Advertisement
data analysis course description: Business Analytics S. Christian Albright, Wayne L. Winston, 2017 |
data analysis course description: R Cookbook Paul Teetor, 2011-03-03 With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time.—Jeffrey Ryan, software consultant and R package author |
data analysis course description: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analysis course description: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
data analysis course description: Data Analysis & Decision Making with Microsoft Excel Samuel Christian Albright, Wayne L. Winston, Christopher J. Zappe, 2009 Master data analysis, modeling, and spreadsheet use with DATA ANALYSIS AND DECISION MAKING WITH MICROSOFT EXCEL! With a teach-by-example approach, student-friendly writing style, and complete Excel integration, this quantitative methods text provides you with the tools you need to succeed. Margin notes, boxed-in definitions and formulas in the text, enhanced explanations in the text itself, and stated objectives for the examples found throughout the text make studying easy. Problem sets and cases provide realistic examples that enable you to see the relevance of the material to your future as a business leader. The CD-ROMs packaged with every new book include the following add-ins: the Palisade Decision Tools Suite (@RISK, StatTools, PrecisionTree, TopRank, and RISKOptimizer); and SolverTable, which allows you to do sensitivity analysis. All of these add-ins have been revised for Excel 2007. |
data analysis course description: A General Introduction to Data Analytics João Moreira, Andre Carvalho, Tomás Horvath, 2018-07-18 A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms. |
data analysis course description: Mindset Mathematics Jo Boaler, Jen Munson, Cathy Williams, 2017-08-28 Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the first-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person - anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum. |
data analysis course description: Data-Driven Storytelling Nathalie Henry Riche, Christophe Hurter, Nicholas Diakopoulos, Sheelagh Carpendale, 2018-03-28 This book presents an accessible introduction to data-driven storytelling. Resulting from unique discussions between data visualization researchers and data journalists, it offers an integrated definition of the topic, presents vivid examples and patterns for data storytelling, and calls out key challenges and new opportunities for researchers and practitioners. |
data analysis course description: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data analysis course description: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained. |
data analysis course description: Mathematical Foundations for Data Analysis Jeff M. Phillips, 2021-03-29 This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques. |
data analysis course description: Quantitative Social Science Kosuke Imai, Lori D. Bougher, 2021-03-16 Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a translation of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place-- |
data analysis course description: Introduction to the Practice of Statistics David S. Moore, George P. McCabe, Bruce A. Craig, 2012 With a focus on data analysis, statistical reasoning, and the way statisticians actually work, IPS has helped to revolutionize the way statistics is taught and brings the much needed power of critical thinking and practical applications to students. IPS is now revised and updated, including 30% new exercises and many new current examples. |
data analysis course description: Handbook of Data Analysis Melissa A Hardy, Alan Bryman, 2009-06-17 ′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis. |
data analysis course description: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data analysis course description: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
data analysis course description: A Course in Categorical Data Analysis Thomas Leonard, 1999-11-22 Categorical data-comprising counts of individuals, objects, or entities in different categories-emerge frequently from many areas of study, including medicine, sociology, geology, and education. They provide important statistical information that can lead to real-life conclusions and the discovery of fresh knowledge. Therefore, the ability to manipulate, understand, and interpret categorical data becomes of interest-if not essential-to professionals and students in a broad range of disciplines. Although t-tests, linear regression, and analysis of variance are useful, valid methods for analysis of measurement data, categorical data requires a different methodology and techniques typically not encountered in introductory statistics courses. Developed from long experience in teaching categorical analysis to a multidisciplinary mix of undergraduate and graduate students, A Course in Categorical Data Analysis presents the easiest, most straightforward ways of extracting real-life conclusions from contingency tables. The author uses a Fisherian approach to categorical data analysis and incorporates numerous examples and real data sets. Although he offers S-PLUS routines through the Internet, readers do not need full knowledge of a statistical software package. In this unique text, the author chooses methods and an approach that nurtures intuitive thinking. He trains his readers to focus not on finding a model that fits the data, but on using different models that may lead to meaningful conclusions. The book offers some simple, innovative techniques not highighted in other texts that help make the book accessible to a broad, interdisciplinary audience. A Course in Categorical Data Analysis enables readers to quickly use its offering of tools for drawing scientific, medical, or real-life conclusions from categorical data sets. |
data analysis course description: Discrete Data Analysis with R Michael Friendly, David Meyer, 2015-12-16 An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth |
data analysis course description: Data Analysis for Scientists and Engineers Edward L. Robinson, 2016-10-04 Data Analysis for Scientists and Engineers is a modern, graduate-level text on data analysis techniques for physical science and engineering students as well as working scientists and engineers. Edward Robinson emphasizes the principles behind various techniques so that practitioners can adapt them to their own problems, or develop new techniques when necessary. Robinson divides the book into three sections. The first section covers basic concepts in probability and includes a chapter on Monte Carlo methods with an extended discussion of Markov chain Monte Carlo sampling. The second section introduces statistics and then develops tools for fitting models to data, comparing and contrasting techniques from both frequentist and Bayesian perspectives. The final section is devoted to methods for analyzing sequences of data, such as correlation functions, periodograms, and image reconstruction. While it goes beyond elementary statistics, the text is self-contained and accessible to readers from a wide variety of backgrounds. Specialized mathematical topics are included in an appendix. Based on a graduate course on data analysis that the author has taught for many years, and couched in the looser, workaday language of scientists and engineers who wrestle directly with data, this book is ideal for courses on data analysis and a valuable resource for students, instructors, and practitioners in the physical sciences and engineering. In-depth discussion of data analysis for scientists and engineers Coverage of both frequentist and Bayesian approaches to data analysis Extensive look at analysis techniques for time-series data and images Detailed exploration of linear and nonlinear modeling of data Emphasis on error analysis Instructor's manual (available only to professors) |
data analysis course description: High-Dimensional Data Analysis with Low-Dimensional Models John Wright, Yi Ma, 2022-01-13 Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès. |
data analysis course description: Data Mining and Analysis Mohammed J. Zaki, Wagner Meira, 2014-05-12 A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics. |
data analysis course description: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code |
data analysis course description: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-08-01 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. |
data analysis course description: Statistical Foundations of Data Science Jianqing Fan, Runze Li, Cun-Hui Zhang, Hui Zou, 2020-09-21 Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning. |
data analysis course description: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
data analysis course description: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
data analysis course description: Mining of Massive Datasets Jure Leskovec, Jurij Leskovec, Anand Rajaraman, Jeffrey David Ullman, 2014-11-13 Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets. |
data analysis course description: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data analysis course description: Business Statistics: Australia and New Zealand Edition Eliyathamby A. Selvanathan, Saroja Selvanathan, Gerald Keller, 2020-12-09 By providing a framework for solving statistical problems, this eighth Australian and New Zealand edition of Business Statistics teaches skills that students can use throughout their career. The book shows how to analyse data effectively by focusing on the relationship between the kind of problem being faced, the type of data involved and the appropriate statistical technique for solving the problem. Business Statistics emphasises applications over theory. It illustrates how vital statistical methods and tools are for today's managers and analysts, and how to apply them to business problems using real-world data. Using a proven three-step Identify-Compute-Interpret (ICI) approach to problem solving, the text shows students how to: 1. IDENTIFY the correct statistical technique by focusing on the problem objective and data type; 2. COMPUTE the statistics doing them by hand and using Excel; and 3. INTERPRET results in the context of the problem. This unique approach enhances comprehension and practical skills. The text's vast assortment of data-driven examples, exercises and cases covers the various functional areas of business, demonstrating the statistical applications that marketing managers, financial analysts, accountants, economists and others use. Completely up-to-date and with a NEW XLStat analysis plugin/tool, the eighth edition offers comprehensive coverage, current examples and an increased focus on applications in the real world. Premium online teaching and learning tools are available on the MindTap platform. Learn more about the online tools cengage.com.au/mindtap |
data analysis course description: Python for Data Analysis Wes McKinney, 2017-09-25 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples |
data analysis course description: Introduction to Educational Research W. Newton Suter, 2012 W. Newton Suter argues that what is important in a changing education landscape is the ability to think clearly about research methods, reason through complex problems and evaluate published research. He explains how to evaluate data and establish its relevance. |
data analysis course description: Data Analysis and Regression Frederick Mosteller, John Wilder Tukey, 2019-04-18 This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearson.com/statistics-classics-series for a complete list of titles. Two mainstreams intermingle in this treatment of practical statistics: (a) a sequence of philosophical attitudes the student needs for effective data analysis, and (b) a flow of useful and adaptable techniques that make it possible to put these attitudes to work. 0134995333 / 9780134995335 DATA ANALYSIS AND REGRESSION: A SECOND COURSE IN STATISTICS (CLASSIC VERSION), 1/e |
data analysis course description: The Data Revolution Rob Kitchin, 2014-09-16 Carefully distinguishing between big data and open data, and exploring various data infrastructures, Kitchin vividly illustrates how the data landscape is rapidly changing and calls for a revolution in how we think about data. - Evelyn Ruppert, Goldsmiths, University of London Deconstructs the hype around the ‘data revolution’ to carefully guide us through the histories and the futures of ‘big data.’ The book skilfully engages with debates from across the humanities, social sciences, and sciences in order to produce a critical account of how data are enmeshed into enormous social, economic, and political changes that are taking place. - Mark Graham, University of Oxford Traditionally, data has been a scarce commodity which, given its value, has been either jealously guarded or expensively traded. In recent years, technological developments and political lobbying have turned this position on its head. Data now flow as a deep and wide torrent, are low in cost and supported by robust infrastructures, and are increasingly open and accessible. A data revolution is underway, one that is already reshaping how knowledge is produced, business conducted, and governance enacted, as well as raising many questions concerning surveillance, privacy, security, profiling, social sorting, and intellectual property rights. In contrast to the hype and hubris of much media and business coverage, The Data Revolution provides a synoptic and critical analysis of the emerging data landscape. Accessible in style, the book provides: A synoptic overview of big data, open data and data infrastructures An introduction to thinking conceptually about data, data infrastructures, data analytics and data markets Acritical discussion of the technical shortcomings and the social, political and ethical consequences of the data revolution An analysis of the implications of the data revolution to academic, business and government practices |
data analysis course description: Business Statistics E. Antony Selvanathan, Saroja Selvanathan, Gerald Keller, 2013 Statistical data analysis is the backbone of sound business decision making. Finding the right tool to analyse a particular business problem is the key to such problem solving. Learning the fundamentals of statistical reasoning and data analysis - you will be on the way to becoming a better manager, analyst or economist.By providing a framework for solving statistical problems, this sixth edition of Australian Business Statistics teaches skills that you can use throughout your career. The book shows you how to analyse data effectively by focusing on the relationship between the kind of problem you face, the type of data involved and the appropriate statistical technique for solving the problem.Business Statistics 6e, emphasizes applications over theory. It illustrates how vital statistical methods and tools are for today's managers and analysts and how to apply them to business problems using real-world data. Using a proven three-step Identify-Compute-Interpret (ICI) approach to problem solving, the text teaches you how to (1) IDENTIFY the correct statistical technique by focusing on the problem objective and data type; (2) COMPUTE the statistics doing them by hand and using Excel; and (3) INTERPRET results in the context of the problem. This unique approach enhances your comprehension and practical skills. The text's vast assortment of data-driven examples, exercises, and cases covers the various functional areas of business, demonstrating the statistical applications that marketing managers, financial analysts, accountants, economists, and others use. Learning resources such as CourseMate maximize study time to help you achieve the results you want. Completely up-to-date, the sixth edition offers comprehensive coverage, current examples, and an increased focus on applications in the real world. |
data analysis course description: The Handbook of Mobile Market Research Ray Poynter, Navin Williams, Sue York, 2014-10-06 The premier guide to mobile market research The Handbook of Mobile Market Research is the first guide to focus exclusively on the use of mobile technology in market research. From a global perspective, more people own mobile phones than landlines or computers, and most people have their mobile phones with them at all times—along with their tablets, smartwatches, media players, and navigation devices. The continuous surge of mobile innovation provides unprecedented access to real-time consumer behaviour. Mobile market research allows users to reach more people, engage more people, and collect more valuable data as respondents are free to engage at their own pace, on their own time. Industry forerunners Ray Poynter, Navin Williams, and Sue York employ decades of study to examine the present and future state of mobile market research, as well as the advantages and disadvantages of various approaches. This book contains clear, comprehensive knowledge for those who implement, utilise, and study the field. Readers will learn: The characteristics, scope, and importance of mobile market research Purposes and effects of principal tools like brand tracking, ad testing, customer satisfaction research, and research technology How mobile devices are used for qualitative and quantitative research by way of online focus groups, online discussions, mobile diaries, mobile ethnographies, and mobile surveys Aspects and implications of mobile computer interviews, mobile phone interviews, mixed-mode research, international mobile research, and research using passive data, panels, lists, and communities The significance of the mobile ecosystem, market research ethics, and research on research Designed to be accessible and helpful for beginners and advanced users alike, The Handbook of Mobile Market Research is an extensive guide to one of the most promising, dynamic methods of data collection. |
data analysis course description: Geophysical Data Analysis: Understanding Inverse Problem Theory and Practice Max A. Meju, 1994 This publication is designed to provide a practical understanding of methods of parameter estimation and uncertainty analysis. The practical problems covered range from simple processing of time- and space-series data to inversion of potential field, seismic, electrical, and electromagnetic data. The various formulations are reconciled with field data in the numerous examples provided in the book; well-documented computer programmes are also given to show how easy it is to implement inversion algorithms. |
data analysis course description: Statistical Data Analysis Glen Cowan, 1998 This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding). |
data analysis course description: The Handbook of Online and Social Media Research Ray Poynter, 2010-08-27 Drawing together the new techniques available to the market researcher into a single reference, The Handbook of Online and Social Media Research explores how these innovations are being used by the leaders in the field. This groundbreaking reference examines why traditional research is broken, both in theory and practice, and includes chapters on online research communities, community panels, blog mining, social networks, mobile research, e-ethnography, predictive markets, and DIY research. This handbook fills a significant learning gap for the market research profession and Ray Poynter has once again proven that he is a guiding light. The practical and pragmatic advice contained within these pages will be relevant to new students of research, young researchers and experienced researchers that want to understand the basics of online and social media research. Ray’s views on 'how to be better with people' and ‘how to maximise response rates’ are vital clues that are likely to shape the future of market and social research. —Peter Harris, National President, Australian Market and Social Research Society (AMSRS) It's hard to imagine anyone better suited to covering the rapidly changing world of online research than Ray Poynter. In this book he shows us why. Whether you are new to online or a veteran interested in broadening your understanding of the full range of techniques—quant and qual—this book is for you. —Reg Baker, President and Chief Operating Officer, Market Strategies International Finally, a comprehensive handbook for practitioners, clients, suppliers and students that includes best practices, clear explanations, advice and cautionary warnings. This should be the research benchmark for online research for some time. Poynter proves he is the online market research guru. —Cam Davis, Ph.D., former Dean and current instructor of the online market research course for the Canadian Marketing Research and Intelligence Association Ray Poynter's comprehensive, authoritative, easy to read, and knowledgeable handbook has come to our rescue ... it is a must read for anyone who needs to engage with customers or stakeholders in a creative, immediate and flexible way that makes maximum use of all the exciting, new technology now open to us. Market researchers need to know this stuff now. I can guarantee that anyone who buys the book will find it a compelling read: they will be constantly turning to the next page in order to find yet another nugget of insight from Ray’s tour de force. —Dr David Smith, Director, DVL Smith Ltd; Professor, University of Hertfordshire, Business School |
data analysis course description: Bit by Bit Matthew J. Salganik, 2019-08-06 This essential guide to doing social research in this fast-evolving digital age explains how the digital revolution is transforming the way social scientists observe behavior, ask questions, run experiments, and engage in mass collaborations. |
data analysis course description: Computational Topology for Data Analysis Tamal Krishna Dey, Yusu Wang, 2022-03-10 Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a Transnationa…
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and …
Belmont Forum Adopts Open Data Principles for Environmental Chan…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …