Data And Information Management

Advertisement



  data and information management: Ethical Data and Information Management Katherine O'Keefe, Daragh O Brien, 2018-05-03 Information and how we manage, process and govern it is becoming increasingly important as organizations ride the wave of the big data revolution. Ethical Data and Information Management offers a practical guide for people in organizations who are tasked with implementing information management projects. It sets out, in a clear and structured way, the fundamentals of ethics, and provides practical and pragmatic methods for organizations to embed ethical principles and practices into their management and governance of information. Written by global experts in the field, Ethical Data and Information Management is an important book addressing a topic high on the information management agenda. Key coverage includes how to build ethical checks and balances into data governance decision making; using quality management methods to assess and evaluate the ethical nature of processing during design; change methods to communicate ethical values; how to avoid common problems that affect ethical action; and how to make the business case for ethical behaviours.
  data and information management: Information Management William McKnight, 2013-11-30 Information Management: Gaining a Competitive Advantage with Data is about making smart decisions to make the most of company information. Expert author William McKnight develops the value proposition for information in the enterprise and succinctly outlines the numerous forms of data storage. Information Management will enlighten you, challenge your preconceived notions, and help activate information in the enterprise. Get the big picture on managing data so that your team can make smart decisions by understanding how everything from workload allocation to data stores fits together. The practical, hands-on guidance in this book includes: - Part 1: The importance of information management and analytics to business, and how data warehouses are used - Part 2: The technologies and data that advance an organization, and extend data warehouses and related functionality - Part 3: Big Data and NoSQL, and how technologies like Hadoop enable management of new forms of data - Part 4: Pulls it all together, while addressing topics of agile development, modern business intelligence, and organizational change management Read the book cover-to-cover, or keep it within reach for a quick and useful resource. Either way, this book will enable you to master all of the possibilities for data or the broadest view across the enterprise. - Balances business and technology, with non-product-specific technical detail - Shows how to leverage data to deliver ROI for a business - Engaging and approachable, with practical advice on the pros and cons of each domain, so that you learn how information fits together into a complete architecture - Provides a path for the data warehouse professional into the new normal of heterogeneity, including NoSQL solutions
  data and information management: Information Management William McKnight, 2014 This book covers the following topics: the importance of information management and analytics to business, and how data warehouses are used; the technologies and data that advance an organization, and extend data warehouses and related functionality; Big Data and NoSQL, and how technologies like Hadoop enable management of new forms of data; agile development, modern business intelligence, and organizational change management.
  data and information management: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
  data and information management: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
  data and information management: Savvy Manager Jane Flagello, Sandra Dugas, 2009 The Savvy Manager challenges readers to develop the five core strengths all great managers possess. Savvy managers; self-manage (recognize their own core values; reflect (quietly contemplate and think without judgment; act consciously (wisely choose their actions); collaborate (extend respect to all employees); and evolve (constantly grow and learn). Put learning into action with a companion website and dozens of included worksheets and exercises.
  data and information management: Big Data Governance and Perspectives in Knowledge Management Strydom, Sheryl Kruger, Strydom, Moses, 2018-11-16 The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management.
  data and information management: Information Systems Management in the Big Data Era Peter Lake, Robert Drake, 2015-01-12 This timely text/reference explores the business and technical issues involved in the management of information systems in the era of big data and beyond. Topics and features: presents review questions and discussion topics in each chapter for classroom group work and individual research assignments; discusses the potential use of a variety of big data tools and techniques in a business environment, explaining how these can fit within an information systems strategy; reviews existing theories and practices in information systems, and explores their continued relevance in the era of big data; describes the key technologies involved in information systems in general and big data in particular, placing these technologies in an historic context; suggests areas for further research in this fast moving domain; equips readers with an understanding of the important aspects of a data scientist’s job; provides hands-on experience to further assist in the understanding of the technologies involved.
  data and information management: Text Data Management and Analysis ChengXiang Zhai, Sean Massung, 2016-06-30 Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic. This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.
  data and information management: Definitions in Information Management Malcolm D. Chisholm, 2010-04 Dr. Chisholm's book is an important work and should be required reading for all senior executives, regulators, and market authorities. What we need before we can develop systems, is a set of clear cut definitions of each data element. This is an excellent book on definitions for data modelers and data managers. Data modeling is the art of defining data elements and is all about definitions. Establishing a common understanding of financial instruments, including the nuances of their underlying contractual structure, is the very foundation of systemic oversight, business process automation, and analytical modeling.
  data and information management: Research Data Management and Data Literacies Koltay Tibor, 2021-10-31 Research Data Management and Data Literacies help researchers familiarize themselves with RDM, and with the services increasingly offered by libraries. This new volume looks at data-intensive science, or 'Science 2.0' as it is sometimes termed in commentary, from a number of perspectives, including the tasks academic libraries need to fulfil, new services that will come online in the near future, data literacy and its relation to other literacies, research support and the need to connect researchers across the academy, and other key issues, such as 'data deluge,' the importance of citations, metadata and data repositories. This book presents a solid resource that contextualizes RDM, including good theory and practice for researchers and professionals who find themselves tasked with managing research data. - Gives guidance on organizing, storing, preserving and sharing research data using Research Data Management (RDM) - Contextualizes RDM within the global shift to data-intensive research - Helps researchers and information professionals understand and optimize data-intensive ways of working - Considers RDM in relation to varying needs of researchers across the sciences and humanities - Presents key issues surrounding RDM, including data literacy, citations, metadata and data repositories
  data and information management: Making Enterprise Information Management (EIM) Work for Business John Ladley, 2010-07-03 Making Enterprise Information Management (EIM) Work for Business: A Guide to Understanding Information as an Asset provides a comprehensive discussion of EIM. It endeavors to explain information asset management and place it into a pragmatic, focused, and relevant light. The book is organized into two parts. Part 1 provides the material required to sell, understand, and validate the EIM program. It explains concepts such as treating Information, Data, and Content as true assets; information management maturity; and how EIM affects organizations. It also reviews the basic process that builds and maintains an EIM program, including two case studies that provide a birds-eye view of the products of the EIM program. Part 2 deals with the methods and artifacts necessary to maintain EIM and have the business manage information. Along with overviews of Information Asset concepts and the EIM process, it discusses how to initiate an EIM program and the necessary building blocks to manage the changes to managed data and content. - Organizes information modularly, so you can delve directly into the topics that you need to understand - Based in reality with practical case studies and a focus on getting the job done, even when confronted with tight budgets, resistant stakeholders, and security and compliance issues - Includes applicatory templates, examples, and advice for executing every step of an EIM program
  data and information management: Effective Document and Data Management Bob Wiggins, 2016-04-29 Effective Document and Data Management illustrates the operational and strategic significance of how documents and data are captured, managed and utilized. Without a coherent and consistent approach the efficiency and effectiveness of the organization may be undermined by less poor management and use of its information. The third edition of the book is restructured to take this broader view and to establish an organizational context in which information is management. Along the way Bob Wiggins clarifies the distinction between information management, data management and knowledge management; helps make sense of the concept of an information life cycle to present and describe the processes and techniques of information and data management, storage and retrieval; uses worked examples to illustrate the coordinated application of data and process analysis; and provides guidance on the application of appropriate project management techniques for document and records management projects. The book will benefit a range of organizations and people, from those senior managers who need to develop coherent and consistent business and IT strategies; to information professionals, such as records managers and librarians who will gain an appreciation of the impact of the technology and of how their particular areas of expertise can best be applied; to system designers, developers and implementers and finally to users. The author can be contacted at curabyte@gmail.com for further information.
  data and information management: Metadata for Information Management and Retrieval David Haynes, 2004 What is metadata and what do I need to know about it? These are two key questions for the information professional operating in the digital age as more and more information resources are available in electronic format. This is a thought-provoking introduction to metadata written by one of its leading advocates. It assesses the current theory and practice of metadata and examines key developments - including global initiatives and multilingual issues - in terms of both policy and technology. Subjects discussed include: What is metadata? definitions and concepts Retrieval environments: web; library catalogues; documents and records management; GIS; e-Learning Using metadata to enhance retrieval: pointing to content; subject retrieval; language control and indexing Information management issues: interoperability; information security; authority control; authentication and legal admissibility of evidence; records management and document lifecyc≤ preservation issues Application of metadata to information management: document and records management; content management systems for the internet Managing metadata: how to develop a schema Standards development: Dublin Core; UK Government metadata standards (eGIF); IFLA FRBR Model for cataloguing resources Looking forward: the semantic web; the Web Ontology Working Group. Readership: This book will be essential reading for network-oriented librarians and information workers in all sectors and for LIS students. In addition, it will provide useful background reading for computer staff supporting information services. Publishers, policy makers and practitioners in other curatorial traditions such as museums work or archiving will also find much of relevance.
  data and information management: Web Data Management Practices Athena Vakali, George Pallis, 2007-01-01 This book provides an understanding of major issues, current practices and the main ideas in the field of Web data management, helping readers to identify current and emerging issues, as well as future trends. The most important aspects are discussed: Web data mining, content management on the Web, Web applications and Web services--Provided by publisher.
  data and information management: Data Management Technologies and Applications Slimane Hammoudi, Christoph Quix, Jorge Bernardino, 2021-07-22 This book constitutes the thoroughly refereed proceedings of the 9th International Conference on Data Management Technologies and Applications, DATA 2020, which was supposed to take place in Paris, France, in July 2020. Due to the Covid-19 pandemic the event was held virtually. The 14 revised full papers were carefully reviewed and selected from 70 submissions. The papers deal with the following topics: datamining; decision support systems; data analytics; data and information quality; digital rights management; big data; knowledge management; ontology engineering; digital libraries; mobile databases; object-oriented database systems; data integrity.
  data and information management: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development
  data and information management: Research Data Management Joyce M. Ray, 2014 It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations.
  data and information management: Patterns of Information Management Mandy Chessell, Harald C. Smith, 2013 In the era of Big Data, effective information management has become crucial to the success of virtually all organizations. Unfortunately, few IT practitioners know today's best practices for successfully managing enterprise information resources. Patterns for Information Management offers the solution: a multi-disciplinary patterns-based approach that reflects where information comes from, how it is distributed, protected, governed, monitored -- and, ultimately, utilized.
  data and information management: Research Data Access and Management in Modern Libraries Bhardwaj, Raj Kumar, Banks, Paul, 2019-05-15 Handling and archiving data should be done in a highly professional and quality-controlled manner. For academic and research libraries, it is required to know how to document data and support traceability, as well as to make it reusable and productive. However, these institutions have different requirements relating to the archiving and reusability of data. Therefore, a comprehensive source of information is required to understand data access and management within these organizations. Research Data Access and Management in Modern Libraries is a critical scholarly resource that delves into innovative data management strategies and strategy implementation in library settings and provides best practices to stakeholders using the latest tools and technology. It further explores concepts such as research data management, data access, data preservation, building document and data institutional repositories, applications of Web 2.0 tools, mobile technology applications in data access, and conducting information literacy programs. This book is ideal for librarians, information specialists, research scholars, students, IT managers, computer scientists, policymakers, educators, and academic administrators.
  data and information management: Principles of Data Management Keith Gordon, 2013-11-18 Data is a valuable corporate asset and its effective management can be vital to an organisation’s success. This professional guide covers all the key areas of data management, including database development and corporate data modelling. It is business-focused, providing the knowledge and techniques required to successfully implement the data management function. This new edition covers web technology and its relation to databases and includes material on the management of master data.
  data and information management: Enterprise Knowledge Management David Loshin, 2001 This volume presents a methodology for defining, measuring and improving data quality. It lays out an economic framework for understanding the value of data quality, then outlines data quality rules and domain- and mapping-based approaches to consolidating enterprise knowledge.
  data and information management: Data Clean-Up and Management Margaret Hogarth, Kenneth Furuta, 2012-10-22 Data use in the library has specific characteristics and common problems. Data Clean-up and Management addresses these, and provides methods to clean up frequently-occurring data problems using readily-available applications. The authors highlight the importance and methods of data analysis and presentation, and offer guidelines and recommendations for a data quality policy. The book gives step-by-step how-to directions for common dirty data issues. - Focused towards libraries and practicing librarians - Deals with practical, real-life issues and addresses common problems that all libraries face - Offers cradle-to-grave treatment for preparing and using data, including download, clean-up, management, analysis and presentation
  data and information management: Data Management for Libraries Laura Krier, Carly A. Strasser, 2014 Since the National Science Foundation joined the National Institutes of Health in requiring that grant proposals include a data management plan, academic librarians have been inundated with related requests from faculty and campus-based grant consulting offices. Data management is a new service area for many library staff, requiring careful planning and implementation. This guide offers a start-to-finish primer on understanding, building, and maintaining a data management service, showing another way the academic library can be invaluable to researchers. Krier and Strasser of the California Digital Library guide readers through every step of a data management plan by Offering convincing arguments to persuade researchers to create a data management plan, with advice on collaborating with them Laying out all the foundations of starting a service, complete with sample data librarian job descriptions and data management plans Providing tips for conducting successful data management interviews Leading readers through making decisions about repositories and other infrastructure Addressing sensitive questions such as ownership, intellectual property, sharing and access, metadata, and preservation This LITA guide will help academic librarians work with researchers, faculty, and other stakeholders to effectively organize, preserve, and provide access to research data.
  data and information management: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
  data and information management: A Primer in Financial Data Management Martijn Groot, 2017-05-10 A Primer in Financial Data Management describes concepts and methods, considering financial data management, not as a technological challenge, but as a key asset that underpins effective business management. This broad survey of data management in financial services discusses the data and process needs from the business user, client and regulatory perspectives. Its non-technical descriptions and insights can be used by readers with diverse interests across the financial services industry. The need has never been greater for skills, systems, and methodologies to manage information in financial markets. The volume of data, the diversity of sources, and the power of the tools to process it massively increased. Demands from business, customers, and regulators on transparency, safety, and above all, timely availability of high quality information for decision-making and reporting have grown in tandem, making this book a must read for those working in, or interested in, financial management. - Focuses on ways information management can fuel financial institutions' processes, including regulatory reporting, trade lifecycle management, and customer interaction - Covers recent regulatory and technological developments and their implications for optimal financial information management - Views data management from a supply chain perspective and discusses challenges and opportunities, including big data technologies and regulatory scrutiny
  data and information management: Web Data Management Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011-11-28 The Internet and World Wide Web have revolutionized access to information. Users now store information across multiple platforms from personal computers to smartphones and websites. As a consequence, data management concepts, methods and techniques are increasingly focused on distribution concerns. Now that information largely resides in the network, so do the tools that process this information. This book explains the foundations of XML with a focus on data distribution. It covers the many facets of distributed data management on the Web, such as description logics, that are already emerging in today's data integration applications and herald tomorrow's semantic Web. It also introduces the machinery used to manipulate the unprecedented amount of data collected on the Web. Several 'Putting into Practice' chapters describe detailed practical applications of the technologies and techniques. The book will serve as an introduction to the new, global, information systems for Web professionals and master's level courses.
  data and information management: Product Information Management Jorij Abraham, 2014-05-05 Product Information Management is the latest topic that companies across the world are deliberating upon. As companies sell online, they are confronted with the fact that not all information necessary to sell their products is available. Where marketing, sales and finance have been core processes of the corporate world for a long time, PIM is a new business process with its own unique implementation and management challenges. The book describes the core PIM processes; their strategic, tactical and operational benefits and implementation challenges. The book has been written for managers, business users as well as students, and illustrates the different concepts with practical cases from companies like Coca Cola, Nikon and Thomas Cook.
  data and information management: Handbook of Research on Information Technology Management and Clinical Data Administration in Healthcare Dwivedi, Ashish N., 2009-05-31 This book presents theoretical and empirical research on the value of information technology in healthcare--Provided by publisher.
  data and information management: Medical Data Management Florian Leiner, Wilhelm Gaus, Reinhold Haux, Petra Knaup-Gregori, 2003-01-14 Medical Data Management is a systematic introduction to the basic methodology of professional clinical data management. It emphasizes generic methods of medical documentation applicable to such diverse tasks as the electronic patient record, maintaining a clinical trials database, and building a tumor registry. This book is for all students in medical informatics and health information management, and it is ideal for both the undergraduate and the graduate levels. The book also guides professionals in the design and use of clinical information systems in various health care settings. It is an invaluable resource for all health care professionals involved in designing, assessing, adapting, or using clinical data management systems in hospitals, outpatient clinics, study centers, health plans, etc. The book combines a consistent theoretical foundation of medical documentation methods outlining their practical applicability in real clinical data management systems. Two new chapters detail hospital information systems and clinical trials. There is a focus on the international classification of diseases (ICD-9 and -10) systems, as well as a discussion on the difference between the two codes. All chapters feature exercises, bullet points, and a summary to provide the reader with essential points to remember. New to the Third Edition is a comprehensive section comprised of a combined Thesaurus and Glossary which aims to clarify the unclear and sometimes inconsistent terminology surrounding the topic.
  data and information management: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure
  data and information management: In-Memory Data Management Hasso Plattner, Alexander Zeier, 2012-04-17 In the last fifty years the world has been completely transformed through the use of IT. We have now reached a new inflection point. This book presents, for the first time, how in-memory data management is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. This book provides the technical foundation for processing combined transactional and analytical operations in the same database. In the year since we published the first edition of this book, the performance gains enabled by the use of in-memory technology in enterprise applications has truly marked an inflection point in the market. The new content in this second edition focuses on the development of these in-memory enterprise applications, showing how they leverage the capabilities of in-memory technology. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes.
  data and information management: Strategic Information Management Robert Galliers, Dorothy E. Leidner, 2003 The editors include a wide range of contemporary and classic articles from North America and the UK on key information systems management themes, including IT developments in business and outsourcing information systems services.
  data and information management: Introducing Information Management Matthew Hinton, 2006-08-11 This book provides a clear and concise overview of Information Management covering the key aspects of infrastructure, design, information assets and managing information. * Part 1 explores the diversity and changing nature of managing the information management function. * Part 2 investigates the role of information as an organizational resource. * Part 3 focuses on managing organizational data and information. * Part 4 examines the role of information management in organizational strategy and change.
  data and information management: Healthcare Information Management Systems Marion J. Ball, Charlotte Weaver, Joan Kiel, Donald W. Simborg, Judith V. Douglas, James W. Albright, 2013-04-17 Aimed at health care professionals, this book looks beyond traditional information systems and shows how hospitals and other health care providers can attain a competitive edge. Speaking practitioner to practitioner, the authors explain how they use information technology to manage their health care institutions and to support the delivery of clinical care. This second edition incorporates the far-reaching advances of the last few years, which have moved the field of health informatics from the realm of theory into that of practice. Major new themes, such as a national information infrastructure and community networks, guidelines for case management, and community education and resource centres are added, while such topics as clinical and blood banking have been thoroughly updated.
  data and information management: Advanced Data Management Lena Wiese, 2015-10-29 Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
  data and information management: Data Collection and Management Magda Stouthamer-Loeber, Welmoet Bok van Kammen, 1995-08-08 Tired of a trial-and-error approach to collecting and managing data? Data Collection and Management offers helpful information on managing research projects. By stressing how to use good standards for data collecting and processing, the authors cover such important how-tos as planning research activities; making budgetary decisions and keeping the budget under control; hiring, training, and supervising field interviewing staff; establishing whether interviewers are ready to start interviewing; and ensuring high participant acquisition and retention rates. The book also covers using computerized information systems for tracking data collected and the data management process. Proposal writers, principal investigators, graduate research students, and project coordinators of research requiring large-scale field data collection will find the book to be an indispensable tool.
  data and information management: 101 Lightbulb Moments in Data Management Phil Simon, 2011 A collection of the best contributions from DataFlux's featured experts.
  data and information management: Data Protection and Information Lifecycle Management Thomas D. Petrocelli, 2006 This book introduces Information Lifecycle Management (ILM), a powerful new strategy for managing enterprise information based on its value over time. The author explains emerging techniques for protecting storage systems and storage networks, and for integrating storage security into your overall security plan. He also presents new technical advances and opportunities to improve existing data-protection processes, including backup/restore, replication, and remote copy.
  data and information management: Mastering Information Management Thomas H. Davenport, Donald A. Marchand, 2000 Davenport and Marchand bring together the knowledge managers need to make sense of mere data and technology. Mastering Information Management organizes the full range of cutting-edge ideas, tools and techniques for successfully managing the information-driven business.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …