Data Management For Researchers

Advertisement



  data management for researchers: Data Management for Researchers Kristin Briney, 2015-09-01 A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline. —Robert Buntrock, Chemical Information Bulletin
  data management for researchers: Data Management for Researchers Kristin Briney, 2015 A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem - an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle - a framework for data's place within the research process and how data's role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management - covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data - an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data - explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis - covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data - many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage - deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data - digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data - addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data - as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline. --Robert Buntrock, Chemical Information Bulletin
  data management for researchers: Exploring Research Data Management Andrew Cox, Eddy Verbaan, 2018-05-11 Research Data Management (RDM) has become a professional topic of great importance internationally following changes in scholarship and government policies about the sharing of research data. Exploring Research Data Management provides an accessible introduction and guide to RDM with engaging tasks for the reader to follow and develop their knowledge. Starting by exploring the world of research and the importance and complexity of data in the research process, the book considers how a multi-professional support service can be created then examines the decisions that need to be made in designing different types of research data service from local policy creation, training, through to creating a data repository. Coverage includes: A discussion of the drivers and barriers to RDM Institutional policy and making the case for Research Data Services Practical data management Data literacy and training researchers Ethics and research data services Case studies and practical advice from working in a Research Data Service. This book will be useful reading for librarians and other support professionals who are interested in learning more about RDM and developing Research Data Services in their own institution. It will also be of value to students on librarianship, archives, and information management courses studying topics such as RDM, digital curation, data literacies and open science.
  data management for researchers: Engaging Researchers with Data Management Connie Clare, Maria J. Cruz, Elli Papadopoulou, James Savage (Research associate), Marta Teperek, Yan Wang, Iza Witkowska, Joanne Yeomans, 2019 Engaging Researchers with Data Management is an invaluable collection of 24 case studies, drawn from institutions across the globe, that demonstrate clearly and practically how to engage the research community with RDM. These case studies together illustrate the variety of innovative strategies research institutions have developed to engage with their researchers about managing research data. Each study is presented concisely and clearly, highlighting the essential ingredients that led to its success and challenges encountered along the way. By interviewing key staff about their experiences.
  data management for researchers: The Data Book Meredith Zozus, 2017-07-12 The Data Book: Collection and Management of Research Data is the first practical book written for researchers and research team members covering how to collect and manage data for research. The book covers basic types of data and fundamentals of how data grow, move and change over time. Focusing on pre-publication data collection and handling, the text illustrates use of these key concepts to match data collection and management methods to a particular study, in essence, making good decisions about data. The first section of the book defines data, introduces fundamental types of data that bear on methodology to collect and manage them, and covers data management planning and research reproducibility. The second section covers basic principles of and options for data collection and processing emphasizing error resistance and traceability. The third section focuses on managing the data collection and processing stages of research such that quality is consistent and ultimately capable of supporting conclusions drawn from data. The final section of the book covers principles of data security, sharing, and archival. This book will help graduate students and researchers systematically identify and implement appropriate data collection and handling methods.
  data management for researchers: Managing and Sharing Research Data Louise Corti, Veerle Van den Eynden, Libby Bishop, Matthew Woollard, 2014-02-04 Research funders in the UK, USA and across Europe are implementing data management and sharing policies to maximize openness of data, transparency and accountability of the research they support. Written by experts from the UK Data Archive with over 20 years experience, this book gives post-graduate students, researchers and research support staff the data management skills required in today’s changing research environment. The book features guidance on: how to plan your research using a data management checklist how to format and organize data how to store and transfer data research ethics and privacy in data sharing and intellectual property rights data strategies for collaborative research how to publish and cite data how to make use of other people’s research data, illustrated with six real-life case studies of data use.
  data management for researchers: Research Data Management and Data Literacies Koltay Tibor, 2021-10-31 Research Data Management and Data Literacies help researchers familiarize themselves with RDM, and with the services increasingly offered by libraries. This new volume looks at data-intensive science, or 'Science 2.0' as it is sometimes termed in commentary, from a number of perspectives, including the tasks academic libraries need to fulfil, new services that will come online in the near future, data literacy and its relation to other literacies, research support and the need to connect researchers across the academy, and other key issues, such as 'data deluge,' the importance of citations, metadata and data repositories. This book presents a solid resource that contextualizes RDM, including good theory and practice for researchers and professionals who find themselves tasked with managing research data. - Gives guidance on organizing, storing, preserving and sharing research data using Research Data Management (RDM) - Contextualizes RDM within the global shift to data-intensive research - Helps researchers and information professionals understand and optimize data-intensive ways of working - Considers RDM in relation to varying needs of researchers across the sciences and humanities - Presents key issues surrounding RDM, including data literacy, citations, metadata and data repositories
  data management for researchers: Research Data Management Joyce M. Ray, 2014 It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations.
  data management for researchers: Data Management for Social Scientists Nils B. Weidmann, 2023-03-09 Equips social scientists with the tools and techniques to conduct quantitative research in the age of big data.
  data management for researchers: Teaching Research Data Management Julia Bauder, 2022-01-03 Armed with this guide's strategies and concrete examples, subject librarians, data services librarians, and scholarly communication librarians will be inspired to roll up their sleeves and get involved with teaching research data management competencies to students and faculty. The usefulness of research data management skills bridges numerous activities, from data-driven scholarship and open research by faculty to documentation for grant reporting. And undergrads need a solid foundation in data management for future academic success. This collection gathers practitioners from a broad range of academic libraries to describe their services and instruction around research data. You will learn about such topics as integrating research data management into information literacy instruction; threshold concepts for novice learners of data management; four key competencies that are entry points for library-faculty collaboration in data instruction; an 8-step plan for outreach to faculty and grad students in engineering and the sciences; using RStudio to teach data management, data visualization, and research reproducibility; expanding data management instruction with adaptable modules for remote learning; designing a data management workshop series; developing a research guide on data types, open data repositories, and data storage; creating a data management plan assignment for STEM undergraduates; and data management training to ensure compliance with grant requirements.
  data management for researchers: Data Management in R Martin Elff, 2021-01-09 An invaluable step-by-step, pedagogically engaging guide to data management in R for social science researchers, this book shows students how to recode and document data, as well as how to combine data from different sources or import from statistical packages other than R.
  data management for researchers: Handbook of Research on Information and Records Management in the Fourth Industrial Revolution Chigwada, Josiline Phiri, Tsvuura, Godfrey, 2021-06-25 Information and records management has been an important part of society for establishing procedures to effectively manage information. As technology has increased in society, this essential function has been impacted as well. With the onset of technological tools brought upon by the fourth industrial revolution, technologies such as artificial intelligence, the internet of things, big data, and more have changed the face of information and records management. These technologies and tools have paved new ways for security, efficiency in timely processes, new ways to create and process records, and other beneficial traits. Along with these advancements come new contemporary issues, leading to the need for research on how exactly information records management is functioning in modern times, the technologies brought on by the fourth industrial revolution, and both the benefits and challenges to this transition. The Handbook of Research on Information and Records Management in the Fourth Industrial Revolution showcases contemporary issues and demonstrates the value of information and records management in the fourth industrial revolution. The book provides a summary of the key activities undertaken by information and records managers as they seek to make records and information management more visible in the modern knowledge-driven society. The chapters highlight innovation, the use of information and communication technology in information and records management, best practices, challenges encountered, and how they are overcome. The target audience of this book will be composed of professionals, librarians, archivists, lecturers, and researchers working in the field of library and information science, along with practitioners, academicians, and students interested in information and records management in the 21st century.
  data management for researchers: The Data Librarian’s Handbook Robin Rice, John Southall, 2016-12-20 An insider’s guide to data librarianship packed full of practical examples and advice for any library and information professional learning to deal with data. Interest in data has been growing in recent years. Support for this peculiar class of digital information – its use, preservation and curation, and how to support researchers’ production and consumption of it in ever greater volumes to create new knowledge, is needed more than ever. Many librarians and information professionals are finding their working life is pulling them toward data support or research data management but lack the skills required. The Data Librarian’s Handbook, written by two data librarians with over 30 years’ combined experience, unpicks the everyday role of the data librarian and offers practical guidance on how to collect, curate and crunch data for economic, social and scientific purposes. With contemporary case studies from a range of institutions and disciplines, tips for best practice, study aids and links to key resources, this book is a must-read for all new entrants to the field, library and information students and working professionals. Key topics covered include: • the evolution of data libraries and data archives • handling data compared to other forms of information • managing and curating data to ensure effective use and longevity • how to incorporate data literacy into mainstream library instruction and information literacy training • how to develop an effective institutional research data management (RDM) policy and infrastructure • how to support and review a data management plan (DMP) for a project, a key requirement for most research funders • approaches for developing, managing and promoting data repositories • handling and sharing confidential or sensitive data • supporting open scholarship and open science, ensuring data are discoverable, accessible, intelligible and assessable. This title is for the practising data librarian, possibly new in their post with little experience of providing data support. It is also for managers and policy-makers, public service librarians, research data management coordinators and data support staff. It will also appeal to students and lecturers in iSchools and other library and information degree programmes where academic research support is taught.
  data management for researchers: Managing Research Data Graham Pryor, 2012-01-20 This title defines what is required to achieve a culture of effective data management offering advice on the skills required, legal and contractual obligations, strategies and management plans and the data management infrastructure of specialists and services. Data management has become an essential requirement for information professionals over the last decade, particularly for those supporting the higher education research community, as more and more digital information is created and stored. As budgets shrink and funders of research demand evidence of value for money and demonstrable benefits for society, there is increasing pressure to provide plans for the sustainable management of data. Ensuring that important data remains discoverable, accessible and intelligible and is shared as part of a larger web of knowledge will mean that research has a life beyond its initial purpose and can offer real utility to the wider community. This edited collection, bringing together leading figures in the field from the UK and around the world, provides an introduction to all the key data issues facing the HE and information management communities. Each chapter covers a critical element of data management: • Why manage research data? • The lifecycle of data management • Research data policies: principles, requirements and trends • Sustainable research data • Data management plans and planning • Roles and responsibilities – libraries, librarians and data • Research data management: opportunities and challenges for HEIs • The national data centres • Contrasting national research data strategies: Australia and the USA • Emerging infrastructure and services for research data management and curation in the UK and Europe Readership: This is essential reading for librarians and information professionals working in the higher education sector, the research community, policy makers and university managers. It will also be a useful introduction for students taking courses in information management, archivists and national library services.
  data management for researchers: Data Management in Large-Scale Education Research Crystal Lewis, 2024-07-09 Research data management is becoming more complicated. Researchers are collecting more data, using more complex technologies, all the while increasing the visibility of our work with the push for data sharing and open science practices. Ad hoc data management practices may have worked for us in the past, but now others need to understand our processes as well, requiring researchers to be more thoughtful in planning their data management routines. This book is for anyone involved in a research study involving original data collection. While the book focuses on quantitative data, typically collected from human participants, many of the practices covered can apply to other types of data as well. The book contains foundational context, instructions, and practical examples to help researchers in the field of education begin to understand how to create data management workflows for large-scale, typically federally funded, research studies. The book starts by describing the research life cycle and how data management fits within this larger picture. The remaining chapters are then organized by each phase of the life cycle, with examples of best practices provided for each phase. Finally, considerations on whether the reader should implement, and how to integrate those practices into a workflow, are discussed. Key Features: Provides a holistic approach to the research life cycle, showing how project management and data management processes work in parallel and collaboratively Can be read in its entirety, or referenced as needed throughout the life cycle Includes relatable examples specific to education research Includes a discussion on how to organize and document data in preparation for data sharing requirements Contains links to example documents as well as templates to help readers implement practices
  data management for researchers: Data Collection and Management Magda Stouthamer-Loeber, Welmoet Bok van Kammen, 1995-08-08 Tired of a trial-and-error approach to collecting and managing data? Data Collection and Management offers helpful information on managing research projects. By stressing how to use good standards for data collecting and processing, the authors cover such important how-tos as planning research activities; making budgetary decisions and keeping the budget under control; hiring, training, and supervising field interviewing staff; establishing whether interviewers are ready to start interviewing; and ensuring high participant acquisition and retention rates. The book also covers using computerized information systems for tracking data collected and the data management process. Proposal writers, principal investigators, graduate research students, and project coordinators of research requiring large-scale field data collection will find the book to be an indispensable tool.
  data management for researchers: How to Manage, Analyze, and Interpret Survey Data Arlene Fink, 2003 Shows how to manage survey data and become better users of statistical and qualitative survey information. This book explains the basic vocabulary of data management and statistics, and demonstrates the principles and logic behind the selection and interpretation of commonly used statistical and qualitative methods to analyze survey data.
  data management for researchers: Practical Guide to Clinical Data Management Susanne Prokscha, 2011-10-26 The management of clinical data, from its collection during a trial to its extraction for analysis, has become a critical element in the steps to prepare a regulatory submission and to obtain approval to market a treatment. Groundbreaking on its initial publication nearly fourteen years ago, and evolving with the field in each iteration since then,
  data management for researchers: Using R for Data Management, Statistical Analysis, and Graphics Nicholas J. Horton, Ken Kleinman, 2010-07-28 Quick and Easy Access to Key Elements of Documentation Includes worked examples across a wide variety of applications, tasks, and graphicsUsing R for Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in R, without having to navigate through the extensive, idiosyncratic, and sometimes
  data management for researchers: Big Data Management Fausto Pedro García Márquez, Benjamin Lev, 2016-11-15 This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.
  data management for researchers: Cases on Research Support Services in Academic Libraries Fernández-Marcial, Viviana, González-Solar, Llarina, 2020-08-28 Academic libraries have traditionally had two key functions, to support teaching and to support research. In an evolving and competitive university environment, along with the emergence of various technologies and substantial changes in scientific communication, university management has reached a turning point. Academic libraries are facing a paradigm shift in the role they need to play to achieve the research objectives of universities. Research support services in academic libraries have evolved as a response to these changes. They are heterogeneous, adapt to their university culture, adopt different points of view, take different approaches in their organizational structures, and include a diverse catalog of activities. Having an overview of different experiences will allow libraries to adopt best practices, redefine services, and even establish new management and collaboration models. Cases on Research Support Services in Academic Libraries is a critical scholarly resource that uses case studies to systematize the experiences of research support services in academic libraries for the support of higher education faculty. The cases focus on such items as the role of technology and its impact as well as how these services help to improve the excellence of universities. Featuring a wide range of topics such as library services, data management, and open science, this book is ideal for librarians, academicians, professionals, researchers, and students.
  data management for researchers: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
  data management for researchers: Doing Management Research Raymond-Alain Thietart, 2001-04-18 `This book provides refreshing and powerful insights on the challenges of conducting management research from a European perspective. Particulalrly for someone embarking on a managment research career this book will provide valuable guidelines.′ -- Ian MacMillan, Wharton School of Business, University of Pennsylvania `This comprehensive volume is distinguished by its balance and pragmatism. The authors who present the various research methods are not proponents but researchers who have applied these methods. The authors who discuss philosophical and strategic issues are not advocates but researchers who have had to confront these issues in their research′ - Bill Starbuck, New York University `Doing Management Research is a fabulous contribution to our field. Thietart and his colleagues have put together a unique and valuable guide to help management scholars more deeply understand the issues, dynamics and contradictions of executing first class managerial research. This book will hold an important place on the researcher′s desk for years to come′ - Michael Tushman, Harvard Business School ′This is an excellent in-depth examination of the conduct of management research. It will serve as a valuable resource for management scholars and researchers and is a must read for Ph.D. students in management.′ -- Michael Hitt, Arizona State University `This book will prove to be an excellent guide for those engaged in management research for the first time and an excellent refresher for more experienced scholars. Raymond Thietart and his colleagues should be thanked roundly for this comprehensive volume′ - Gordon Walker, Southern Methodist University, Cox Business School `This textbook makes an outstanding contribution to texts on management research. For researchers considering management research it offers an extensive guide to the research process′ - Paula Roberts, Nurse Researcher Doing Management Research, a major new textbook, provides answers to questions and problems which researchers invariably encounter when embarking on management research, be it quantitative or qualitative. This book will carefully guide the reader through the research process from beginning to end. An excellent tool for academics and students, it enables the reader to acquire and build upon empirical evidence, and to decide what tools to use to understand and describe what is being observed, and then, which methods of analysis to adopt. There is an entire section dedicated to writing up and communicating the research findings. Written in an accessible and easy-to-use style, this book can be read from cover to cover or dipped into, to clarify particular issues during the research process. Doing Management Research results from the ′hands-on′ experience of a large group of researchers who have all had to address the different issues raised when undertaking management research. It is anchored in real methodological problems that researchers face in their work. This work will also become one of the most useful reference tools for senior researchers who are looking for answers to epistemological or methodological problems.
  data management for researchers: Maturity and Innovation in Digital Libraries Milena Dobreva, Annika Hinze, Maja Žumer, 2018-11-14 This book constitutes the refereed proceedings of the 20th International Conference on Asia-Pacific Digital Libraries, ICADL 2018, held in Hamilton, New Zealand, in November 2018. The 20 full, 6 short, and 11 work in progress papers presented in this volume were carefully reviewed and selected from 77 submissions. The papers were organized in topical sections named: topic modeling and semantic analysis; social media, web, and news; heritage and localization; user experience; digital library technology; and use cases and digital librarianship.
  data management for researchers: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
  data management for researchers: Big Data Management and Processing Kuan-Ching Li, Hai Jiang, Albert Y. Zomaya, 2017-05-19 From the Foreword: Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies. ---Sartaj Sahni, University of Florida, USA Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.
  data management for researchers: Data Management Margaret E. Henderson, 2016-10-25 Libraries organize information and data is information, so it is natural that librarians should help people who need to find, organize, use, or store data. Organizations need evidence for decision making; data provides that evidence. Inventors and creators build upon data collected by others. All around us, people need data. Librarians can help increase the relevance of their library to the research and education mission of their institution by learning more about data and how to manage it. Data Management will guide readers through: Understanding data management basics and best practices. Using the reference interview to help with data management Writing data management plans for grants. Starting and growing a data management service. Finding collaborators inside and outside the library. Collecting and using data in different disciplines.
  data management for researchers: How Charts Lie: Getting Smarter about Visual Information Alberto Cairo, 2019-10-15 A leading data visualization expert explores the negative—and positive—influences that charts have on our perception of truth. Today, public conversations are increasingly driven by numbers. While charts, infographics, and diagrams can make us smarter, they can also deceive—intentionally or unintentionally. To be informed citizens, we must all be able to decode and use the visual information that politicians, journalists, and even our employers present us with each day. Demystifying an essential new literacy for our data-driven world, How Charts Lie examines contemporary examples ranging from election result infographics to global GDP maps and box office record charts, as well as an updated afterword on the graphics of the COVID-19 pandemic.
  data management for researchers: Research Management Jan Andersen, Kristel Toom, Susi Poli, Pamela F. Miller, 2017-11-15 Research Management: Europe and Beyond addresses the myriad responsibilities related to research management and administration. The book incorporates narratives from those working in the field to provide insight into the profession. The book also offers a unique perspective on the topic by incorporating global perspectives to address the growing interdisciplinary nature of research collaboration. The book outlines practical advice for those in the research management and administration profession at all levels of experience. It is also a useful tool that research institutions and research groups can use to assist in planning and streamlining their research support. - Offers a deeper understanding of the research management and administrative landscape through single and collective definitions and experiences - Provides an overview of the research environment and explores the international research arena - Discusses some of the most complex issues in research management and administration by covering topics such as ethics, innovation, research impact, organizational structures, and processes for the project life cycle
  data management for researchers: Collecting Qualitative Data Greg Guest, Emily E. Namey, Marilyn L. Mitchell, 2013 Provides a very practical and step-by-step guide to collecting and managing qualitative data,
  data management for researchers: Master Data Management in Practice Dalton Cervo, Mark Allen, 2011-05-25 In this book, authors Dalton Cervo and Mark Allen show you how to implement Master Data Management (MDM) within your business model to create a more quality controlled approach. Focusing on techniques that can improve data quality management, lower data maintenance costs, reduce corporate and compliance risks, and drive increased efficiency in customer data management practices, the book will guide you in successfully managing and maintaining your customer master data. You'll find the expert guidance you need, complete with tables, graphs, and charts, in planning, implementing, and managing MDM.
  data management for researchers: Fundamentals of Clinical Data Science Pieter Kubben, Michel Dumontier, Andre Dekker, 2018-12-21 This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
  data management for researchers: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data management for researchers: Data Management for Libraries Laura Krier, Carly A. Strasser, 2014 Since the National Science Foundation joined the National Institutes of Health in requiring that grant proposals include a data management plan, academic librarians have been inundated with related requests from faculty and campus-based grant consulting offices. Data management is a new service area for many library staff, requiring careful planning and implementation. This guide offers a start-to-finish primer on understanding, building, and maintaining a data management service, showing another way the academic library can be invaluable to researchers. Krier and Strasser of the California Digital Library guide readers through every step of a data management plan by Offering convincing arguments to persuade researchers to create a data management plan, with advice on collaborating with them Laying out all the foundations of starting a service, complete with sample data librarian job descriptions and data management plans Providing tips for conducting successful data management interviews Leading readers through making decisions about repositories and other infrastructure Addressing sensitive questions such as ownership, intellectual property, sharing and access, metadata, and preservation This LITA guide will help academic librarians work with researchers, faculty, and other stakeholders to effectively organize, preserve, and provide access to research data.
  data management for researchers: Handbook of Research on Connecting Research Methods for Information Science Research Ngulube, Patrick, 2019-12-13 In today’s globalized world, viable and reliable research is fundamental for the development of information. Innovative methods of research have begun to shed light on notable issues and concerns that affect the advancement of knowledge within information science. Building on previous literature and exploring these new research techniques are necessary to understand the future of information and knowledge. The Handbook of Research on Connecting Research Methods for Information Science Research is a collection of innovative research on the methods and application of study methods within library and information science. While highlighting topics including data management, philosophical foundations, and quantitative methodology, this book is ideally designed for librarians, information science professionals, policymakers, advanced-level students, researchers, and academicians seeking current research on transformative methods of research within information science.
  data management for researchers: The Encyclopedia of Research Methods in Criminology and Criminal Justice, 2 Volume Set J. C. Barnes, David R. Forde, 2021-09-08 The Encyclopedia of RESEARCH METHODS IN CRIMINOLOGY & CRIMINAL JUSTICE The most comprehensive reference work on research designs and methods in criminology and criminal justice This Encyclopedia of Research Methods in Criminology and Criminal Justice offers a comprehensive survey of research methodologies and statistical techniques that are popular in criminology and criminal justice systems across the globe. With contributions from leading scholars and practitioners in the field, it offers a clear insight into the techniques that are currently in use to answer the pressing questions in criminology and criminal justice. The Encyclopedia contains essential information from a diverse pool of authors about research designs grounded in both qualitative and quantitative approaches. It includes information on popular datasets and leading resources of government statistics. In addition, the contributors cover a wide range of topics such as: the most current research on the link between guns and crime, rational choice theory, and the use of technology like geospatial mapping as a crime reduction tool. This invaluable reference work: Offers a comprehensive survey of international research designs, methods, and statistical techniques Includes contributions from leading figures in the field Contains data on criminology and criminal justice from Cambridge to Chicago Presents information on capital punishment, domestic violence, crime science, and much more Helps us to better understand, explain, and prevent crime Written for undergraduate students, graduate students, and researchers, The Encyclopedia of Research Methods in Criminology and Criminal Justice is the first reference work of its kind to offer a comprehensive review of this important topic.
  data management for researchers: Handbook of Research on Big Data, Green Growth, and Technology Disruption in Asian Companies and Societies Patricia Ordóñez de Pablos, Xi Zhang, Mohammad Nabil Almunawar, Jose Emilio Labra Gayo, 2021-10-23 This book offers an international platform to bring together academics, researchers, lecturers, decision makers, policy makers, and practitioners to share new theories, research findings, and case studies, to enhance understanding and collaboration in business, digital strategies, disruptive innovation, green growth, and technology in Asia--
  data management for researchers: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
  data management for researchers: Journal of Database Management ( Vol 23 ISS 1) Keng Siau, 2011-12
  data management for researchers: The Data Book Meredith Nahm Zozus, 2017 The Data Book: Collection and Management of Research Data is the first practical book written for researchers and research team members covering how to collect and manage data for research. The book covers basic types of data and fundamentals of how data grow, move and change over time. Focusing on pre-publication data collection and handling, the text illustrates use of these key concepts to match data collection and management methods to a particular study, in essence, making good decisions about data. The first section of the book defines data, introduces fundamental types of data that bear on methodology to collect and manage them, and covers data management planning and research reproducibility. The second section covers basic principles of and options for data collection and processing emphasizing error resistance and traceability. The third section focuses on managing the data collection and processing stages of research such that quality is consistent and ultimately capable of supporting conclusions drawn from data. The final section of the book covers principles of data security, sharing, and archival. This book will help graduate students and researchers systematically identify and implement appropriate data collection and handling methods.--Provided by publisher.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …