Advertisement
data engineering vs data architecture: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting |
data engineering vs data architecture: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required. |
data engineering vs data architecture: Data Architecture: A Primer for the Data Scientist W.H. Inmon, Daniel Linstedt, Mary Levins, 2019-04-30 Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the bigger picture and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. - New case studies include expanded coverage of textual management and analytics - New chapters on visualization and big data - Discussion of new visualizations of the end-state architecture |
data engineering vs data architecture: The Rails Way Obie Fernandez, 2007-11-16 The expert guide to building Ruby on Rails applications Ruby on Rails strips complexity from the development process, enabling professional developers to focus on what matters most: delivering business value. Now, for the first time, there’s a comprehensive, authoritative guide to building production-quality software with Rails. Pioneering Rails developer Obie Fernandez and a team of experts illuminate the entire Rails API, along with the Ruby idioms, design approaches, libraries, and plug-ins that make Rails so valuable. Drawing on their unsurpassed experience, they address the real challenges development teams face, showing how to use Rails’ tools and best practices to maximize productivity and build polished applications users will enjoy. Using detailed code examples, Obie systematically covers Rails’ key capabilities and subsystems. He presents advanced programming techniques, introduces open source libraries that facilitate easy Rails adoption, and offers important insights into testing and production deployment. Dive deep into the Rails codebase together, discovering why Rails behaves as it does— and how to make it behave the way you want it to. This book will help you Increase your productivity as a web developer Realize the overall joy of programming with Ruby on Rails Learn what’s new in Rails 2.0 Drive design and protect long-term maintainability with TestUnit and RSpec Understand and manage complex program flow in Rails controllers Leverage Rails’ support for designing REST-compliant APIs Master sophisticated Rails routing concepts and techniques Examine and troubleshoot Rails routing Make the most of ActiveRecord object-relational mapping Utilize Ajax within your Rails applications Incorporate logins and authentication into your application Extend Rails with the best third-party plug-ins and write your own Integrate email services into your applications with ActionMailer Choose the right Rails production configurations Streamline deployment with Capistrano |
data engineering vs data architecture: The Pragmatic Programmer David Thomas, Andrew Hunt, 2019-07-30 “One of the most significant books in my life.” –Obie Fernandez, Author, The Rails Way “Twenty years ago, the first edition of The Pragmatic Programmer completely changed the trajectory of my career. This new edition could do the same for yours.” –Mike Cohn, Author of Succeeding with Agile , Agile Estimating and Planning , and User Stories Applied “. . . filled with practical advice, both technical and professional, that will serve you and your projects well for years to come.” –Andrea Goulet, CEO, Corgibytes, Founder, LegacyCode.Rocks “. . . lightning does strike twice, and this book is proof.” –VM (Vicky) Brasseur, Director of Open Source Strategy, Juniper Networks The Pragmatic Programmer is one of those rare tech books you’ll read, re-read, and read again over the years. Whether you’re new to the field or an experienced practitioner, you’ll come away with fresh insights each and every time. Dave Thomas and Andy Hunt wrote the first edition of this influential book in 1999 to help their clients create better software and rediscover the joy of coding. These lessons have helped a generation of programmers examine the very essence of software development, independent of any particular language, framework, or methodology, and the Pragmatic philosophy has spawned hundreds of books, screencasts, and audio books, as well as thousands of careers and success stories. Now, twenty years later, this new edition re-examines what it means to be a modern programmer. Topics range from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you’ll learn how to: Fight software rot Learn continuously Avoid the trap of duplicating knowledge Write flexible, dynamic, and adaptable code Harness the power of basic tools Avoid programming by coincidence Learn real requirements Solve the underlying problems of concurrent code Guard against security vulnerabilities Build teams of Pragmatic Programmers Take responsibility for your work and career Test ruthlessly and effectively, including property-based testing Implement the Pragmatic Starter Kit Delight your users Written as a series of self-contained sections and filled with classic and fresh anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best approaches and major pitfalls of many different aspects of software development. Whether you’re a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you’ll quickly see improvements in personal productivity, accuracy, and job satisfaction. You’ll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You’ll become a Pragmatic Programmer. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
data engineering vs data architecture: Salesforce Data Architecture and Management Ahsan Zafar, 2021-07-30 Learn everything you need to become a successful data architect on the Salesforce platform Key Features Adopt best practices relating to data governance and learn how to implement them Learn how to work with data in Salesforce while maintaining scalability and security of an instance Gain insights into managing large data volumes in Salesforce Book Description As Salesforce orgs mature over time, data management and integrations are becoming more challenging than ever. Salesforce Data Architecture and Management follows a hands-on approach to managing data and tracking the performance of your Salesforce org. You'll start by understanding the role and skills required to become a successful data architect. The book focuses on data modeling concepts, how to apply them in Salesforce, and how they relate to objects and fields in Salesforce. You'll learn the intricacies of managing data in Salesforce, starting from understanding why Salesforce has chosen to optimize for read rather than write operations. After developing a solid foundation, you'll explore examples and best practices for managing your data. You'll understand how to manage your master data and discover what the Golden Record is and why it is important for organizations. Next, you'll learn how to align your MDM and CRM strategy with a discussion on Salesforce's Customer 360 and its key components. You'll also cover data governance, its multiple facets, and how GDPR compliance can be achieved with Salesforce. Finally, you'll discover Large Data Volumes (LDVs) and best practices for migrating data using APIs. By the end of this book, you'll be well-versed with data management, data backup, storage, and archiving in Salesforce. What you will learn Understand the Salesforce data architecture Explore various data backup and archival strategies Understand how the Salesforce platform is designed and how it is different from other relational databases Uncover tools that can help in data management that minimize data trust issues in your Salesforce org Focus on the Salesforce Customer 360 platform, its key components, and how it can help organizations in connecting with customers Discover how Salesforce can be used for GDPR compliance Measure and monitor the performance of your Salesforce org Who this book is for This book is for aspiring architects, Salesforce admins, and developers. You will also find the book useful if you're preparing for the Salesforce Data Architecture and Management exam. A basic understanding of Salesforce is assumed. |
data engineering vs data architecture: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle |
data engineering vs data architecture: Data Engineering with Google Cloud Platform Adi Wijaya, 2022-03-31 Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book. |
data engineering vs data architecture: Database Design for Mere Mortals Michael James Hernandez, 2003 This book takes the somewhat daunting process of database design and breaks it into completely manageable and understandable components. Mike's approach whilst simple is completely professional, and I can recommend this book to any novice database designer. --Sandra Barker, Lecturer, University of South Australia, Australia Databases are a critical infrastructure technology for information systems and today's business. Mike Hernandez has written a literate explanation of database technology--a topic that is intricate and often obscure. If you design databases yourself, this book will educate you about pitfalls and show you what to do. If you purchase products that use a database, the book explains the technology so that you can understand what the vendor is doing and assess their products better. --Michael Blaha, consultant and trainer, author of A Manager's Guide to Database Technology If you told me that Mike Hernandez could improve on the first edition of Database Design for Mere Mortals I wouldn't have believed you, but he did! The second edition is packed with more real-world examples, detailed explanations, and even includes database-design tools on the CD-ROM! This is a must-read for anyone who is even remotely interested in relational database design, from the individual who is called upon occasionally to create a useful tool at work, to the seasoned professional who wants to brush up on the fundamentals. Simply put, if you want to do it right, read this book! --Matt Greer, Process Control Development, The Dow Chemical Company Mike's approach to database design is totally common-sense based, yet he's adhered to all the rules of good relational database design. I use Mike's books in my starter database-design class, and I recommend his books to anyone who's interested in learning how to design databases or how to write SQL queries. --Michelle Poolet, President, MVDS, Inc. Slapping together sophisticated applications with poorly designed data will hurt you just as much now as when Mike wrote his first edition, perhaps even more. Whether you're just getting started developing with data or are a seasoned pro; whether you've read Mike's previous book or this is your first; whether you're happier letting someone else design your data or you love doing it yourself--this is the book for you. Mike's ability to explain these concepts in a way that's not only clear, but fun, continues to amaze me. --From the Foreword by Ken Getz, MCW Technologies, coauthor ASP.NET Developer's JumpStart The first edition of Mike Hernandez's book Database Design for Mere Mortals was one of the few books that survived the cut when I moved my office to smaller quarters. The second edition expands and improves on the original in so many ways. It is not only a good, clear read, but contains a remarkable quantity of clear, concise thinking on a very complex subject. It's a must for anyone interested in the subject of database design. --Malcolm C. Rubel, Performance Dynamics Associates Mike's excellent guide to relational database design deserves a second edition. His book is an essential tool for fledgling Microsoft Access and other desktop database developers, as well as for client/server pros. I recommend it highly to all my readers. --Roger Jennings, author of Special Edition Using Access 2002 There are no silver bullets! Database technology has advanced dramatically, the newest crop of database servers perform operations faster than anyone could have imagined six years ago, but none of these technological advances will help fix a bad database design, or capture data that you forgot to include! Database Design for Mere Mortals(TM), Second Edition, helps you design your database right in the first place! --Matt Nunn, Product Manager, SQL Server, Microsoft Corporation When my brother started his professional career as a developer, I gave him Mike's book to help him understand database concepts and make real-world application of database technology. When I need a refresher on the finer points of database design, this is the book I pick up. I do not think that there is a better testimony to the value of a book than that it gets used. For this reason I have wholeheartedly recommended to my peers and students that they utilize this book in their day-to-day development tasks. --Chris Kunicki, Senior Consultant, OfficeZealot.com Mike has always had an incredible knack for taking the most complex topics, breaking them down, and explaining them so that anyone can 'get it.' He has honed and polished his first very, very good edition and made it even better. If you're just starting out building database applications, this book is a must-read cover to cover. Expert designers will find Mike's approach fresh and enlightening and a source of great material for training others. --John Viescas, President, Viescas Consulting, Inc., author of Running Microsoft Access 2000 and coauthor of SQL Queries for Mere Mortals Whether you need to learn about relational database design in general, design a relational database, understand relational database terminology, or learn best practices for implementing a relational database, Database Design for Mere Mortals(TM), Second Edition, is an indispensable book that you'll refer to often. With his many years of real-world experience designing relational databases, Michael shows you how to analyze and improve existing databases, implement keys, define table relationships and business rules, and create data views, resulting in data integrity, uniform access to data, and reduced data-entry errors. --Paul Cornell, Site Editor, MSDN Office Developer Center Sound database design can save hours of development time and ensure functionality and reliability. Database Design for Mere Mortals(TM), Second Edition, is a straightforward, platform-independent tutorial on the basic principles of relational database design. It provides a commonsense design methodology for developing databases that work. Database design expert Michael J. Hernandez has expanded his best-selling first edition, maintaining its hands-on approach and accessibility while updating its coverage and including even more examples and illustrations. This edition features a CD-ROM that includes diagrams of sample databases, as well as design guidelines, documentation forms, and examples of the database design process. This book will give you the knowledge and tools you need to create efficient and effective relational databases. |
data engineering vs data architecture: Cassandra: The Definitive Guide Jeff Carpenter, Eben Hewitt, 2016-06-29 Imagine what you could do if scalability wasn't a problem. With this hands-on guide, you’ll learn how the Cassandra database management system handles hundreds of terabytes of data while remaining highly available across multiple data centers. This expanded second edition—updated for Cassandra 3.0—provides the technical details and practical examples you need to put this database to work in a production environment. Authors Jeff Carpenter and Eben Hewitt demonstrate the advantages of Cassandra’s non-relational design, with special attention to data modeling. If you’re a developer, DBA, or application architect looking to solve a database scaling issue or future-proof your application, this guide helps you harness Cassandra’s speed and flexibility. Understand Cassandra’s distributed and decentralized structure Use the Cassandra Query Language (CQL) and cqlsh—the CQL shell Create a working data model and compare it with an equivalent relational model Develop sample applications using client drivers for languages including Java, Python, and Node.js Explore cluster topology and learn how nodes exchange data Maintain a high level of performance in your cluster Deploy Cassandra on site, in the Cloud, or with Docker Integrate Cassandra with Spark, Hadoop, Elasticsearch, Solr, and Lucene |
data engineering vs data architecture: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh. |
data engineering vs data architecture: Official Google Cloud Certified Professional Data Engineer Study Guide Dan Sullivan, 2020-05-11 The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform. |
data engineering vs data architecture: Software Architecture for Big Data and the Cloud Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, Bruce Maxim, 2017-06-12 Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data |
data engineering vs data architecture: Data Management at Scale Piethein Strengholt, 2020-07-29 As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata |
data engineering vs data architecture: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
data engineering vs data architecture: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution. |
data engineering vs data architecture: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data engineering vs data architecture: Agile Data Warehouse Design Lawrence Corr, Jim Stagnitto, 2011-11 Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino. |
data engineering vs data architecture: Big Data James Warren, Nathan Marz, 2015-04-29 Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth |
data engineering vs data architecture: Team Topologies Matthew Skelton, Manuel Pais, 2019-09-17 Effective software teams are essential for any organization to deliver value continuously and sustainably. But how do you build the best team organization for your specific goals, culture, and needs? Team Topologies is a practical, step-by-step, adaptive model for organizational design and team interaction based on four fundamental team types and three team interaction patterns. It is a model that treats teams as the fundamental means of delivery, where team structures and communication pathways are able to evolve with technological and organizational maturity. In Team Topologies, IT consultants Matthew Skelton and Manuel Pais share secrets of successful team patterns and interactions to help readers choose and evolve the right team patterns for their organization, making sure to keep the software healthy and optimize value streams. Team Topologies is a major step forward in organizational design for software, presenting a well-defined way for teams to interact and interrelate that helps make the resulting software architecture clearer and more sustainable, turning inter-team problems into valuable signals for the self-steering organization. |
data engineering vs data architecture: Summary of Joe Reis & Matt Housley's Fundamentals of Data Engineering Milkyway Media, 2024-03-21 Buy now to get the main key ideas from Joe Reis & Matt Housley's Fundamentals of Data Engineering In Fundamentals of Data Engineering (2022), data experts Joe Reis and Matt Housley provide a comprehensive overview of the field, from foundational concepts to advanced practices. They outline the data engineering lifecycle, with a detailed guide for planning and building systems that meet any organization’s needs. They explain how to evaluate and integrate the best technologies available, ensuring the architecture is robust and efficient. Their guide aims to help aspiring and current data engineers navigate the evolving landscape of the field, offering insights into best practices and approaches for managing data from its source to its final use. |
data engineering vs data architecture: Scalable Data Architecture with Java Sinchan Banerjee, 2022-09-30 Orchestrate data architecting solutions using Java and related technologies to evaluate, recommend and present the most suitable solution to leadership and clients Key FeaturesLearn how to adapt to the ever-evolving data architecture technology landscapeUnderstand how to choose the best suited technology, platform, and architecture to realize effective business valueImplement effective data security and governance principlesBook Description Java architectural patterns and tools help architects to build reliable, scalable, and secure data engineering solutions that collect, manipulate, and publish data. This book will help you make the most of the architecting data solutions available with clear and actionable advice from an expert. You'll start with an overview of data architecture, exploring responsibilities of a Java data architect, and learning about various data formats, data storage, databases, and data application platforms as well as how to choose them. Next, you'll understand how to architect a batch and real-time data processing pipeline. You'll also get to grips with the various Java data processing patterns, before progressing to data security and governance. The later chapters will show you how to publish Data as a Service and how you can architect it. Finally, you'll focus on how to evaluate and recommend an architecture by developing performance benchmarks, estimations, and various decision metrics. By the end of this book, you'll be able to successfully orchestrate data architecture solutions using Java and related technologies as well as to evaluate and present the most suitable solution to your clients. What you will learnAnalyze and use the best data architecture patterns for problemsUnderstand when and how to choose Java tools for a data architectureBuild batch and real-time data engineering solutions using JavaDiscover how to apply security and governance to a solutionMeasure performance, publish benchmarks, and optimize solutionsEvaluate, choose, and present the best architectural alternativesUnderstand how to publish Data as a Service using GraphQL and a REST APIWho this book is for Data architects, aspiring data architects, Java developers and anyone who wants to develop or optimize scalable data architecture solutions using Java will find this book useful. A basic understanding of data architecture and Java programming is required to get the best from this book. |
data engineering vs data architecture: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines. |
data engineering vs data architecture: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite. |
data engineering vs data architecture: Data Observability for Data Engineering Michele Pinto, Sammy El Khammal, 2023-12-29 Discover actionable steps to maintain healthy data pipelines to promote data observability within your teams with this essential guide to elevating data engineering practices Key Features Learn how to monitor your data pipelines in a scalable way Apply real-life use cases and projects to gain hands-on experience in implementing data observability Instil trust in your pipelines among data producers and consumers alike Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization. This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You’ll see how it builds on data quality monitoring and understand its significance from the data engineering perspective. Once you're familiar with the techniques and elements of data observability, you'll get hands-on with a practical Python project to reinforce what you've learned. Toward the end of the book, you’ll apply your expertise to explore diverse use cases and experiment with projects to seamlessly implement data observability in your organization. Equipped with the mastery of data observability intricacies, you’ll be able to make your organization future-ready and resilient and never worry about the quality of your data pipelines again.What you will learn Implement a data observability approach to enhance the quality of data pipelines Collect and analyze key metrics through coding examples Apply monkey patching in a Python module Manage the costs and risks associated with your data pipeline Understand the main techniques for collecting observability metrics Implement monitoring techniques for analytics pipelines in production Build and maintain a statistics engine continuously Who this book is for This book is for data engineers, data architects, data analysts, and data scientists who have encountered issues with broken data pipelines or dashboards. Organizations seeking to adopt data observability practices and managers responsible for data quality and processes will find this book especially useful to increase the confidence of data consumers and raise awareness among producers regarding their data pipelines. |
data engineering vs data architecture: Data Architecture William H. Inmon, Daniel Linstedt, 2015 |
data engineering vs data architecture: Mastering Data Engineering and Analytics with Databricks Manoj Kumar, 2024-09-30 TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index |
data engineering vs data architecture: Azure Data and AI Architect Handbook Olivier Mertens, Breght Van Baelen, 2023-07-31 Master core data architecture design concepts and Azure Data & AI services to gain a cloud data and AI architect’s perspective to developing end-to-end solutions Purchase of the print or Kindle book includes a free PDF eBook Key Features Translate and implement conceptual architectures with the right Azure services Inject artificial intelligence into data solutions for advanced analytics Leverage cloud computing and frameworks to drive data science workloads Book DescriptionWith data’s growing importance in businesses, the need for cloud data and AI architects has never been higher. The Azure Data and AI Architect Handbook is designed to assist any data professional or academic looking to advance their cloud data platform designing skills. This book will help you understand all the individual components of an end-to-end data architecture and how to piece them together into a scalable and robust solution. You’ll begin by getting to grips with core data architecture design concepts and Azure Data & AI services, before exploring cloud landing zones and best practices for building up an enterprise-scale data platform from scratch. Next, you’ll take a deep dive into various data domains such as data engineering, business intelligence, data science, and data governance. As you advance, you’ll cover topics ranging from learning different methods of ingesting data into the cloud to designing the right data warehousing solution, managing large-scale data transformations, extracting valuable insights, and learning how to leverage cloud computing to drive advanced analytical workloads. Finally, you’ll discover how to add data governance, compliance, and security to solutions. By the end of this book, you’ll have gained the expertise needed to become a well-rounded Azure Data & AI architect.What you will learn Design scalable and cost-effective cloud data platforms on Microsoft Azure Explore architectural design patterns with various use cases Determine the right data stores and data warehouse solutions Discover best practices for data orchestration and transformation Help end users to visualize data using interactive dashboarding Leverage OpenAI and custom ML models for advanced analytics Manage security, compliance, and governance for the data estate Who this book is forThis book is for anyone looking to elevate their skill set to the level of an architect. Data engineers, data scientists, business intelligence developers, and database administrators who want to learn how to design end-to-end data solutions and get a bird’s-eye view of the entire data platform will find this book useful. Although not required, basic knowledge of databases and data engineering workloads is recommended. |
data engineering vs data architecture: The Enterprise Big Data Lake Alex Gorelik, 2019-02-21 The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries |
data engineering vs data architecture: Deciphering Data Architectures James Serra, 2024-02-06 Data fabric, data lakehouse, and data mesh have recently appeared as viable alternatives to the modern data warehouse. These new architectures have solid benefits, but they're also surrounded by a lot of hyperbole and confusion. This practical book provides a guided tour of these architectures to help data professionals understand the pros and cons of each. James Serra, big data and data warehousing solution architect at Microsoft, examines common data architecture concepts, including how data warehouses have had to evolve to work with data lake features. You'll learn what data lakehouses can help you achieve, as well as how to distinguish data mesh hype from reality. Best of all, you'll be able to determine the most appropriate data architecture for your needs. With this book, you'll: Gain a working understanding of several data architectures Learn the strengths and weaknesses of each approach Distinguish data architecture theory from reality Pick the best architecture for your use case Understand the differences between data warehouses and data lakes Learn common data architecture concepts to help you build better solutions Explore the historical evolution and characteristics of data architectures Learn essentials of running an architecture design session, team organization, and project success factors Free from product discussions, this book will serve as a timeless resource for years to come. |
data engineering vs data architecture: Solutions Architect's Handbook Saurabh Shrivastava, Neelanjali Srivastav, 2024-03-29 From fundamentals and design patterns to the latest techniques such as generative AI, machine learning and cloud native architecture, gain all you need to be a pro Solutions Architect crafting secure and reliable AWS architecture. Key Features Hits all the key areas -Rajesh Sheth, VP, Elastic Block Store, AWS Offers the knowledge you need to succeed in the evolving landscape of tech architecture - Luis Lopez Soria, Senior Specialist Solutions Architect, Google A valuable resource for enterprise strategists looking to build resilient applications - Cher Simon, Principal Solutions Architect, AWS Book DescriptionMaster the art of solution architecture and excel as a Solutions Architect with the Solutions Architect's Handbook. Authored by seasoned AWS technology leaders Saurabh Shrivastav and Neelanjali Srivastav, this book goes beyond traditional certification guides, offering in-depth insights and advanced techniques to meet the specific needs and challenges of solutions architects today. This edition introduces exciting new features that keep you at the forefront of this evolving field. Large language models, generative AI, and innovations in deep learning are cutting-edge advancements shaping the future of technology. Topics such as cloud-native architecture, data engineering architecture, cloud optimization, mainframe modernization, and building cost-efficient and secure architectures remain important in today's landscape. This book provides coverage of these emerging and key technologies and walks you through solution architecture design from key principles, providing you with the knowledge you need to succeed as a Solutions Architect. It will also level up your soft skills, providing career-accelerating techniques to help you get ahead. Unlock the potential of cutting-edge technologies, gain practical insights from real-world scenarios, and enhance your solution architecture skills with the Solutions Architect's Handbook.What you will learn Explore various roles of a solutions architect in the enterprise Apply design principles for high-performance, cost-effective solutions Choose the best strategies to secure your architectures and boost availability Develop a DevOps and CloudOps mindset for collaboration, operational efficiency, and streamlined production Apply machine learning, data engineering, LLMs, and generative AI for improved security and performance Modernize legacy systems into cloud-native architectures with proven real-world strategies Master key solutions architect soft skills Who this book is for This book is for software developers, system engineers, DevOps engineers, architects, and team leaders who already work in the IT industry and aspire to become solutions architect professionals. Solutions architects who want to expand their skillset or get a better understanding of new technologies will also learn valuable new skills. To get started, you'll need a good understanding of the real-world software development process and some awareness of cloud technology. |
data engineering vs data architecture: Data Engineering with dbt Roberto Zagni, 2023-06-30 Use easy-to-apply patterns in SQL and Python to adopt modern analytics engineering to build agile platforms with dbt that are well-tested and simple to extend and run Purchase of the print or Kindle book includes a free PDF eBook Key Features Build a solid dbt base and learn data modeling and the modern data stack to become an analytics engineer Build automated and reliable pipelines to deploy, test, run, and monitor ELTs with dbt Cloud Guided dbt + Snowflake project to build a pattern-based architecture that delivers reliable datasets Book Descriptiondbt Cloud helps professional analytics engineers automate the application of powerful and proven patterns to transform data from ingestion to delivery, enabling real DataOps. This book begins by introducing you to dbt and its role in the data stack, along with how it uses simple SQL to build your data platform, helping you and your team work better together. You’ll find out how to leverage data modeling, data quality, master data management, and more to build a simple-to-understand and future-proof solution. As you advance, you’ll explore the modern data stack, understand how data-related careers are changing, and see how dbt enables this transition into the emerging role of an analytics engineer. The chapters help you build a sample project using the free version of dbt Cloud, Snowflake, and GitHub to create a professional DevOps setup with continuous integration, automated deployment, ELT run, scheduling, and monitoring, solving practical cases you encounter in your daily work. By the end of this dbt book, you’ll be able to build an end-to-end pragmatic data platform by ingesting data exported from your source systems, coding the needed transformations, including master data and the desired business rules, and building well-formed dimensional models or wide tables that’ll enable you to build reports with the BI tool of your choice.What you will learn Create a dbt Cloud account and understand the ELT workflow Combine Snowflake and dbt for building modern data engineering pipelines Use SQL to transform raw data into usable data, and test its accuracy Write dbt macros and use Jinja to apply software engineering principles Test data and transformations to ensure reliability and data quality Build a lightweight pragmatic data platform using proven patterns Write easy-to-maintain idempotent code using dbt materialization Who this book is for This book is for data engineers, analytics engineers, BI professionals, and data analysts who want to learn how to build simple, futureproof, and maintainable data platforms in an agile way. Project managers, data team managers, and decision makers looking to understand the importance of building a data platform and foster a culture of high-performing data teams will also find this book useful. Basic knowledge of SQL and data modeling will help you get the most out of the many layers of this book. The book also includes primers on many data-related subjects to help juniors get started. |
data engineering vs data architecture: Data Engineering for Modern Applications Dr. RVS Praveen, 2024-09-23 A resource designed for anybody interested in comprehending the whole lifecycle of data management in the current digital era is Data Engineering for Modern Applications. The book is organised into parts that systematically address key subjects. An introduction to data engineering principles is given first, followed by a thorough examination of data pipelines, storage options, and data transformation techniques. Data orchestration systems, cloud services, and distributed computing are just a few of the specialised tools and platforms that are being addressed in depth as the discipline of data engineering develops. This book places a lot of emphasis on using data engineering concepts in practical situations. The purpose of the chapters is to demonstrate best practices for creating, implementing, and overseeing scalable and effective data pipelines. Data Engineering for Modern Applications offers a useful framework that is easily applicable in a range of fields by including real-world examples and case studies. The book also discusses how data engineering supports AI and machine learning, outlining the procedures that guarantee data availability, consistency, and quality for these cutting-edge applications. This book serves as a manual for engineers, data scientists, and business professionals who are dedicated to using data in a future where decisions are made based on facts. This thorough guide will provide readers with the knowledge and self-assurance they need to address data difficulties, adjust to new technologies, and eventually help current data-driven systems be implemented successfully. |
data engineering vs data architecture: Data Engineering with Google Cloud Platform Adi Wijaya, 2024-04-30 Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you. |
data engineering vs data architecture: The Architecture of Privacy Courtney Bowman, Ari Gesher, John K Grant, Daniel Slate, Elissa Lerner, 2015-08-31 Annotation Technology's influence on privacy has become a matter of everyday concern for millions of people, from software architects designing new products to political leaders and consumer groups. This book explores the issue from the perspective of technology itself: how privacy-protective features can become a core part of product functionality, rather than added on late in the development process. |
data engineering vs data architecture: Google Cloud Professional Data Engineer , 2024-10-26 Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com |
data engineering vs data architecture: Designing Data-Intensive Applications Martin Kleppmann, 2017-03-16 Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures |
data engineering vs data architecture: Proceedings of Fourth International Conference on Computing, Communications, and Cyber-Security Sudeep Tanwar, Slawomir T. Wierzchon, Pradeep Kumar Singh, Maria Ganzha, Gregory Epiphaniou, 2023-07-01 This book features selected research papers presented at the Fourth International Conference on Computing, Communications, and Cyber-Security (IC4S 2022), organized in Ghaziabad India, during October 21–22, 2022. The conference was hosted at KEC Ghaziabad in collaboration with WSG Poland, SFU Russia, & CSRL India. It includes innovative work from researchers, leading innovators, and professionals in the area of communication and network technologies, advanced computing technologies, data analytics and intelligent learning, the latest electrical and electronics trends, and security and privacy issues. |
data engineering vs data architecture: Modern Data Architecture on AWS Behram Irani, 2023-08-31 Discover all the essential design and architectural patterns in one place to help you rapidly build and deploy your modern data platform using AWS services Key Features Learn to build modern data platforms on AWS using data lakes and purpose-built data services Uncover methods of applying security and governance across your data platform built on AWS Find out how to operationalize and optimize your data platform on AWS Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMany IT leaders and professionals are adept at extracting data from a particular type of database and deriving value from it. However, designing and implementing an enterprise-wide holistic data platform with purpose-built data services, all seamlessly working in tandem with the least amount of manual intervention, still poses a challenge. This book will help you explore end-to-end solutions to common data, analytics, and AI/ML use cases by leveraging AWS services. The chapters systematically take you through all the building blocks of a modern data platform, including data lakes, data warehouses, data ingestion patterns, data consumption patterns, data governance, and AI/ML patterns. Using real-world use cases, each chapter highlights the features and functionalities of numerous AWS services to enable you to create a scalable, flexible, performant, and cost-effective modern data platform. By the end of this book, you’ll be equipped with all the necessary architectural patterns and be able to apply this knowledge to efficiently build a modern data platform for your organization using AWS services.What you will learn Familiarize yourself with the building blocks of modern data architecture on AWS Discover how to create an end-to-end data platform on AWS Design data architectures for your own use cases using AWS services Ingest data from disparate sources into target data stores on AWS Build data pipelines, data sharing mechanisms, and data consumption patterns using AWS services Find out how to implement data governance using AWS services Who this book is for This book is for data architects, data engineers, and professionals creating data platforms. The book's use case–driven approach helps you conceptualize possible solutions to specific use cases, while also providing you with design patterns to build data platforms for any organization. It's beneficial for technical leaders and decision makers to understand their organization's data architecture and how each platform component serves business needs. A basic understanding of data & analytics architectures and systems is desirable along with beginner’s level understanding of AWS Cloud. |
data engineering vs data architecture: Data Science Fundamentals and Practical Approaches Nandi Dr. Rupam Dr. Gypsy, Kumar Sharma, 2020-09-03 Learn how to process and analysis data using Python Key Features a- The book has theories explained elaborately along with Python code and corresponding output to support the theoretical explanations. The Python codes are provided with step-by-step comments to explain each instruction of the code. a- The book is quite well balanced with programs and illustrative real-case problems. a- The book not only deals with the background mathematics alone or only the programs but also beautifully correlates the background mathematics to the theory and then finally translating it into the programs. a- A rich set of chapter-end exercises are provided, consisting of both short-answer questions and long-answer questions. Description This book introduces the fundamental concepts of Data Science, which has proved to be a major game-changer in business solving problems. Topics covered in the book include fundamentals of Data Science, data preprocessing, data plotting and visualization, statistical data analysis, machine learning for data analysis, time-series analysis, deep learning for Data Science, social media analytics, business analytics, and Big Data analytics. The content of the book describes the fundamentals of each of the Data Science related topics together with illustrative examples as to how various data analysis techniques can be implemented using different tools and libraries of Python programming language. Each chapter contains numerous examples and illustrative output to explain the important basic concepts. An appropriate number of questions is presented at the end of each chapter for self-assessing the conceptual understanding. The references presented at the end of every chapter will help the readers to explore more on a given topic. What will you learn a- Understand what machine learning is and how learning can be incorporated into a program. a- Perform data processing to make it ready for visual plot to understand the pattern in data over time. a- Know how tools can be used to perform analysis on big data using python a- Perform social media analytics, business analytics, and data analytics on any data of a company or organization. Who this book is for The book is for readers with basic programming and mathematical skills. The book is for any engineering graduates that wish to apply data science in their projects or wish to build a career in this direction. The book can be read by anyone who has an interest in data analysis and would like to explore more out of interest or to apply it to certain real-life problems. Table of Contents 1. Fundamentals of Data Science1 2. Data Preprocessing 3. Data Plotting and Visualization 4. Statistical Data Analysis 5. Machine Learning for Data Science 6. Time-Series Analysis 7. Deep Learning for Data Science 8. Social Media Analytics 9. Business Analytics 10. Big Data Analytics About the Authors Dr. Gypsy Nandi is an Assistant Professor (Sr) in the Department of Computer Applications, Assam Don Bosco University, India. Her areas of interest include Data Science, Social Network Mining, and Machine Learning. She has completed her Ph.D. in the field of 'Social Network Analysis and Mining'. Her research scholars are currently working mainly in the field of Data Science. She has several research publications in reputed journals and book series. Dr. Rupam Kumar Sharma is an Assistant Professor in the Department of Computer Applications, Assam Don Bosco University, India. His area of interest includes Machine Learning, Data Analytics, Network, and Cyber Security. He has several research publications in reputed SCI and Scopus journals. He has also delivered lectures and trained hundreds of trainees and students across different institutes in the field of security and android app development. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …