Advertisement
data analysis presentation example: Presentation Zen Garr Reynolds, 2009-04-15 FOREWORD BY GUY KAWASAKI Presentation designer and internationally acclaimed communications expert Garr Reynolds, creator of the most popular Web site on presentation design and delivery on the Net — presentationzen.com — shares his experience in a provocative mix of illumination, inspiration, education, and guidance that will change the way you think about making presentations with PowerPoint or Keynote. Presentation Zen challenges the conventional wisdom of making slide presentations in today’s world and encourages you to think differently and more creatively about the preparation, design, and delivery of your presentations. Garr shares lessons and perspectives that draw upon practical advice from the fields of communication and business. Combining solid principles of design with the tenets of Zen simplicity, this book will help you along the path to simpler, more effective presentations. |
data analysis presentation example: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
data analysis presentation example: The Cambridge Handbook of Group Interaction Analysis Elisabeth Brauner, Margarete Boos, Michaela Kolbe, 2018-08-02 This Handbook provides a compendium of research methods that are essential for studying interaction and communication across the behavioral sciences. Focusing on coding of verbal and nonverbal behavior and interaction, the Handbook is organized into five parts. Part I provides an introduction and historic overview of the field. Part II presents areas in which interaction analysis is used, such as relationship research, group research, and nonverbal research. Part III focuses on development, validation, and concrete application of interaction coding schemes. Part IV presents relevant data analysis methods and statistics. Part V contains systematic descriptions of established and novel coding schemes, which allows quick comparison across instruments. Researchers can apply this methodology to their own interaction data and learn how to evaluate and select coding schemes and conduct interaction analysis. This is an essential reference for all who study communication in teams and groups. |
data analysis presentation example: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analysis presentation example: Analysis and Presentation of Experimental Results Costas Christodoulides, George Christodoulides, 2017-06-14 This book is intended as a guide to the analysis and presentation of experimental results. It develops various techniques for the numerical processing of experimental data, using basic statistical methods and the theory of errors. After presenting basic theoretical concepts, the book describes the methods by which the results can be presented, both numerically and graphically. The book is divided into three parts, of roughly equal length, addressing the theory, the analysis of data, and the presentation of results. Examples are given and problems are solved using the Excel, Origin, Python and R software packages. In addition, programs in all four languages are made available to readers, allowing them to use them in analyzing and presenting the results of their own experiments. Subjects are treated at a level appropriate for undergraduate students in the natural sciences, but this book should also appeal to anyone whose work involves dealing with experimental results. |
data analysis presentation example: Get to the Point! Joel Schwartzberg, 2017-10-16 In this indispensable guide for anyone who must communicate in speech or writing, Schwartzberg shows that most of us fail to convince because we don't have a point-a concrete contention that we can argue, defend, illustrate, and prove. He lays out, step-by-step, how to develop one. In Joel's Schwartzberg's ten-plus years as a strategic communications trainer, the biggest obstacle he's come across-one that connects directly to nervousness, stammering, rambling, and epic fail-is that most speakers and writers don't have a point. They typically have just a title, a theme, a topic, an idea, an assertion, a catchphrase, or even something much less. A point is something more. It's a contention you can propose, argue, defend, illustrate, and prove. A point offers a position of potential value. Global warming is real is not a point. Scientific evidence shows that global warming is a real, human-generated problem that will have a devastating environmental and financial impact is a point. When we have a point, our influence snaps into place. We communicate belief, conviction, and urgency. This book shows you how to identify your point, leverage it, stick to it, and sell it and how to train others to identify and successfully make their own points. |
data analysis presentation example: Data Analysis and Presentation Skills Jackie Willis, 2005-06-10 Data Analysis and Presentation Skills: An Introduction for the Life and Medical Sciences is an invaluable text allowing students to develop appropriate key skills when designing experiments, generating results, analysing data and ultimately presenting findings to academics and referees. Taking a hands-on approach, each of these key areas is introduced clearly and carefully, showing how to access and evaluate information using a variety of resources. Basic analytical theory is gradually introduced alongside practical applications to enhance student understanding. The reader is shown how to present data in charts using Microsoft Excel and statistical analysis is carefully explained showing clearly how to manipulate data in spreadsheets and analyse the results using commonly used tests. A section is also included on the use of PowerPoint as well as giving advice on how to prepare a short talk or seminar. Includes numerous relevant examples and case studies drawn from the Life Sciences Guidance on how to complete and present practical and project work through to postgraduate dissertation. Clear step-by-step introduction to Microsoft Excel, presentation skills and statistical analysis. Invaluable for all students within the Life and Medical Sciences |
data analysis presentation example: Better Presentations Jonathan Schwabish, 2016-11-15 Whether you are a university professor, researcher at a think tank, graduate student, or analyst at a private firm, chances are that at some point you have presented your work in front of an audience. Most of us approach this task by converting a written document into slides, but the result is often a text-heavy presentation saddled with bullet points, stock images, and graphs too complex for an audience to decipher—much less understand. Presenting is fundamentally different from writing, and with only a little more time, a little more effort, and a little more planning, you can communicate your work with force and clarity. Designed for presenters of scholarly or data-intensive content, Better Presentations details essential strategies for developing clear, sophisticated, and visually captivating presentations. Following three core principles—visualize, unify, and focus—Better Presentations describes how to visualize data effectively, find and use images appropriately, choose sensible fonts and colors, edit text for powerful delivery, and restructure a written argument for maximum engagement and persuasion. With a range of clear examples for what to do (and what not to do), the practical package offered in Better Presentations shares the best techniques to display work and the best tactics for winning over audiences. It pushes presenters past the frustration and intimidation of the process to more effective, memorable, and persuasive presentations. |
data analysis presentation example: Dear Data Giorgia Lupi, Stefanie Posavec, 2016-09-13 Equal parts mail art, data visualization, and affectionate correspondence, Dear Data celebrates the infinitesimal, incomplete, imperfect, yet exquisitely human details of life, in the words of Maria Popova (Brain Pickings), who introduces this charming and graphically powerful book. For one year, Giorgia Lupi, an Italian living in New York, and Stefanie Posavec, an American in London, mapped the particulars of their daily lives as a series of hand-drawn postcards they exchanged via mail weekly—small portraits as full of emotion as they are data, both mundane and magical. Dear Data reproduces in pinpoint detail the full year's set of cards, front and back, providing a remarkable portrait of two artists connected by their attention to the details of their lives—including complaints, distractions, phone addictions, physical contact, and desires. These details illuminate the lives of two remarkable young women and also inspire us to map our own lives, including specific suggestions on what data to draw and how. A captivating and unique book for designers, artists, correspondents, friends, and lovers everywhere. |
data analysis presentation example: Datastory Nancy Duarte, 2019-09-17 Readers will learn to understand the story behind the data and how to influence the people with a DataStory. |
data analysis presentation example: The Language of Leadership Joel Schwartzberg, 2021-07-13 The impression you make as a leader has the power to build, enhance, or sabotage your authority and ideas. Discover how to convey the essence of leadership with every interaction. Every communication leaders make—speaking, writing, posting, sharing, and even listening—has the power to either secure or sabotage their impact. But wanting to inspire and engage their team and knowing how to do it are two different things. In this book, Joel Schwartzberg suggests mindsets, tactics, tips, and examples to help readers reach that goal using the most powerful leadership tool available: a leader's voice. Whether managers are giving speeches, telling stories, sending emails, posting messages, recording videos, or running Zoom meetings, these are essential tools for establishing authority and galvanizing an audience. Readers will learn how to inspire instead of inform, communicate with purpose and power, and sell—not just share—their most important ideas. |
data analysis presentation example: Development Research in Practice Kristoffer Bjärkefur, Luíza Cardoso de Andrade, Benjamin Daniels, Maria Ruth Jones, 2021-07-16 Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well as illustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically. “In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.†? —Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University “Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.†? —Ruth E. Levine, PhD, CEO, IDinsight “Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.†? —Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley “The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.†? —Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University |
data analysis presentation example: Winning The Room Bill Franks, 2022-02-17 Revolutionize your data-driven presentations with this simple and actionable guide In Winning The Room: Creating and Delivering an Effective Data-Driven Presentation, analytics and data science expert Bill Franks delivers a practical and eye-opening exploration of how to present technical data and results to non-technical audiences in a live setting. Although framed with examples from the analytics and data science space, this book is perfect for anyone expected to present data-driven information to others. The book offers various specific tips and strategies that will make data-driven presentations much clearer, more intuitive, and easier to understand. Readers will discover: How to avoid common mistakes that undercut a presentation's credibility Instructive and eye-catching visuals that illustrate how to drive a presenter's points home and help the reader to retain the information Specific and actionable techniques to dramatically improve a presentation's clarity and impact Ideal for anyone expected to present to managers, executives, and other business leaders, Winning The Room is required reading for everyone seeking to improve the quality and efficacy of their data-driven presentations and communications. |
data analysis presentation example: Data Visualization Kieran Healy, 2018-12-18 An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions |
data analysis presentation example: The Data Visualization Sketchbook Stephanie D. H. Evergreen, 2019-04-03 The Data Visualization Sketchbook, the latest addition to bestselling author Stephanie D.H. Evergreen’s arsenal of data viz tools, provides advice on getting started with sketching and offers tips, guidance, and completed sample sketches for a number of reporting formats including a project page, graphs, dashboards, a one-page handout, slide design, and a report structure. Dr. Evergreen shows how sketching gives people the space to think through not just an individual graphic, but how several graphics could fit together in a composition when creating drafts for infographics and dashboards. The book comprises seven complete sets of report templates for you to sketch in and plan your own reporting, and it includes full-color qualitative and quantitative Chart Choosers. This must-have sketchbook helps readers realize mistakes, find solutions quickly, and report data by methods that keep audiences engaged and informed. |
data analysis presentation example: Infographics For Dummies Justin Beegel, MBA, 2014-06-10 Create stunning infographics with this hands-on guide Infographics For Dummies is a comprehensive guide to creating data visualization with viral appeal. Written by the founder of Infographic World, a New York City based infographic agency, and his top designers, the book focuses on the how-to of data, design, and distribution to create stunning, shareable infographics. Step-by-step instruction allows you to handle data like a pro, while creating eye-catching graphics with programs like Adobe Illustrator and Photoshop. The book walks you through the different types of infographics, explaining why they're so effective, and when they're appropriate. Ninety percent of the information transmitted to your brain is visual, so it's important to tickle the optic nerves to get people excited about your data. Infographics do just that. Much more exciting than a spreadsheet, infographics can add humor, interest, and flash while imparting real information. Putting your data in graphic form makes it more likely to be shared via Twitter, Facebook, Pinterest, and other social media sites, and the visual interest makes it less likely to be ignored. Infographics For Dummies provides a tried-and-true method for creating infographics that tell a story and get people excited. Topics include: Talking to clients about the data Discovering trends, outliers, and patterns Designing with mood boards and wireframes Launching and promoting your infographic The book, written by Justin Beegel, MBA, founder of Infographic World, Inc., describes the elements of a successful infographic, and stresses the must-have ingredients that get your data noticed. Humans are visual creatures, telling stories in a visual way. In today's world filled with data and messaging, an infographic is one of the best ways to get your point across. |
data analysis presentation example: Graphical Data Analysis with R Antony Unwin, 2015-03-25 See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout. |
data analysis presentation example: Design and Analysis of Ecological Experiments Samuel M. Scheiner, Jessica Gurevitch, 2001-04-26 Ecological research and the way that ecologists use statistics continues to change rapidly. This second edition of the best-selling Design and Analysis of Ecological Experiments leads these trends with an update of this now-standard reference book, with a discussion of the latest developments in experimental ecology and statistical practice. The goal of this volume is to encourage the correct use of some of the more well known statistical techniques and to make some of the less well known but potentially very useful techniques available. Chapters from the first edition have been substantially revised and new chapters have been added. Readers are introduced to statistical techniques that may be unfamiliar to many ecologists, including power analysis, logistic regression, randomization tests and empirical Bayesian analysis. In addition, a strong foundation is laid in more established statistical techniques in ecology including exploratory data analysis, spatial statistics, path analysis and meta-analysis. Each technique is presented in the context of resolving an ecological issue. Anyone from graduate students to established research ecologists will find a great deal of new practical and useful information in this current edition. |
data analysis presentation example: Experimental Methods for Science and Engineering Students Les Kirkup, 2019-09-05 An overview of experimental methods providing practical advice to students seeking guidance with their experimental work. |
data analysis presentation example: Effective Data Storytelling Brent Dykes, 2019-12-10 Master the art and science of data storytelling—with frameworks and techniques to help you craft compelling stories with data. The ability to effectively communicate with data is no longer a luxury in today’s economy; it is a necessity. Transforming data into visual communication is only one part of the picture. It is equally important to engage your audience with a narrative—to tell a story with the numbers. Effective Data Storytelling will teach you the essential skills necessary to communicate your insights through persuasive and memorable data stories. Narratives are more powerful than raw statistics, more enduring than pretty charts. When done correctly, data stories can influence decisions and drive change. Most other books focus only on data visualization while neglecting the powerful narrative and psychological aspects of telling stories with data. Author Brent Dykes shows you how to take the three central elements of data storytelling—data, narrative, and visuals—and combine them for maximum effectiveness. Taking a comprehensive look at all the elements of data storytelling, this unique book will enable you to: Transform your insights and data visualizations into appealing, impactful data stories Learn the fundamental elements of a data story and key audience drivers Understand the differences between how the brain processes facts and narrative Structure your findings as a data narrative, using a four-step storyboarding process Incorporate the seven essential principles of better visual storytelling into your work Avoid common data storytelling mistakes by learning from historical and modern examples Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals is a must-have resource for anyone who communicates regularly with data, including business professionals, analysts, marketers, salespeople, financial managers, and educators. |
data analysis presentation example: Data Analysis with Excel® Les Kirkup, 2002-03-07 An essential introduction to data analysis techniques using spreadsheets, for undergraduate and graduate students. |
data analysis presentation example: Automated Data Analytics Soraya Sedkaoui, 2024-10-11 The human mind is endowed with a remarkable capacity for creative synthesis between intuition and reason; this mental alchemy is the source of genius. A new synergy is emerging between human ingenuity and the computational capacity of generative AI models. Automated Data Analytics focuses on this fruitful collaboration between the two to unlock the full potential of data analysis. Together, human ethics and algorithmic productivity have created an alloy stronger than the sum of its parts. The future belongs to this symbiosis between heart and mind, human and machine. If we succeed in harmoniously combining our strengths, it will only be a matter of time before we discover new analytical horizons. This book sets out the foundations of this promising partnership, in which everyone makes their contribution to a common work of considerable scope. History is being forged before our very eyes. It is our responsibility to write it wisely, and to collectively pursue the ideal of augmented intelligence progress. |
data analysis presentation example: Presenting Data Effectively Stephanie Evergreen, Stephanie D. H. Evergreen, 2017-04-29 This book focuses on the best possible communication strategies for anyone working with data. From students developing a research poster to faculty presenting data findings at a conference, it provides the guiding principles of presenting data in evidence-based ways so that audiences are more engaged and researchers are better understood. |
data analysis presentation example: Visualization Analysis and Design Tamara Munzner, 2014-12-01 Learn How to Design Effective Visualization SystemsVisualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques |
data analysis presentation example: Regression Analysis by Example Samprit Chatterjee, Ali S. Hadi, 2015-02-25 Praise for the Fourth Edition: This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable. —Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. The book now includes a new chapter on the detection and correction of multicollinearity, while also showcasing the use of the discussed methods on newly added data sets from the fields of engineering, medicine, and business. The Fifth Edition also explores additional topics, including: Surrogate ridge regression Fitting nonlinear models Errors in variables ANOVA for designed experiments Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions, the required assumptions, and the evaluated success of each technique. Additionally, methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. Regression Analysis by Example, Fifth Edition is suitable for anyone with an understanding of elementary statistics. |
data analysis presentation example: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
data analysis presentation example: The Behavioral and Social Sciences National Research Council, Division of Behavioral and Social Sciences and Education, Commission on Behavioral and Social Sciences and Education, Committee on Basic Research in the Behavioral and Social Sciences, 1988-02-01 This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research. |
data analysis presentation example: Data-Driven Storytelling Nathalie Henry Riche, Christophe Hurter, Nicholas Diakopoulos, Sheelagh Carpendale, 2018-03-28 This book presents an accessible introduction to data-driven storytelling. Resulting from unique discussions between data visualization researchers and data journalists, it offers an integrated definition of the topic, presents vivid examples and patterns for data storytelling, and calls out key challenges and new opportunities for researchers and practitioners. |
data analysis presentation example: Statistics for Ecologists Using R and Excel Mark Gardener, 2017-01-16 This is a book about the scientific process and how you apply it to data in ecology. You will learn how to plan for data collection, how to assemble data, how to analyze data and finally how to present the results. The book uses Microsoft Excel and the powerful Open Source R program to carry out data handling as well as producing graphs. Statistical approaches covered include: data exploration; tests for difference – t-test and U-test; correlation – Spearman’s rank test and Pearson product-moment; association including Chi-squared tests and goodness of fit; multivariate testing using analysis of variance (ANOVA) and Kruskal–Wallis test; and multiple regression. Key skills taught in this book include: how to plan ecological projects; how to record and assemble your data; how to use R and Excel for data analysis and graphs; how to carry out a wide range of statistical analyses including analysis of variance and regression; how to create professional looking graphs; and how to present your results. New in this edition: a completely revised chapter on graphics including graph types and their uses, Excel Chart Tools, R graphics commands and producing different chart types in Excel and in R; an expanded range of support material online, including; example data, exercises and additional notes & explanations; a new chapter on basic community statistics, biodiversity and similarity; chapter summaries and end-of-chapter exercises. Praise for the first edition: This book is a superb way in for all those looking at how to design investigations and collect data to support their findings. – Sue Townsend, Biodiversity Learning Manager, Field Studies Council [M]akes it easy for the reader to synthesise R and Excel and there is extra help and sample data available on the free companion webpage if needed. I recommended this text to the university library as well as to colleagues at my student workshops on R. Although I initially bought this book when I wanted to discover R I actually also learned new techniques for data manipulation and management in Excel – Mark Edwards, EcoBlogging A must for anyone getting to grips with data analysis using R and excel. – Amazon 5-star review It has been very easy to follow and will be perfect for anyone. – Amazon 5-star review A solid introduction to working with Excel and R. The writing is clear and informative, the book provides plenty of examples and figures so that each string of code in R or step in Excel is understood by the reader. – Goodreads, 4-star review |
data analysis presentation example: Data Mining: Concepts and Techniques Jiawei Han, Micheline Kamber, Jian Pei, 2011-06-09 Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data |
data analysis presentation example: Applied Missing Data Analysis Craig K. Enders, 2010-04-23 Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists. This book will appeal to researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science. It will also serve as a supplemental text for doctoral-level courses or seminars in advanced quantitative methods, survey analysis, longitudinal data analysis, and multilevel modeling, and as a primary text for doctoral-level courses or seminars in missing data. |
data analysis presentation example: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-08-01 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. |
data analysis presentation example: Data Analysis Using Regression and Multilevel/Hierarchical Models Andrew Gelman, Jennifer Hill, 2006-12-18 Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout. |
data analysis presentation example: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data analysis presentation example: Scientific Data Analysis with R Azizur Rahman, Faruq Abdulla, Md. Moyazzem Hossain, 2024-11-28 In an era marked by exponential growth in data generation and an unprecedented convergence of technology and healthcare, the intersection of biostatistics and data science has become a pivotal domain. This book is the ideal companion in navigating the convergence of statistical methodologies and data science techniques with diverse applications implemented in the open-source environment of R. It is designed to be a comprehensive guide, marrying the principles of biostatistics with the practical implementation of statistics and data science in R, thereby empowering learners, researchers, and practitioners with the tools necessary to extract meaningful knowledge from biological, health, and medical datasets. This book is intended for students, researchers, and professionals eager to harness the combined power of biostatistics, data science, and the R programming language while gathering vital statistical knowledge needed for cutting-edge scientists in all fields. It is useful for those seeking to understand the basics of data science and statistical analysis, or looking to enhance their skills in handling any simple or complex data including biological, health, medical, and industry data. Key Features: Presents contemporary concepts of data science and biostatistics with real-life data analysis examples Promotes the evolution of fundamental and advanced methods applying to real-life problem-solving cases Explores computational statistical data science techniques from initial conception to recent developments of biostatistics Provides all R codes and real-world datasets to practice and competently apply into reader’s own domains Written in an exclusive state-of-the-art deductive approach without any theoretical hitches to support all contemporary readers |
data analysis presentation example: Information Dashboard Design Stephen Few, 2006 Dashboards have become popular in recent years as uniquely powerful tools for communicating important information at a glance. Although dashboards are potentially powerful, this potential is rarely realized. The greatest display technology in the world won't solve this if you fail to use effective visual design. And if a dashboard fails to tell you precisely what you need to know in an instant, you'll never use it, even if it's filled with cute gauges, meters, and traffic lights. Don't let your investment in dashboard technology go to waste. This book will teach you the visual design skills you need to create dashboards that communicate clearly, rapidly, and compellingly. Information Dashboard Design will explain how to: Avoid the thirteen mistakes common to dashboard design Provide viewers with the information they need quickly and clearly Apply what we now know about visual perception to the visual presentation of information Minimize distractions, cliches, and unnecessary embellishments that create confusion Organize business information to support meaning and usability Create an aesthetically pleasing viewing experience Maintain consistency of design to provide accurate interpretation Optimize the power of dashboard technology by pairing it with visual effectiveness Stephen Few has over 20 years of experience as an IT innovator, consultant, and educator. As Principal of the consultancy Perceptual Edge, Stephen focuses on data visualization for analyzing and communicating quantitative business information. He provides consulting and training services, speaks frequently at conferences, and teaches in the MBA program at the University ofCalifornia in Berkeley. He is also the author of Show Me the Numbers: Designing Tables and Graphs to Enlighten. Visit his website at www.perceptualedge.com. |
data analysis presentation example: Excel Dashboards and Reports For Dummies Michael Alexander, 2014-03-10 Create dynamic dashboards and put your data on display with For Dummies No matter what business you’re in, reports have become a staple of the workplace, but what good is a report if no reads it, or even worse, understands it? This all new edition of Excel Dashboards & Reports For Dummies is here to help you make meaning of all your data and turn it into clear and actionable visualizations. Fully updated for the latest business intelligence and spreadsheet tools in Excel 2013, this book shows you how to analyze large amounts of data, quickly slice data into various views on the fly, automate redundant reporting, create eye-catching visualizations, and more. Helps you move beyond reporting data with simple tables, rows, and columns to designing high-impact reports, dashboards, and visuals Walks you through a wide array of technical and analytical concepts to give you the background you need to select the right tool for interpreting and displaying data Covers how to build a chart, work with pivot tables, group and bucket your data, represent trends, create What-If analyses, and increase the value of your reports Excel Dashboards & Reports For Dummies, 2nd Edition is the business analysis tool you need to transform your raw data into a powerful and effective presentation that is accessible to everyone. |
data analysis presentation example: Keeping Up with the Quants Thomas H. Davenport, Jinho Kim, 2013-05-21 Why Everyone Needs Analytical Skills Welcome to the age of data. No matter your interests (sports, movies, politics), your industry (finance, marketing, technology, manufacturing), or the type of organization you work for (big company, nonprofit, small start-up)—your world is awash with data. As a successful manager today, you must be able to make sense of all this information. You need to be conversant with analytical terminology and methods and able to work with quantitative information. This book promises to become your “quantitative literacy guide—helping you develop the analytical skills you need right now in order to summarize data, find the meaning in it, and extract its value. In Keeping Up with the Quants, authors, professors, and analytics experts Thomas Davenport and Jinho Kim offer practical tools to improve your understanding of data analytics and enhance your thinking and decision making. You’ll gain crucial skills, including: How to formulate a hypothesis How to gather and analyze relevant data How to interpret and communicate analytical results How to develop habits of quantitative thinking How to deal effectively with the “quants” in your organization Big data and the analytics based on it promise to change virtually every industry and business function over the next decade. If you don’t have a business degree or if you aren’t comfortable with statistics and quantitative methods, this book is for you. Keeping Up with the Quants will give you the skills you need to master this new challenge—and gain a significant competitive edge. |
data analysis presentation example: Excel 2007 Dashboards and Reports For Dummies Michael Alexander, 2011-03-16 What’s the use of putting out reports that no one reads? Properly created dashboards are graphical representations that put data in a context for your audience, and they look really cool! How cool? You’ll find out when you see the dazzling examples in Excel 2007 Dashboards & Reports For Dummies. And, before long, everyone’s eyes will be riveted to your dashboards and reports too! This revolutionary guide shows you how to turn Excel into your own personal Business Intelligence tool. You’ll learn the fundamentals of using Excel 2007 to go beyond simple tables to creating dashboard-studded reports that wow management. Get ready to catch dashboard fever as you find out how to use basic analysis techniques, build advanced dashboard components, implement advanced reporting techniques, and import external date into your Excel reports. Discover how to: Unleash the power of Excel as a business intelligence tool Create dashboards that communicate and get noticed Think about your data in a new way Present data more effectively and increase the value of your reports Create dynamic labels that support visualization Represent time and seasonal trending Group and bucket data Display and measure values versus goals Implement macro-charged reporting Using Excel 2007 as a BI tool is the most cost-efficient way for organizations of any size create powerful and insightful reports and distribute throughout the enterprise. And Excel 2007 Dashboards and Reports for Dummies is the fastest you for you to catch dashboard fever! |
data analysis presentation example: Envisioning Information Edward R. Tufte, 1990 Escaping flatland -- Micro/macro readings -- Layering and separation -- Small multiples -- Color and information -- Narratives and space and time -- Epilogue. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …