data analytics in project management: Data Analytics in Project Management Seweryn Spalek, J. Davidson Frame, Yanping Chen, Carl Pritchard, Alfonso Bucero, Werner Meyer, Ryan Legard, Michael Bragen, Klas Skogmar, Deanne Larson, Bert Brijs, 2019-01-01 Data Analytics in Project Management. Data analytics plays a crucial role in business analytics. Without a rigid approach to analyzing data, there is no way to glean insights from it. Business analytics ensures the expected value of change while that change is implemented by projects in the business environment. Due to the significant increase in the number of projects and the amount of data associated with them, it is crucial to understand the areas in which data analytics can be applied in project management. This book addresses data analytics in relation to key areas, approaches, and methods in project management. It examines: • Risk management • The role of the project management office (PMO) • Planning and resource management • Project portfolio management • Earned value method (EVM) • Big Data • Software support • Data mining • Decision-making • Agile project management Data analytics in project management is of increasing importance and extremely challenging. There is rapid multiplication of data volumes, and, at the same time, the structure of the data is more complex. Digging through exabytes and zettabytes of data is a technological challenge in and of itself. How project management creates value through data analytics is crucial. Data Analytics in Project Management addresses the most common issues of applying data analytics in project management. The book supports theory with numerous examples and case studies and is a resource for academics and practitioners alike. It is a thought-provoking examination of data analytics applications that is valuable for projects today and those in the future. |
data analytics in project management: Project Management Analytics Harjit Singh, 2015-11-12 To manage projects, you must not only control schedules and costs: you must also manage growing operational uncertainty. Today’s powerful analytics tools and methods can help you do all of this far more successfully. In Project Management Analytics, Harjit Singh shows how to bring greater evidence-based clarity and rationality to all your key decisions throughout the full project lifecycle. Singh identifies the components and characteristics of a good project decision and shows how to improve decisions by using predictive, prescriptive, statistical, and other methods. You’ll learn how to mitigate risks by identifying meaningful historical patterns and trends; optimize allocation and use of scarce resources within project constraints; automate data-driven decision-making processes based on huge data sets; and effectively handle multiple interrelated decision criteria. Singh also helps you integrate analytics into the project management methods you already use, combining today’s best analytical techniques with proven approaches such as PMI PMBOK® and Lean Six Sigma. Project managers can no longer rely on vague impressions or seat-of-the-pants intuition. Fortunately, you don’t have to. With Project Management Analytics, you can use facts, evidence, and knowledge—and get far better results. Achieve efficient, reliable, consistent, and fact-based project decision-making Systematically bring data and objective analysis to key project decisions Avoid “garbage in, garbage out” Properly collect, store, analyze, and interpret your project-related data Optimize multi-criteria decisions in large group environments Use the Analytic Hierarchy Process (AHP) to improve complex real-world decisions Streamline projects the way you streamline other business processes Leverage data-driven Lean Six Sigma to manage projects more effectively |
data analytics in project management: Data Analytics in Project Management Seweryn Spalek, 2018-10-25 This book aims to help the reader better understand the importance of data analysis in project management. Moreover, it provides guidance by showing tools, methods, techniques and lessons learned on how to better utilize the data gathered from the projects. First and foremost, insight into the bridge between data analytics and project management aids practitioners looking for ways to maximize the practical value of data procured. The book equips organizations with the know-how necessary to adapt to a changing workplace dynamic through key lessons learned from past ventures. The book’s integrated approach to investigating both fields enhances the value of research findings. |
data analytics in project management: The Data-Driven Project Manager Mario Vanhoucke, 2018-03-27 Discover solutions to common obstacles faced by project managers. Written as a business novel, the book is highly interactive, allowing readers to participate and consider options at each stage of a project. The book is based on years of experience, both through the author's research projects as well as his teaching lectures at business schools. The book tells the story of Emily Reed and her colleagues who are in charge of the management of a new tennis stadium project. The CEO of the company, Jacob Mitchell, is planning to install a new data-driven project management methodology as a decision support tool for all upcoming projects. He challenges Emily and her team to start a journey in exploring project data to fight against unexpected project obstacles. Data-driven project management is known in the academic literature as “dynamic scheduling” or “integrated project management and control.” It is a project management methodology to plan, monitor, and control projects in progress in order to deliver them on time and within budget to the client. Its main focus is on the integration of three crucial aspects, as follows: Baseline Scheduling: Plan the project activities to create a project timetable with time and budget restrictions. Determine start and finish times of each project activity within the activity network and resource constraints. Know the expected timing of the work to be done as well as an expected impact on the project’s time and budget objectives. Schedule Risk Analysis: Analyze the risk of the baseline schedule and its impact on the project’s time and budget. Use Monte Carlo simulations to assess the risk of the baseline schedule and to forecast the impact of time and budget deviations on the project objectives. Project Control: Measure and analyze the project’s performance data and take actions to bring the project on track. Monitor deviations from the expected project progress and control performance in order to facilitate the decision-making process in case corrective actions are needed to bring projects back on track. Both traditional Earned Value Management (EVM) and the novel Earned Schedule (ES) methods are used. What You'll Learn Implement a data-driven project management methodology (also known as dynamic scheduling) which allows project managers to plan, monitor, and control projects while delivering them on time and within budget Study different project management tools and techniques, such as PERT/CPM, schedule risk analysis (SRA), resource buffering, and earned value management (EVM) Understand the three aspects of dynamic scheduling: baseline scheduling, schedule risk analysis, and project control Who This Book Is For Project managers looking to learn data-driven project management (or dynamic scheduling) via a novel, demonstrating real-time simulations of how project managers can solve common project obstacles |
data analytics in project management: Data Analytics for Engineering and Construction Project Risk Management Ivan Damnjanovic, Kenneth Reinschmidt, 2019-05-23 This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution. |
data analytics in project management: Data Analytics Initiatives Ondřej Bothe, Ondřej Kubera, David Bednář, Martin Potančok, Ota Novotný, 2022-04-20 The categorisation of analytical projects could help to simplify complexity reasonably and, at the same time, clarify the critical aspects of analytical initiatives. But how can this complex work be categorized? What makes it so complex? Data Analytics Initiatives: Managing Analytics for Success emphasizes that each analytics project is different. At the same time, analytics projects have many common aspects, and these features make them unique compared to other projects. Describing these commonalities helps to develop a conceptual understanding of analytical work. However, features specific to each initiative affects the entire analytics project lifecycle. Neglecting them by trying to use general approaches without tailoring them to each project can lead to failure. In addition to examining typical characteristics of the analytics project and how to categorise them, the book looks at specific types of projects, provides a high-level assessment of their characteristics from a risk perspective, and comments on the most common problems or challenges. The book also presents examples of questions that could be asked of relevant people to analyse an analytics project. These questions help to position properly the project and to find commonalities and general project challenges. |
data analytics in project management: Aligning Business Strategies and Analytics Murugan Anandarajan, Teresa D. Harrison, 2018-09-27 This book examines issues related to the alignment of business strategies and analytics. Vast amounts of data are being generated, collected, stored, processed, analyzed, distributed and used at an ever-increasing rate by organizations. Simultaneously, managers must rapidly and thoroughly understand the factors driving their business. Business Analytics is an interactive process of analyzing and exploring enterprise data to find valuable insights that can be exploited for competitive advantage. However, to gain this advantage, organizations need to create a sophisticated analytical climate within which strategic decisions are made. As a result, there is a growing awareness that alignment among business strategies, business structures, and analytics are critical to effectively develop and deploy techniques to enhance an organization’s decision-making capability. In the past, the relevance and usefulness of academic research in the area of alignment is often questioned by practitioners, but this book seeks to bridge this gap. Aligning Business Strategies and Analytics: Bridging Between Theory and Practice is comprised of twelve chapters, divided into three sections. The book begins by introducing business analytics and the current gap between academic training and the needs within the business community. Chapters 2 - 5 examines how the use of cognitive computing improves financial advice, how technology is accelerating the growth of the financial advising industry, explores the application of advanced analytics to various facets of the industry and provides the context for analytics in practice. Chapters 6 - 9 offers real-world examples of how project management professionals tackle big-data challenges, explores the application of agile methodologies, discusses the operational benefits that can be gained by implementing real-time, and a case study on human capital analytics. Chapters 10 - 11 reviews the opportunities and potential shortfall and highlights how new media marketing and analytics fostered new insights. Finally the book concludes with a look at how data and analytics are playing a revolutionary role in strategy development in the chemical industry. |
data analytics in project management: Big Data Analytics Kim H. Pries, Robert Dunnigan, 2015-02-05 With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.Comparing and contrasting the dif |
data analytics in project management: Agile Analytics Ken Collier, 2012 Using Agile methods, you can bring far greater innovation, value, and quality to any data warehousing (DW), business intelligence (BI), or analytics project. However, conventional Agile methods must be carefully adapted to address the unique characteristics of DW/BI projects. In Agile Analytics, Agile pioneer Ken Collier shows how to do just that. Collier introduces platform-agnostic Agile solutions for integrating infrastructures consisting of diverse operational, legacy, and specialty systems that mix commercial and custom code. Using working examples, he shows how to manage analytics development teams with widely diverse skill sets and how to support enormous and fast-growing data volumes. Collier's techniques offer optimal value whether your projects involve back-end data management, front-end business analysis, or both. Part I focuses on Agile project management techniques and delivery team coordination, introducing core practices that shape the way your Agile DW/BI project community can collaborate toward success Part II presents technical methods for enabling continuous delivery of business value at production-quality levels, including evolving superior designs; test-driven DW development; version control; and project automation Collier brings together proven solutions you can apply right now--whether you're an IT decision-maker, data warehouse professional, database administrator, business intelligence specialist, or database developer. With his help, you can mitigate project risk, improve business alignment, achieve better results--and have fun along the way. |
data analytics in project management: Analytics Phil Simon, 2017-07-03 For years, organizations have struggled to make sense out of their data. IT projects designed to provide employees with dashboards, KPIs, and business-intelligence tools often take a year or more to reach the finish line...if they get there at all. This has always been a problem. Today, though, it's downright unacceptable. The world changes faster than ever. Speed has never been more important. By adhering to antiquated methods, firms lose the ability to see nascent trends—and act upon them until it's too late. But what if the process of turning raw data into meaningful insights didn't have to be so painful, time-consuming, and frustrating? What if there were a better way to do analytics? Fortunately, you're in luck... Analytics: The Agile Way is the eighth book from award-winning author and Arizona State University professor Phil Simon. Analytics: The Agile Way demonstrates how progressive organizations such as Google, Nextdoor, and others approach analytics in a fundamentally different way. They are applying the same Agile techniques that software developers have employed for years. They have replaced large batches in favor of smaller ones...and their results will astonish you. Through a series of case studies and examples, Analytics: The Agile Way demonstrates the benefits of this new analytics mind-set: superior access to information, quicker insights, and the ability to spot trends far ahead of your competitors. |
data analytics in project management: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analytics in project management: Financial Data Analytics Sinem Derindere Köseoğlu, 2022-04-25 This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics. |
data analytics in project management: Data Analytics Adedeji B. Badiru, 2020-12-22 Good data analytics is the basis for effective decisions. Whoever has the data, has the ability to extract information promptly and effectively to make pertinent decisions. The premise of this handbook is to empower users and tool developers with the appropriate collection of formulas and techniques for data analytics and to serve as a quick reference to keep pertinent formulas within fingertip reach of readers. This handbook includes formulas that will appeal to mathematically inclined readers. It discusses how to use data analytics to improve decision-making and is ideal for those new to using data analytics to show how to expand their usage horizon. It provides quantitative techniques for modeling pandemics, such as COVID-19. It also adds to the suite of mathematical tools for emerging technical areas. This handbook is a handy reference for researchers, practitioners, educators, and students in areas such as industrial engineering, production engineering, project management, civil engineering, mechanical engineering, technology management, and business management worldwide. |
data analytics in project management: Project Management, Planning and Control Albert Lester, 2007 This fifth edition provides a comprehensive resource for project managers. It describes the latest project management systems that use critical path methods. |
data analytics in project management: Feature Engineering for Machine Learning and Data Analytics Guozhu Dong, Huan Liu, 2018-03-14 Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics. |
data analytics in project management: Managing Data Science Kirill Dubovikov, 2019-11-12 Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book. |
data analytics in project management: Applying Artificial Intelligence in Project Management Paul Boudreau, 2024-10-10 This book describes the AI tools in concept and how they apply directly to project success. It also demonstrates the strategy and methods used to purchase and implement AI tools for project management. You will understand the difference between automating a task and changing it by using AI. Discover how AI uses data and the importance of data maintenance. Learn why projects fail and how using artificial intelligence for project management improves project success rates. The book features project management success stories and demonstrates how to leave behind that low project success rate for one that is 95 percent or higher. Supplemental teaching materials are available for use as a textbook. FEATURES: Covers a practical approach to using AI in project management Features a chapter on combining AI with other technologies such as IoT, Blockchain, and virtual reality for further insights into leading-edge changes for project management Demonstrates how to achieve higher productivity and incredible project performance by applying AI concepts Includes supplemental teaching materials for use as a textbook |
data analytics in project management: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data analytics in project management: Big Data Analytics Arun K. Somani, Ganesh Chandra Deka, 2017-10-30 The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers. |
data analytics in project management: Data Science Projects with Python Stephen Klosterman, 2019-04-30 Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful. |
data analytics in project management: Business Intelligence Jerzy Surma, 2011-03-06 This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration. |
data analytics in project management: Project Management Analytics Harjit Singh, 2016 |
data analytics in project management: The Analytics Lifecycle Toolkit Gregory S. Nelson, 2018-03-07 An evidence-based organizational framework for exceptional analytics team results The Analytics Lifecycle Toolkit provides managers with a practical manual for integrating data management and analytic technologies into their organization. Author Gregory Nelson has encountered hundreds of unique perspectives on analytics optimization from across industries; over the years, successful strategies have proven to share certain practices, skillsets, expertise, and structural traits. In this book, he details the concepts, people and processes that contribute to exemplary results, and shares an organizational framework for analytics team functions and roles. By merging analytic culture with data and technology strategies, this framework creates understanding for analytics leaders and a toolbox for practitioners. Focused on team effectiveness and the design thinking surrounding product creation, the framework is illustrated by real-world case studies to show how effective analytics team leadership works on the ground. Tools and templates include best practices for process improvement, workforce enablement, and leadership support, while guidance includes both conceptual discussion of the analytics life cycle and detailed process descriptions. Readers will be equipped to: Master fundamental concepts and practices of the analytics life cycle Understand the knowledge domains and best practices for each stage Delve into the details of analytical team processes and process optimization Utilize a robust toolkit designed to support analytic team effectiveness The analytics life cycle includes a diverse set of considerations involving the people, processes, culture, data, and technology, and managers needing stellar analytics performance must understand their unique role in the process of winnowing the big picture down to meaningful action. The Analytics Lifecycle Toolkit provides expert perspective and much-needed insight to managers, while providing practitioners with a new set of tools for optimizing results. |
data analytics in project management: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
data analytics in project management: Agile Data Science 2.0 Russell Jurney, 2017-06-07 Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track |
data analytics in project management: Data Analytics for Accounting Vernon J. Richardson, Ryan Teeter, Katie L. Terrell, 2018-05-23 |
data analytics in project management: Agile Data Science Russell Jurney, 2013-10-15 Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track |
data analytics in project management: Solving for Project Risk Management: Understanding the Critical Role of Uncertainty in Project Management Christian B. Smart, 2020-11-23 Risk is real—but you can manage it with this hard-hitting guide to reducing risk on any project, in any industry All projects, large and small, are subject to various risks. But the failure to manage inherent risk with diligence and know-how can lead to devastating consequences for an organization. In this comprehensive hands-on guide, a renowned expert in the field provides everything organizations need to conduct project risk management the right way. Why do so many projects come in over schedule and over budget? How do projected expenditures and schedules line up with reality? How can you accurately assess risk to mitigate financial disaster? Through a methodical, statistics-based approach, Christian B. Smart reveals: The enduring problem of cost and schedule growth How rigorous project risk management can reduce the impact of uncertainty The systematic tendency to underestimate risk—and how to avoid it Ways to accurately assess confidence levels in project risk management The need for proper risk management at the portfolio level The author lays out common problems and explains how to effectively solve them. And while he employs a wealth of illustrative charts, graphs, and statistics, he presents the material in an accessible style, and peppers the text with powerful personal anecdotes. Ideal for project managers, business analysts, and senior decision makers in both the public and private sectors, Solving for Project Risk Management offers everything you need to ensure your projects run smoothly, on budget, and deliver the expected outcomes. |
data analytics in project management: Data Science John D. Kelleher, Brendan Tierney, 2018-04-13 A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects. |
data analytics in project management: Data Analytics in Medicine Information Resources Management Association, 2019-11-18 This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations-- |
data analytics in project management: Applications of Big Data and Business Analytics in Management Sneha Kumari, K. K. Tripathy, Vidya Kumbhar, 2020-12-04 Applications of Big Data and Business Analytics in Management uses advanced analytic tools to explore the solutions to problems in society, environment and industry. The chapters within bring together researchers, engineers and practitioners, encompassing a wide and diverse set of topics in almost every field. |
data analytics in project management: Project Management Waterfall-Agile-It-Data Science Dr. Festus Elleh PhD PMP PMI-ACP, 2023-03-22 This book is intended to introduce learners to waterfall, agile, information technology, and data science project management methodologies. Readers will learn about the concepts, processes, tools, and techniques that are useful for executing projects in waterfall, agile information technology, and data science environments. The objective is for learners to become contributors to the field of project management and deploy a structured approach to managing projects. Learners who read this book will be able to think critically about the concepts and practices of project management and perform exceptionally well in the PMP and PMI-ACP examinations. |
data analytics in project management: Measuring Performance and Benchmarking Project Management at the Department of Energy National Research Council, Division on Engineering and Physical Sciences, Board on Infrastructure and the Constructed Environment, Committee for Oversight and Assessment of U.S. Department of Energy Project Management, 2005-08-01 In 1997, Congress, in the conference report, H.R. 105-271, to the FY1998 Energy and Water Development Appropriation Bill, directed the National Research Council (NRC) to carry out a series of assessments of project management at the Department of Energy (DOE). The final report in that series noted that DOE lacked an objective set of measures for assessing project management quality. The department set up a committee to develop performance measures and benchmarking procedures and asked the NRC for assistance in this effort. This report presents information and guidance for use as a first step toward development of a viable methodology to suit DOE's needs. It provides a number of possible performance measures, an analysis of the benchmarking process, and a description ways to implement the measures and benchmarking process. |
data analytics in project management: Big Data Management Fausto Pedro García Márquez, Benjamin Lev, 2016-11-15 This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples. |
data analytics in project management: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution. |
data analytics in project management: Case Study Methodology in Business Research Jan Dul, Tony Hak, 2008 A complete guide for how to design and conduct theory-testing and other case studies, this text sets out structures and guidelines that assist students and researchers from a wide range of disciplines to develop their case study research in a consistent and rigorous manner. |
data analytics in project management: Agile Data Warehousing Project Management Ralph Hughes, 2012-12-28 You have to make sense of enormous amounts of data, and while the notion of agile data warehousing might sound tricky, it can yield as much as a 3-to-1 speed advantage while cutting project costs in half. Bring this highly effective technique to your organization with the wisdom of agile data warehousing expert Ralph Hughes. Agile Data Warehousing Project Management will give you a thorough introduction to the method as you would practice it in the project room to build a serious data mart. Regardless of where you are today, this step-by-step implementation guide will prepare you to join or even lead a team in visualizing, building, and validating a single component to an enterprise data warehouse. - Provides a thorough grounding on the mechanics of Scrum as well as practical advice on keeping your team on track - Includes strategies for getting accurate and actionable requirements from a team's business partner - Revolutionary estimating techniques that make forecasting labor far more understandable and accurate - Demonstrates a blends of Agile methods to simplify team management and synchronize inputs across IT specialties - Enables you and your teams to start simple and progress steadily to world-class performance levels |
data analytics in project management: Mining Your Own Business Jeff Deal, Gerhard Pilcher, 2016-09-19 Practical guide for organization leaders, top-level executives. Industry experts explain in clear, understandable English. What data mining and predictive analytics are |
data analytics in project management: Data Analytics Mohiuddin Ahmed, Al-Sakib Khan Pathan, 2018-09-21 Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies. |
data analytics in project management: Agile Practice Guide , 2017-09-06 Agile Practice Guide – First Edition has been developed as a resource to understand, evaluate, and use agile and hybrid agile approaches. This practice guide provides guidance on when, where, and how to apply agile approaches and provides practical tools for practitioners and organizations wanting to increase agility. This practice guide is aligned with other PMI standards, including A Guide to the Project Management Body of Knowledge (PMBOK® Guide) – Sixth Edition, and was developed as the result of collaboration between the Project Management Institute and the Agile Alliance. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …