.. The conference is an international forum for the presentation of technological advances and research results in the fields of architecture, civil and hydraulic engineering. The conference will bring together leading researchers, engineers and scientists in the domain of interest from around the world. We warmly welcome previous and prospected authors submit your new research papers to ICACHE 2023, and share the valuable experiences with the scientist and scholars around the world. |
data management platform architecture: Information Systems Transformation William M. Ulrich, Philip Newcomb, 2010-02-04 Every major enterprise has a significant installed base of existing software systems that reflect the tangled IT architectures that result from decades of patches and failed replacements. Most of these systems were designed to support business architectures that have changed dramatically. At best, these systems hinder agility and competitiveness and, at worst, can bring critical business functions to a halt. Architecture-Driven Modernization (ADM) restores the value of entrenched systems by capturing and retooling various aspects of existing application environments, allowing old infrastructures to deliver renewed value and align effectively with enterprise strategies and business architectures. Information Systems Transformation provides a practical guide to organizations seeking ways to understand and leverage existing systems as part of their information management strategies. It includes an introduction to ADM disciplines, tools, and standards as well as a series of scenarios outlining how ADM is applied to various initiatives. Drawing upon lessons learned from real modernization projects, it distills the theory and explains principles, processes, and best practices for every industry. Acts as a one-stop shopping reference and complete guide for implementing various modernization models in myriad industries and departments Every concept is illustrated with real-life examples from various modernization projects, allowing you to immediately apply tested solutions and see results Authored by the Co-chair of the Object Management Group (OMG) Architecture-Driven Modernization (ADM) Task Force, which sets definitive systems modernization standards for the entire IT industry A web site supports the book with up to date coverage of evolving ADM Specifications, Tutorials, and Whitepapers, allowing you to remain up to date on modernization topics as they develop |
data management platform architecture: Intelligent Computing Methodologies De-Shuang Huang, Kang-Hyun Jo, Junfeng Jing, Prashan Premaratne, Vitoantonio Bevilacqua, Abir Hussain, 2022-08-15 This two-volume set of LNCS 13393 and LNCS 13394 constitutes - in conjunction with the volume LNAI 13395 - the refereed proceedings of the 18th International Conference on Intelligent Computing, ICIC 2022, held in Xi'an, China, in August 2022. The 209 full papers of the three proceedings volumes were carefully reviewed and selected from 449 submissions. This year, the conference concentrated mainly on the theories and methodologies as well as the emerging applications of intelligent computing. Its aim was to unify the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. Therefore, the theme for this conference was “Advanced Intelligent Computing Technology and Applications”. Papers focused on this theme were solicited, addressing theories, methodologies, and applications in science and technology. |
data management platform architecture: Human Interface and the Management of Information. Interacting with Information Sakae Yamamoto, Hirohiko Mori, 2020-07-10 This two-volume set LNCS 12184 and 12185 constitutes the refereed proceedings of the Thematic Area on Human Interface and the Management of Information, HIMI 2020, held as part of HCI International 2020 in Copenhagen, Denmark.* HCII 2020 received a total of 6326 submissions, of which 1439 papers and 238 posters were accepted for publication after a careful reviewing process. The 72 papers presented in the two volumes were organized in the following topical sections: Part I: information presentation and visualization; service design and management; and information in VR and AR. Part II: recommender and decision support systems; information, communication, relationality and learning; supporting work, collaboration and creativity; and information in intelligent systems and environments. *The conference was held virtually due to the COVID-19 pandemic. |
data management platform architecture: Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing Management Association, Information Resources, 2021-01-25 Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students. |
data management platform architecture: Designing Cloud Data Platforms Danil Zburivsky, Lynda Partner, 2021-04-20 Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you''ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You''ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technology Access to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization''s data, and present it as useful business insights. about the book In Designing Cloud Data Platforms, you''ll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, you''ll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics you''ll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what''s inside The tools of different public cloud for implementing data platforms Best practices for managing structured and unstructured data sets Machine learning tools that can be used on top of the cloud Cost optimization techniques about the reader For data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years. |
data management platform architecture: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts. |
data management platform architecture: Microservices Patterns Chris Richardson, 2018-10-27 A comprehensive overview of the challenges teams face when moving to microservices, with industry-tested solutions to these problems. - Tim Moore, Lightbend 44 reusable patterns to develop and deploy reliable production-quality microservices-based applications, with worked examples in Java Key Features 44 design patterns for building and deploying microservices applications Drawing on decades of unique experience from author and microservice architecture pioneer Chris Richardson A pragmatic approach to the benefits and the drawbacks of microservices architecture Solve service decomposition, transaction management, and inter-service communication Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Microservices Patterns teaches you 44 reusable patterns to reliably develop and deploy production-quality microservices-based applications. This invaluable set of design patterns builds on decades of distributed system experience, adding new patterns for composing services into systems that scale and perform under real-world conditions. More than just a patterns catalog, this practical guide with worked examples offers industry-tested advice to help you design, implement, test, and deploy your microservices-based application. What You Will Learn How (and why!) to use microservices architecture Service decomposition strategies Transaction management and querying patterns Effective testing strategies Deployment patterns This Book Is Written For Written for enterprise developers familiar with standard enterprise application architecture. Examples are in Java. About The Author Chris Richardson is a Java Champion, a JavaOne rock star, author of Manning’s POJOs in Action, and creator of the original CloudFoundry.com. Table of Contents Escaping monolithic hell Decomposition strategies Interprocess communication in a microservice architecture Managing transactions with sagas Designing business logic in a microservice architecture Developing business logic with event sourcing Implementing queries in a microservice architecture External API patterns Testing microservices: part 1 Testing microservices: part 2 Developing production-ready services Deploying microservices Refactoring to microservices |
data management platform architecture: Flow Architectures James Urquhart, 2021-01-06 Software development today is embracing events and streaming data, which optimizes not only how technology interacts but also how businesses integrate with one another to meet customer needs. This phenomenon, called flow, consists of patterns and standards that determine which activity and related data is communicated between parties over the internet. This book explores critical implications of that evolution: What happens when events and data streams help you discover new activity sources to enhance existing businesses or drive new markets? What technologies and architectural patterns can position your company for opportunities enabled by flow? James Urquhart, global field CTO at VMware, guides enterprise architects, software developers, and product managers through the process. Learn the benefits of flow dynamics when businesses, governments, and other institutions integrate via events and data streams Understand the value chain for flow integration through Wardley mapping visualization and promise theory modeling Walk through basic concepts behind today's event-driven systems marketplace Learn how today's integration patterns will influence the real-time events flow in the future Explore why companies should architect and build software today to take advantage of flow in coming years |
data management platform architecture: Energy Management Francisco Macia-Perez, 2010-03-01 Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions. |
data management platform architecture: HDInsight Essentials - Second Edition Rajesh Nadipalli, 2015-01-27 If you want to discover one of the latest tools designed to produce stunning Big Data insights, this book features everything you need to get to grips with your data. Whether you are a data architect, developer, or a business strategist, HDInsight adds value in everything from development, administration, and reporting. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …