Advertisement
data analysis in education: Quantitative Data Analysis in Education Paul Connolly, 2007-08-07 An accessible and user-friendly guide to quantitative data analysis in educational research, aimed at those with little or no prior knowledge of statistical methods. |
data analysis in education: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
data analysis in education: Big Data in Education: Pedagogy and Research Theodosia Prodromou, 2021-10-04 This book discusses how Big Data could be implemented in educational settings and research, using empirical data and suggesting both best practices and areas in which to invest future research and development. It also explores: 1) the use of learning analytics to improve learning and teaching; 2) the opportunities and challenges of learning analytics in education. As Big Data becomes a common part of the fabric of our world, education and research are challenged to use this data to improve educational and research systems, and also are tasked with teaching coming generations to deal with Big Data both effectively and ethically. The Big Data era is changing the data landscape for statistical analysis, the ways in which data is captured and presented, and the necessary level of statistical literacy to analyse and interpret data for future decision making. The advent of Big Data accentuates the need to enable citizens to develop statistical skills, thinking and reasoning needed for representing, integrating and exploring complex information. This book offers guidance to researchers who are seeking suitable topics to explore. It presents research into the skills needed by data practitioners (data analysts, data managers, statisticians, and data consumers, academics), and provides insights into the statistical skills, thinking and reasoning needed by educators and researchers in the future to work with Big Data. This book serves as a concise reference for policymakers, who must make critical decisions regarding funding and applications. |
data analysis in education: Critical Theory and Qualitative Data Analysis in Education Rachelle Winkle-Wagner, Jamila Lee-Johnson, Ashley N. Gaskew, 2018-07-04 Critical Theory and Qualitative Data Analysis in Education offers a path-breaking explanation of how critical theories can be used within the analysis of qualitative data to inform research processes, such as data collection, analysis, and interpretation. This contributed volume offers examples of qualitative data analysis techniques and exemplars of empirical studies that employ critical theory concepts in data analysis. By creating a clear and accessible bridge between data analysis and critical social theories, this book helps scholars and researchers effectively translate their research designs and findings to multiple audiences for more equitable outcomes and disruption of historical and contemporary inequality. |
data analysis in education: Using Data in Schools to Inform Leadership and Decision Making Alex J. Bowers, Alan R. Shoho, Bruce G. Barnett, 2014-11-01 Our fifth book in the International Research on School Leadership series focuses on the use of data in schools and districts as useful information for leadership and decision making. Schools are awash in data and information, from test scores, to grades, to discipline reports, and attendance as just a short list of student information sources, while additional streams of data feed into schools and districts from teachers and parents as well as local, regional and national policy levels. To deal with the data, schools have implemented a variety of data practices, from data rooms, to data days, data walks, and data protocols. However, despite the flood of data, successful school leaders are leveraging an analysis of their school’s data as a means to bring about continuous improvement in an effort to improve instruction for all students. Nevertheless, some drown, some swim, while others find success. Our goal in this book volume is to bring together a set of chapters by authors who examine successful data use as it relates to leadership and school improvement. In particular, the chapters in this volume consider important issues in this domain, including: • How educational leaders use data to inform their practice. • What types of data and data analysis are most useful to successful school leaders. • To what extent are data driven and data informed practices helping school leaders positively change instructional practice? • In what ways does good data collection and analysis feed into successful continuous improvement and holistic systems thinking? • How have school leadership practices changed as more data and data analysis techniques have become available? • What are the major obstacles facing school leaders when using data for decision making and how do they overcome them? |
data analysis in education: Data Analysis for Continuous School Improvement Victoria L. Bernhardt, 2017-09-19 Data Analysis for Continuous School Improvement provides a new definition of school improvement, away from a singular focus on compliance, toward a true commitment to excellence. This book is a call to action. It is about inspiring schools and school districts to commit to continuous school improvement by providing a framework that will result in improving teaching for every teacher and learning for every student through the comprehensive use of data. A culmination of over 30 years of doing the hard work in schools and districts both nationally and internationally, Data Analysis for Continuous School Improvement shares new, evidence-based learnings about how to analyze, report, communicate, and use multiple measures of data. The updated edition provides a wealth of tools, protocols, timelines, examples, and strategies that will help schools and districts become genuine learning organizations. |
data analysis in education: Data Analysis, Interpretation, and Theory in Literacy Studies Research Michele Knobel, Judy Kalman, Colin Lankshear, 2020-04-17 Novice and early career researchers often have difficulty with understanding how theory, data analysis and interpretation of findings “hang together” in a well-designed and theorized qualitative research investigation and with learning how to draw on such understanding to conduct rigorous data analysis and interpretation of their analytic results. Data Analysis, Interpretation, and Theory in Literacy Studies Research demonstrates how to design, conduct and analyze a well put together qualitative research project. Using their own successful studies, chapter authors spell out a problem area, research question, and theoretical framing, carefully explaining their choices and decisions. They then show in detail how they analyzed their data, and why they took this approach. Finally, they demonstrate how they interpreted the results of their analysis, to make them meaningful in research terms. Approaches include interactional sociolinguistics, microethnographic discourse analysis, multimodal analysis, iterative coding, conversation analysis, and multimediated discourse analysis, among others. This book will appeal to beginning researchers and to literacy researchers responsible for teaching qualitative literacy studies research design at undergraduate and graduate levels. Perfect for courses such as: Literacy Research Seminar | Introduction to Qualitative Research | Advanced Research Methods | Studying New Literacies and Media | Research Perspectives in Literacy | Discourse Analysis | Advanced Qualitative Data Analysis | Sociolinguistic Analysis | Classroom Language Research |
data analysis in education: You Are a Data Person Amelia Parnell, 2023-07-03 Internal and external pressure continues to mount for college professionals to provide evidence of successful activities, programs, and services, which means that, going forward, nearly every campus professional will need to approach their work with a data-informed perspective.But you find yourself thinking “I am not a data person”.Yes, you are. Or can be with the help of Amelia Parnell.You Are a Data Person provides context for the levels at which you are currently comfortable using data, helps you identify both the areas where you should strengthen your knowledge and where you can use this knowledge in your particular university role.For example, the rising cost to deliver high-quality programs and services to students has pushed many institutions to reallocate resources to find efficiencies. Also, more institutions are intentionally connecting classroom and cocurricular learning experiences which, in some instances, requires an increased gathering of evidence that students have acquired certain skills and competencies. In addition to programs, services, and pedagogy, professionals are constantly monitoring the rates at which students are entering, remaining enrolled in, and leaving the institution, as those movements impact the institution’s financial position.From teaching professors to student affairs personnel and beyond, Parnell offers tangible examples of how professionals can make data contributions at their current and future knowledge level, and will even inspire readers to take the initiative to engage in data projects.The book includes a set of self-assessment questions and a companion set of action steps and available resources to help readers accept their identity as a data person. It also includes an annotated list of at least 20 indicators that any higher education professional can examine without sophisticated data analyses. |
data analysis in education: Data Analysis for Continuous School Improvement Victoria Bernhardt, 2013-10-18 5 PERCEPTIONS; Changing Perceptions; Assessing Perceptions; Questionnaires; Designing Questionnaires: Begin With the End in Mind; Data Collection Considerations; Our Example Schools; Study Questions for Perceptions; Summary; 6 STUDENT LEARNING; Ways to Measure Student Learning; Grades; Analyzing the Results, Descriptively; Analyzing the Results, Inferentially; Measurement Error; Looking Across Student Learning Measures; Other Common Testing Terms; Our Example Schools; Study Questions for Student Learning; Summary; 7 SCHOOL PROCESSES; School Level Processes; Classroom Level Processes. |
data analysis in education: Driven by Data Paul Bambrick-Santoyo, 2010-04-12 Offers a practical guide for improving schools dramatically that will enable all students from all backgrounds to achieve at high levels. Includes assessment forms, an index, and a DVD. |
data analysis in education: The Global Purpose Approach Tarece Johnson Ed.D., 2018-02-15 I created The Global Purpose Approach to help people gain the interest, knowledge, and skills needed for them to become more global-minded individuals. The idea for the book evolved from the need to enhance instruction in multicultural education so that people may be more knowledgeable, respectful, and appreciative of the geographies, languages, and cultures of people across the globe. The principles, content, and strategies that result comprise The Global Purpose Approachan instructional framework to introduce and integrate multiculturalism in schools, classrooms, private corporations, public agencies, and individuals daily lives. The purpose of The Global Purpose Approach is to foster multicultural awareness and education by helping to understand, respect, and appreciate similarities and differences across cultures. It consists of six guiding principlespurpose, environment, observation, perspective, language, and exploration (PEOPLE)together with an outline (NO FEAR) and resources for interactive and immersive learning of the core elements of culture. The intended impact of The Global Purpose Approach is to develop people who have enhanced knowledge and appreciation of diverse cultures and who can, therefore, interact and contribute innovatively in an interconnected, global society. Human resource professionals, organizational leaders, school districts, and teachers may use this book as a guide to integrate multicultural education in their departments, organizations, school systems, and classrooms. It also allows for educators to easily adapt the approach to fit their curriculum requirements and existing teaching plans and to implement it within their daily teaching. In this way, The Global Purpose Approach can be seen as a way to strengthen current teaching practices by adopting a set of philosophies and utilizing activities to foster more globally connected, engaged citizens without the need to fully revise or change. |
data analysis in education: Street Data Shane Safir, Jamila Dugan, 2021-02-12 Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on fixing and filling academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people. |
data analysis in education: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analysis in education: Research and Evaluation Methods in Special Education Donna M. Mertens, John Adams McLaughlin, 2004 This text will enable readers to use tools to design, conduct and report research in a way that transforms, when appropriate, the delivery of special education. |
data analysis in education: The Data-Driven School Daniel M. Hyson, Joseph F. Kovaleski, Benjamin Silberglitt, Jason A. Pedersen, 2020-05-06 This indispensable practitioner's guide helps to build the capacity of school psychologists, administrators, and teachers to use data in collaborative decision making. It presents an applied, step-by-step approach for creating and running effective data teams within a problem-solving framework. The authors describe innovative ways to improve academic and behavioral outcomes at the individual, class, grade, school, and district levels. Applications of readily available technology tools are highlighted. In a large-size format for easy photocopying, the book includes learning activities and helpful reproducible forms. The companion website provides downloadable copies of the reproducible forms as well as Excel spreadsheets, PowerPoint slides, and an online-only chapter on characteristics of effective teams. This book is in The Guilford Practical Intervention in the Schools Series, edited by Sandra M. Chafouleas. |
data analysis in education: Big Data in Education Ben Williamson, 2017-07-24 Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment! |
data analysis in education: Data Wise, Revised and Expanded Edition Kathryn Parker Boudett, Elizabeth A. City, Richard J. Murnane, 2020-08-26 Data Wise: A Step-by-Step Guide to Using Assessment Results to Improve Teaching and Learning presents a clear and carefully tested blueprint for school leaders. It shows how examining test scores and other classroom data can become a catalyst for important schoolwide conversations that will enhance schools’ abilities to capture teachers’ knowledge, foster collaboration, identify obstacles to change, and enhance school culture and climate. This revised and expanded edition captures the learning that has emerged in integrating the Data Wise process into school practice and brings the book up-to-date with recent developments in education and technology including: The shift to the Common Core State Standards. New material on the “ACE Habits of Mind”: practices that prioritize Action, Collaboration, and Evidence as part of transforming school culture. A new chapter on “How We Improve,” based on experiences implementing Data Wise and to address two common questions: “Where do I start?” and “How long will it take?” Other revisions take into account changes in the roles of school data teams and instructional leadership teams in guiding the inquiry process. The authors have also updated exhibits, examples, and terminology throughout and have added new protocols and resources. |
data analysis in education: Understanding Quantitative Data in Educational Research Nicoleta Gaciu, 2020-11-11 This book is designed to help you gain confidence in analysing and interpreting quantitative data and using appropriate statistical tests, by exploring, in plain language, a variety of data analysis methods. Highly practical, each chapter includes step-by-step instructions on how to run specific statistical tests using R, practical tips on how to interpret results correctly and exercises to put into practice what you have learned. It also includes guidance on how to use R and RStudio, how to visualise quantitative data, and the fundamentals of inferential statistics, estimations and hypothesis testing. |
data analysis in education: Research Methods in Education Joseph Check, Russell K. Schutt, 2011-10-27 Research Methods in Education introduces research methods as an integrated set of techniques for investigating questions about the educational world. This lively, innovative text helps students connect technique and substance, appreciate the value of both qualitative and quantitative methodologies, and make ethical research decisions. It weaves actual research stories into the presentation of research topics, and it emphasizes validity, authenticity, and practical significance as overarching research goals. The text is divided into three sections: Foundations of Research (5 chapters), Research Design and Data Collection (7 chapters), and Analyzing and Reporting Data (3 chapters). This tripartite conceptual framework honors traditional quantitative approaches while reflecting the growing popularity of qualitative studies, mixed method designs, and school-based techniques. This approach provides a comprehensive, conceptually unified, and well-written introduction to the exciting but complex field of educational research. |
data analysis in education: Introduction to Educational Research W. Newton Suter, 2012 W. Newton Suter argues that what is important in a changing education landscape is the ability to think clearly about research methods, reason through complex problems and evaluate published research. He explains how to evaluate data and establish its relevance. |
data analysis in education: Statistical Analysis for Education and Psychology Researchers Ian Peers, 2006-02-27 Basic statistical concepts such as probability, estimation and inference, and their role in research design and analysis are presented in this volume. The author demonstrates which statistical test to use in given circumstances and how to use it, drawing on data from psychology and education.; Written for those without a strong mathematical background, the book's examples can be worked using a pocket calculator. Real life data are analyzed using statistical software (SAS), output is interpreted, and a decision chart is presented which summarizes considerations when choosing a statistical test. |
data analysis in education: Using Data to Improve Learning Anthony Shaddock, 2014-02-01 Using Data to Improve Learning: A practical guide for busy teachers |
data analysis in education: Big Data on Campus Karen L. Webber, Henry Y. Zheng, 2020-11-03 Webber, Henry Y. Zheng, Ying Zhou |
data analysis in education: Contemporary Technologies in Education Olusola O. Adesope, A.G. Rud, 2018-11-08 This edited volume provides a critical discussion of theoretical, methodological, and practical developments of contemporary forms of educational technologies. Specifically, the book discusses the use of contemporary technologies such as the Flipped Classroom (FC), Massive Open Online Course (MOOC), Social Media, Serious Educational Games (SEG), Wikis, innovative learning software tools, and learning analytic approach for making sense of big data. While some of these contemporary educational technologies have been touted as panaceas, researchers and developers have been faced with enormous challenges in enhancing the use of these technologies to arouse student attention and improve persistent motivation, engagement, and learning. Hence, the book examines how contemporary technologies can engender student motivation and result in improved engagement and learning. Each chapter also discusses the road ahead and where appropriate, uses the current trend to predict future affordances of technologies. |
data analysis in education: Applied Quantitative Analysis in Education and the Social Sciences Yaacov Petscher, Christopher Schatschneider, Donald L. Compton, 2013-03-05 To say that complex data analyses are ubiquitous in the education and social sciences might be an understatement. Funding agencies and peer-review journals alike require that researchers use the most appropriate models and methods for explaining phenomena. Univariate and multivariate data structures often require the application of more rigorous methods than basic correlational or analysis of variance models. Additionally, though a vast set of resources may exist on how to run analysis, difficulties may be encountered when explicit direction is not provided as to how one should run a model and interpret results. The mission of this book is to expose the reader to advanced quantitative methods as it pertains to individual level analysis, multilevel analysis, item-level analysis, and covariance structure analysis. Each chapter is self-contained and follows a common format so that readers can run the analysis and correctly interpret the output for reporting. |
data analysis in education: Data Mining and Learning Analytics Samira ElAtia, Donald Ipperciel, Osmar R. Zaïane, 2016-09-20 Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research. |
data analysis in education: Higher Education Policy Analysis Using Quantitative Techniques Marvin Titus, 2021-05-14 This textbook introduces graduate students in education and policy research to data and statistical methods in state-level higher education policy analysis. It also serves as a methodological guide to students, practitioners, and researchers who want a clear approach to conducting higher education policy analysis that involves the use of institutional- and state-level secondary data and quantitative methods ranging from descriptive to advanced statistical techniques. This book is unique in that it introduces readers to various types of data sources and quantitative methods utilized in policy research and in that it demonstrates how results of statistical analyses should be presented to higher education policy makers. It helps to bridge the gap between researchers, policy makers, and practitioners both within education policy and between other fields. Coverage includes identifying pertinent data sources, the creation and management of customized data sets, teaching beginning and advanced statistical methods and analyses, and the presentation of analyses for different audiences (including higher education policy makers). |
data analysis in education: Data-based Decision Making in Education Kim Schildkamp, Mei Kuin Lai, Lorna Earl, 2012-09-18 In a context where schools are held more and more accountable for the education they provide, data-based decision making has become increasingly important. This book brings together scholars from several countries to examine data-based decision making. Data-based decision making in this book refers to making decisions based on a broad range of evidence, such as scores on students’ assessments, classroom observations etc. This book supports policy-makers, people working with schools, researchers and school leaders and teachers in the use of data, by bringing together the current research conducted on data use across multiple countries into a single volume. Some of these studies are ‘best practice’ studies, where effective data use has led to improvements in student learning. Others provide insight into challenges in both policy and practice environments. Each of them draws on research and literature in the field. |
data analysis in education: A Framework for K-12 Science Education National Research Council, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on a Conceptual Framework for New K-12 Science Education Standards, 2012-02-28 Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments. |
data analysis in education: The Datafication of Education Juliane Jarke, Andreas Breiter, 2020-05-21 This book attends to the transformation of processes and practices in education, relating to its increasing digitisation and datafication. The introduction of new means to measure, capture, describe and represent social life in numbers has not only transformed the ways in which teaching and learning are organised, but also the ways in which future generations (will) construct reality with and through data. Contributions consider data practices that span across different countries, educational fields and governance levels, ranging from early childhood education, to schools, universities, educational technology providers, to educational policy making and governance. The book demonstrates how digital data not only support decision making, but also fundamentally change the organisation of learning and teaching, and how these transformation processes can have partly ambivalent consequences, such as new possibilities for participation, but also the monitoring and emergence/manifestation of inequalities. Focusing on how data can drive decision making in education and learning, this book will be of interest to those studying both educational technology and educational policy making. The chapters in this book were originally published in Learning, Media and Technology. Chapter 4 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license. |
data analysis in education: Statistical Methods for Experimental Research in Education and Psychology Jimmie Leppink, 2019-05-30 This book focuses on experimental research in two disciplines that have a lot of common ground in terms of theory, experimental designs used, and methods for the analysis of experimental research data: education and psychology. Although the methods covered in this book are also frequently used in many other disciplines, including sociology and medicine, the examples in this book come from contemporary research topics in education and psychology. Various statistical packages, commercial and zero-cost Open Source ones, are used. The goal of this book is neither to cover all possible statistical methods out there nor to focus on a particular statistical software package. There are many excellent statistics textbooks on the market that present both basic and advanced concepts at an introductory level and/or provide a very detailed overview of options in a particular statistical software programme. This is not yet another book in that genre. Core theme of this book is a heuristic called the question-design-analysis bridge: there is a bridge connecting research questions and hypotheses, experimental design and sampling procedures, and common statistical methods in that context. Each statistical method is discussed in a concrete context of a set of research question with directed (one-sided) or undirected (two-sided) hypotheses and an experimental setup in line with these questions and hypotheses. Therefore, the titles of the chapters in this book do not include any names of statistical methods such as ‘analysis of variance’ or ‘analysis of covariance’. In a total of seventeen chapters, this book covers a wide range of topics of research questions that call for experimental designs and statistical methods, fairly basic or more advanced. |
data analysis in education: Data Analytics Applications in Education Jan Vanthienen, Kristof De Witte, 2017-09-29 The abundance of data and the rise of new quantitative and statistical techniques have created a promising area: data analytics. This combination of a culture of data-driven decision making and techniques to include domain knowledge allows organizations to exploit big data analytics in their evaluation and decision processes. Also, in education and learning, big data analytics is being used to enhance the learning process, to evaluate efficiency, to improve feedback, and to enrich the learning experience. As every step a student takes in the online world can be traced, analyzed, and used, there are plenty of opportunities to improve the learning process of students. First, data analytics techniques can be used to enhance the student’ s learning process by providing real-time feedback, or by enriching the learning experience. Second, data analytics can be used to support the instructor or teacher. Using data analytics, the instructor can better trace, and take targeted actions to improve, the learning process of the student. Third, there are possibilities in using data analytics to measure the performance of instructors. Finally, for policy makers, it is often unclear how schools use their available resources to produce outcomes. By combining structured and unstructured data from various sources, data analytics might provide a solution for governments that aim to monitor the performance of schools more closely. Data analytics in education should not be the domain of a single discipline. Economists should discuss the possibilities, issues, and normative questions with a multidisciplinary team of pedagogists, philosophers, computer scientists, and sociologists. By bringing together various disciplines, a more comprehensive answer can be formulated to the challenges ahead. This book starts this discussion by highlighting some economic perspectives on the use of data analytics in education. The book begins a rich, multidisciplinary discussion that may make data analytics in education seem as natural as a teacher in front of a classroom. |
data analysis in education: A Framework for Transforming Learning in Schools Helen Timperley, Linda Kaser, Judy Halbert, 2014 |
data analysis in education: A Guide to Practitioner Research in Education Ian Menter, Dely Elliot, Moira Hulme, Jon Lewin, Kevin Lowden, 2011-03-11 This book is a guide to research methods for practitioner research. Written in friendly and accessible language, it includes numerous practical examples based on the authors′ own experiences in the field, to support readers. The authors provide information and guidance on developing research skills such as gathering and analysing information and data, reporting findings and research design. They offer critical perspectives to help users reflect on research approaches and to scrutinise key issues in devising research questions. This book is for undergraduate and postgraduate students, teachers and practitioners in practitioner research development and leadership programmes. The team of authors are all within the School of Education at the University of Glasgow and have significant experience of working with practitioner researchers in education. |
data analysis in education: Research Basics James V. Spickard, 2016-09-15 Research Basics: Design to Data Analysis in Six Steps offers a fresh and creative approach to the research process based on author James V. Spickard’s decades of teaching experience. Using an intuitive six-step model, readers learn how to craft a research question and then identify a logical process for answering it. Conversational writing and multi-disciplinary examples illuminate the model’s simplicity and power, effectively connecting the “hows” and “whys” behind social science research. Students using this book will learn how to turn their research questions into results. |
data analysis in education: Conducting Quantitative Research in Education Saiyidi Mat Roni, Margaret Kristin Merga, Julia Elizabeth Morris, 2019-08-12 This book provides a clear and straightforward guide for all those seeking to conduct quantitative research in the field of education, using primary research data samples. While positioned as less powerful and somehow inferior, non-parametric tests can be very useful where the research can only be designed to accommodate data structure which is ordinal, or scale but violates a normality assumption, which is required for parametric tests. Non-parametric data are a staple of educational research, and as such, it is essential that educational researchers learn how to work with these data with confidence and rigour. |
data analysis in education: Doing Quantitative Research in Education with SPSS Daniel Muijs, 2010-12-31 This accessible and authoritative introduction is essential for education students and researchers needing to use quantitative methods for the first time. Using datasets from real-life educational research and avoiding the use of mathematical formulae, the author guides students through the essential techniques that they will need to know, explaining each procedure using the latest version of SPSS. The datasets can also be downloaded from the book′s website, enabling students to practice the techniques for themselves. This revised and updated second edition now also includes more advanced methods such as log linear analysis, logistic regression, and canonical correlation. Written specifically for those with no prior experience of quantitative research, this book is ideal for education students and researchers in this field. |
data analysis in education: Teaching Data Analytics Susan Vowels, Katherine Leaming Goldberg, 2019-06-17 The need for analytics skills is a source of the burgeoning growth in the number of analytics and decision science programs in higher education developed to feed the need for capable employees in this area. The very size and continuing growth of this need means that there is still space for new program development. Schools wishing to pursue business analytics programs intentionally assess the maturity level of their programs and take steps to close the gap. Teaching Data Analytics: Pedagogy and Program Design is a reference for faculty and administrators seeking direction about adding or enhancing analytics offerings at their institutions. It provides guidance by examining best practices from the perspectives of faculty and practitioners. By emphasizing the connection of data analytics to organizational success, it reviews the position of analytics and decision science programs in higher education, and to review the critical connection between this area of study and career opportunities. The book features: A variety of perspectives ranging from the scholarly theoretical to the practitioner applied An in-depth look into a wide breadth of skills from closely technology-focused to robustly soft human connection skills Resources for existing faculty to acquire and maintain additional analytics-relevant skills that can enrich their current course offerings. Acknowledging the dichotomy between data analytics and data science, this book emphasizes data analytics rather than data science, although the book does touch upon the data science realm. Starting with industry perspectives, the book covers the applied world of data analytics, covering necessary skills and applications, as well as developing compelling visualizations. It then dives into pedagogical and program design approaches in data analytics education and concludes with ideas for program design tactics. This reference is a launching point for discussions about how to connect industry’s need for skilled data analysts to higher education’s need to design a rigorous curriculum that promotes student critical thinking, communication, and ethical skills. It also provides insight into adding new elements to existing data analytics courses and for taking the next step in adding data analytics offerings, whether it be incorporating additional analytics assignments into existing courses, offering one course designed for undergraduates, or an integrated program designed for graduate students. |
data analysis in education: Driven by Data 2.0 Paul Bambrick-Santoyo, 2019-04-16 The bestselling guide for school leaders—updated in a new edition Data-driven instruction is the philosophy that schools should focus on two simple questions: how do you know if are students learning? And when they are not, what do you do about it? Driven by Data 2.0 is a practical guide that answers these questions to empower schools to achieve significant gains in student achievement. Rooted in a proven framework that has been implemented in thousands of schools, the book presents what makes schools successful along with tools to put the framework into place to make data work for your schools: Assess—set the roadmap for learning Analyze—identify why students struggle Act—teach more effectively what students need Build the culture—train and develop your staff so that data-driven instruction can thrive If you’re a K – 12 leader, coach, or teacher looking to implement data-driven instruction in your school district, Driven by Data 2.0 has the tools to train your staff: PD materials, videos of exemplar practice and all the resources you need to achieve remarkable results. |
data analysis in education: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-08-01 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …