Advertisement
data engineer mock interview: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite. |
data engineer mock interview: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
data engineer mock interview: Cracking the Coding Interview Gayle Laakmann McDowell, 2011 Now in the 5th edition, Cracking the Coding Interview gives you the interview preparation you need to get the top software developer jobs. This book provides: 150 Programming Interview Questions and Solutions: From binary trees to binary search, this list of 150 questions includes the most common and most useful questions in data structures, algorithms, and knowledge based questions. 5 Algorithm Approaches: Stop being blind-sided by tough algorithm questions, and learn these five approaches to tackle the trickiest problems. Behind the Scenes of the interview processes at Google, Amazon, Microsoft, Facebook, Yahoo, and Apple: Learn what really goes on during your interview day and how decisions get made. Ten Mistakes Candidates Make -- And How to Avoid Them: Don't lose your dream job by making these common mistakes. Learn what many candidates do wrong, and how to avoid these issues. Steps to Prepare for Behavioral and Technical Questions: Stop meandering through an endless set of questions, while missing some of the most important preparation techniques. Follow these steps to more thoroughly prepare in less time. |
data engineer mock interview: Cracking The Machine Learning Interview Nitin Suri, 2018-12-18 A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview. |
data engineer mock interview: The Software Engineering Manager Interview Guide Vidal Graupera, Interviewing can be challenging, time-consuming, stressful, frustrating, and full of disappointments. My goal is to help make things easier for you so you can get the engineering leadership job you want. The Software Engineering Manager Interview Guide is a comprehensive, no-nonsense book about landing an engineering leadership role at a top-tier tech company. You will learn how to master the different kinds of engineering management interview questions. If you only pick up one or two tips from this book, it could make the difference in getting the dream job you want. This guide contains a collection of 150+ real-life management and behavioral questions I was asked on phone screens and by panels during onsite interviews for engineering management positions at a variety of big-name and top-tier tech companies in the San Francisco Bay Area such as Google, Facebook, Amazon, Twitter, LinkedIn, Uber, Lyft, Airbnb, Pinterest, Salesforce, Intuit, Autodesk, et al. In this book, I discuss my experiences and reflections mainly from the candidate’s perspective. Your experience will vary. The random variables include who will be on your panel, what exactly they will ask, the level of training and mood of the interviewers, their preferences, and biases. While you cannot control any of those variables, you can control how prepared you are, and hopefully, this book will help you in that process. I will share with you everything I’ve learned while keeping this book short enough to read on a plane ride. I will share tips I picked up along the way. If you are interviewing this guide will serve you as a playbook to prepare, or if you are hiring give you ideas as to what you might ask an engineering management candidate yourself. CONTENTS: Introduction Chapter 1: Answering Behavioral Interview Questions Chapter 2: The Job Interviews Phone Screens Prep Call with the Recruiter Onsite Company Values Coding, Algorithms and Data structures System Design and Architecture Interviews Generic Design Of A Popular System A Design Specific To A Domain Design Of A System Your Team Worked On Lunch Interview Managerial and Leadership Bar Raiser Unique One-Off Interviews Chapter 3: Tips To Succeed How To Get The Interviews Scheduling and Timelines Interview Feedback Mock Interviews Panelists First Impressions Thank You Notes Ageism Chapter 4: Example Behavioral and Competency Questions General Questions Feedback and Performance Management Prioritization and Execution Strategy and Vision Hiring Talent and Building a Team Working With Tech Leads, Team Leads and Technology Dealing With Conflicts Diversity and Inclusion |
data engineer mock interview: System Design Interview - An Insider's Guide Alex Xu, 2020-06-12 The system design interview is considered to be the most complex and most difficult technical job interview by many. Those questions are intimidating, but don't worry. It's just that nobody has taken the time to prepare you systematically. We take the time. We go slow. We draw lots of diagrams and use lots of examples. You'll learn step-by-step, one question at a time.Don't miss out.What's inside?- An insider's take on what interviewers really look for and why.- A 4-step framework for solving any system design interview question.- 16 real system design interview questions with detailed solutions.- 188 diagrams to visually explain how different systems work. |
data engineer mock interview: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts. |
data engineer mock interview: The Google Resume Gayle Laakmann McDowell, 2011-01-25 The Google Resume is the only book available on how to win a coveted spot at Google, Microsoft, Apple, or other top tech firms. Gayle Laakmann McDowell worked in Google Engineering for three years, where she served on the hiring committee and interviewed over 120 candidates. She interned for Microsoft and Apple, and interviewed with and received offers from ten tech firms. If you’re a student, you’ll learn what to study and how to prepare while in school, as well as what career paths to consider. If you’re a job seeker, you’ll get an edge on your competition by learning about hiring procedures and making yourself stand out from other candidates. Covers key concerns like what to major in, which extra-curriculars and other experiences look good, how to apply, how to design and tailor your resume, how to prepare for and excel in the interview, and much more Author was on Google’s hiring committee; interned at Microsoft and Apple; has received job offers from more than 10 tech firms; and runs CareerCup.com, a site devoted to tech jobs Get the only comprehensive guide to working at some of America’s most dynamic, innovative, and well-paying tech companies with The Google Resume. |
data engineer mock interview: MLOps Engineering at Scale Carl Osipov, 2022-03-22 Dodge costly and time-consuming infrastructure tasks, and rapidly bring your machine learning models to production with MLOps and pre-built serverless tools! In MLOps Engineering at Scale you will learn: Extracting, transforming, and loading datasets Querying datasets with SQL Understanding automatic differentiation in PyTorch Deploying model training pipelines as a service endpoint Monitoring and managing your pipeline’s life cycle Measuring performance improvements MLOps Engineering at Scale shows you how to put machine learning into production efficiently by using pre-built services from AWS and other cloud vendors. You’ll learn how to rapidly create flexible and scalable machine learning systems without laboring over time-consuming operational tasks or taking on the costly overhead of physical hardware. Following a real-world use case for calculating taxi fares, you will engineer an MLOps pipeline for a PyTorch model using AWS server-less capabilities. About the technology A production-ready machine learning system includes efficient data pipelines, integrated monitoring, and means to scale up and down based on demand. Using cloud-based services to implement ML infrastructure reduces development time and lowers hosting costs. Serverless MLOps eliminates the need to build and maintain custom infrastructure, so you can concentrate on your data, models, and algorithms. About the book MLOps Engineering at Scale teaches you how to implement efficient machine learning systems using pre-built services from AWS and other cloud vendors. This easy-to-follow book guides you step-by-step as you set up your serverless ML infrastructure, even if you’ve never used a cloud platform before. You’ll also explore tools like PyTorch Lightning, Optuna, and MLFlow that make it easy to build pipelines and scale your deep learning models in production. What's inside Reduce or eliminate ML infrastructure management Learn state-of-the-art MLOps tools like PyTorch Lightning and MLFlow Deploy training pipelines as a service endpoint Monitor and manage your pipeline’s life cycle Measure performance improvements About the reader Readers need to know Python, SQL, and the basics of machine learning. No cloud experience required. About the author Carl Osipov implemented his first neural net in 2000 and has worked on deep learning and machine learning at Google and IBM. Table of Contents PART 1 - MASTERING THE DATA SET 1 Introduction to serverless machine learning 2 Getting started with the data set 3 Exploring and preparing the data set 4 More exploratory data analysis and data preparation PART 2 - PYTORCH FOR SERVERLESS MACHINE LEARNING 5 Introducing PyTorch: Tensor basics 6 Core PyTorch: Autograd, optimizers, and utilities 7 Serverless machine learning at scale 8 Scaling out with distributed training PART 3 - SERVERLESS MACHINE LEARNING PIPELINE 9 Feature selection 10 Adopting PyTorch Lightning 11 Hyperparameter optimization 12 Machine learning pipeline |
data engineer mock interview: Grokking the System Design Interview Design Gurus, 2021-12-18 This book (also available online at www.designgurus.org) by Design Gurus has helped 60k+ readers to crack their system design interview (SDI). System design questions have become a standard part of the software engineering interview process. These interviews determine your ability to work with complex systems and the position and salary you will be offered by the interviewing company. Unfortunately, SDI is difficult for most engineers, partly because they lack experience developing large-scale systems and partly because SDIs are unstructured in nature. Even engineers who've some experience building such systems aren't comfortable with these interviews, mainly due to the open-ended nature of design problems that don't have a standard answer. This book is a comprehensive guide to master SDIs. It was created by hiring managers who have worked for Google, Facebook, Microsoft, and Amazon. The book contains a carefully chosen set of questions that have been repeatedly asked at top companies. What's inside? This book is divided into two parts. The first part includes a step-by-step guide on how to answer a system design question in an interview, followed by famous system design case studies. The second part of the book includes a glossary of system design concepts. Table of Contents First Part: System Design Interviews: A step-by-step guide. Designing a URL Shortening service like TinyURL. Designing Pastebin. Designing Instagram. Designing Dropbox. Designing Facebook Messenger. Designing Twitter. Designing YouTube or Netflix. Designing Typeahead Suggestion. Designing an API Rate Limiter. Designing Twitter Search. Designing a Web Crawler. Designing Facebook's Newsfeed. Designing Yelp or Nearby Friends. Designing Uber backend. Designing Ticketmaster. Second Part: Key Characteristics of Distributed Systems. Load Balancing. Caching. Data Partitioning. Indexes. Proxies. Redundancy and Replication. SQL vs. NoSQL. CAP Theorem. PACELC Theorem. Consistent Hashing. Long-Polling vs. WebSockets vs. Server-Sent Events. Bloom Filters. Quorum. Leader and Follower. Heartbeat. Checksum. About the Authors Designed Gurus is a platform that offers online courses to help software engineers prepare for coding and system design interviews. Learn more about our courses at www.designgurus.org. |
data engineer mock interview: Cracking the PM Interview Gayle Laakmann McDowell, Jackie Bavaro, 2013 How many pizzas are delivered in Manhattan? How do you design an alarm clock for the blind? What is your favorite piece of software and why? How would you launch a video rental service in India? This book will teach you how to answer these questions and more. Cracking the PM Interview is a comprehensive book about landing a product management role in a startup or bigger tech company. Learn how the ambiguously-named PM (product manager / program manager) role varies across companies, what experience you need, how to make your existing experience translate, what a great PM resume and cover letter look like, and finally, how to master the interview: estimation questions, behavioral questions, case questions, product questions, technical questions, and the super important pitch. |
data engineer mock interview: Interview Questions and Answers Richard McMunn, 2013-05 |
data engineer mock interview: Quant Job Interview Questions and Answers Mark Joshi, Nick Denson, Nicholas Denson, Andrew Downes, 2013 The quant job market has never been tougher. Extensive preparation is essential. Expanding on the successful first edition, this second edition has been updated to reflect the latest questions asked. It now provides over 300 interview questions taken from actual interviews in the City and Wall Street. Each question comes with a full detailed solution, discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the interview process and the non-technical interview. All three authors have worked as quants and they have done many interviews from both sides of the desk. Mark Joshi has written many papers and books including the very successful introductory textbook, The Concepts and Practice of Mathematical Finance. |
data engineer mock interview: Deep Learning Interviews Shlomo Kashani, 2020-12-09 The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs. |
data engineer mock interview: Parallel and Concurrent Programming in Haskell Simon Marlow, 2013-07-12 If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network |
data engineer mock interview: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics. |
data engineer mock interview: Elements of Programming Interviews Adnan Aziz, Tsung-Hsien Lee, Amit Prakash, 2012 The core of EPI is a collection of over 300 problems with detailed solutions, including 100 figures, 250 tested programs, and 150 variants. The problems are representative of questions asked at the leading software companies. The book begins with a summary of the nontechnical aspects of interviewing, such as common mistakes, strategies for a great interview, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. The technical core of EPI is a sequence of chapters on basic and advanced data structures, searching, sorting, broad algorithmic principles, concurrency, and system design. Each chapter consists of a brief review, followed by a broad and thought-provoking series of problems. We include a summary of data structure, algorithm, and problem solving patterns. |
data engineer mock interview: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
data engineer mock interview: Data Structures and Algorithms in Python Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, 2013-06-17 Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++. Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects. |
data engineer mock interview: Coding Interview Questions Narasimha Karumanchi, 2012-05 Coding Interview Questions is a book that presents interview questions in simple and straightforward manner with a clear-cut explanation. This book will provide an introduction to the basics. It comes handy as an interview and exam guide for computer scientists. Programming puzzles for interviews Campus Preparation Degree/Masters Course Preparation Big job hunters: Apple, Microsoft, Google, Amazon, Yahoo, Flip Kart, Adobe, IBM Labs, Citrix, Mentor Graphics, NetApp, Oracle, Webaroo, De-Shaw, Success Factors, Face book, McAfee and many more Reference Manual for working people Topics Covered: Programming BasicsIntroductionRecursion and BacktrackingLinked Lists Stacks Queues Trees Priority Queue and HeapsGraph AlgorithmsSortingSearching Selection Algorithms [Medians] Symbol TablesHashing String Algorithms Algorithms Design Techniques Greedy Algorithms Divide and Conquer Algorithms Dynamic Programming Complexity Classes Design Interview Questions Operating System Concepts Computer Networking Basics Database Concepts Brain Teasers NonTechnical Help Miscellaneous Concepts Note: If you already have Data Structures and Algorithms Made Easy no need to buy this. |
data engineer mock interview: Product Sense Peter Knudson, Braxton Bragg, 2021-07-12 Attempting to land a new job in product management is daunting. For starters, there have been no comprehensive blueprints for success. The interview process is grueling. Few candidates receive offers. Product Sense is the only comprehensive, yet accessible, resource available to help navigate a complex process and succeed an a hyper-competitive market. What will you learn from this book? The required PM common traits - ones that all PMs need to embody to get a job (regardless of industry, company, or product). The single, most crucial PM problem -What it is, why it is key to the role, and how to tackle it in four steps. Master our brand new Compass Framework - We designed our own proprietary interview framework from the ground up, which you can use to navigate product sense, execution, and leadership PM interview questions. How to get a job - A step-by-step hand-holding on what to do to land the most desired roles. Including take-home assignments, recruiter & hiring manager screens, and crafting your unique narrative - your PM Superpower. What's also inside? A detailed breakdown of the hiring criteria for PMs at FAANG and other tech companies Super-detailed example answers to tough PM interview case questions. An inside look at PM. Dozens of first-hand stories, interviews, real life examples, and no-fluff advice A robust glossary of PM terms used throughout the industry for easy reference This book will benefit those who are considering becoming PMs, those who are attempting to switch into product management from another role, or folks who are already PMs but want to be most prepared when applying for a new job. Here's what readers say about Product Sense: Product Sense helped me understand if PM is the right career path for me. Easy to read, clear, concise, and jam-packed full of insight and examples that illustrate all the concepts, this is the perfect starting point for anyone new to the field, and goes well beyond that for those looking to advance their career. Peter is one of the best strategic and tactical product minds I've ever worked with. For that reason, I'm not at all surprised that what he and Braxton have written here is a definitive guide to Product Management in today's ultra-competitive market. After reading Cracking the PM Interview, I was still lost as to how to structure my answers to case questions. While I understand that there is no right way to answer these interview questions, I appreciated that Product Sense gave me firm and clear guidance, walking me through the basics of PM thinking and how to adopt it in my interview answers. It was reassuring to see that the best mock interviews have all of the elements of Product Sense's Compass Framework. If CTPMI is the first step to prepare for landing a PM Role, then Product Sense is definitely the second step. |
data engineer mock interview: The Holloway Guide to Technical Recruiting and Hiring Osman (Ozzie) Osman, 2022-01-10 Learn how the best teams hire software engineers and fill technical roles. The Holloway Guide to Technical Recruiting and Hiring is the authoritative guide to growing software engineering teams effectively, written by and for hiring managers, recruiters, interviewers, and candidates. Hiring is rated as one of the biggest obstacles to growth by most CEOs. Hiring managers, recruiters, and interviewers all wrestle with how to source candidates, interview fairly and effectively, and ultimately motivate the right candidates to accept offers. Yet the process is costly, frustrating, and often stressful or unfair to candidates. Anyone who cares about building effective software teams will return to this book again and again. Inside, you'll find know-how from some of the most insightful and experienced leaders and practitioners—senior engineers, recruiters, entrepreneurs, and hiring managers—who’ve built teams from early-stage startups to thousand-person engineering organizations. The lead author of this guide, Ozzie Osman, previously led product engineering at Quora and teams at Google, and built (and sold) his own startup. Additional contributors include Aditya Agarwal, former CTO of Dropbox; Jennifer Kim, former head of diversity at Lever; veteran recruiters and startup founders Jose Guardado (founder of Build Talent and former Y Combinator) and Aline Lerner (CEO of Interviewing.io); and over a dozen others. Recruiting and hiring can be done well, in a way that has a positive impact on companies, employees, and every candidate. With the right foundations and practice, teams and candidates can approach a stressful and difficult process with knowledge and confidence. Ask your employer if you can expense this book—it's one of the highest-leverage investments they can make in your team. |
data engineer mock interview: Heard in Data Science Interviews Kal Mishra, 2018-10-03 A collection of over 650 actual Data Scientist/Machine Learning Engineer job interview questions along with their full answers, references, and useful tips |
data engineer mock interview: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required. |
data engineer mock interview: Programming Challenges Steven S Skiena, Miguel A. Revilla, 2006-04-18 There are many distinct pleasures associated with computer programming. Craftsmanship has its quiet rewards, the satisfaction that comes from building a useful object and making it work. Excitement arrives with the flash of insight that cracks a previously intractable problem. The spiritual quest for elegance can turn the hacker into an artist. There are pleasures in parsimony, in squeezing the last drop of performance out of clever algorithms and tight coding. The games, puzzles, and challenges of problems from international programming competitions are a great way to experience these pleasures while improving your algorithmic and coding skills. This book contains over 100 problems that have appeared in previous programming contests, along with discussions of the theory and ideas necessary to attack them. Instant online grading for all of these problems is available from two WWW robot judging sites. Combining this book with a judge gives an exciting new way to challenge and improve your programming skills. This book can be used for self-study, for teaching innovative courses in algorithms and programming, and in training for international competition. The problems in this book have been selected from over 1,000 programming problems at the Universidad de Valladolid online judge. The judge has ruled on well over one million submissions from 27,000 registered users around the world to date. We have taken only the best of the best, the most fun, exciting, and interesting problems available. |
data engineer mock interview: The Product Manager Interview Lewis C. Lin, 2017-11-06 NOTE: This is the NEWER 3rd edition for the book formerly titled PM Interview Questions. -- 164 Actual PM Interview Questions From the creator of the CIRCLES Method(TM), The Product Manager Interview is a resource you don't want to miss. The world's expert in product management interviews, Lewis C. Lin, gives readers 164 practice questions to gain product management (PM) proficiency and master the PM interview including: Google Facebook Amazon Uber Dropbox Microsoft Fully Solved Solutions The book contains fully solved solutions so readers can learn, improve and do their best at the PM interview. Here are questions and sample answers you'll find in the book: Product Design How would you design an ATM for elderly people? Should Google build a Comcast-like TV cable service? Instagram currently supports 3 to 15 second videos. We're considering supporting videos of unlimited length. How would you modify the UX to accommodate this? Pricing How would you go about pricing UberX or any other new Uber product? Let's say Google created a teleporting device: which market segments would you go after? How would you price it? Metrics Imagine you are the Amazon Web Services (AWS) PM in Sydney. What are the top three metrics you'd look at? Facebook users have declined 20 percent week over week. Diagnose the problem. How would you fix the issue? Ideal Complement to Decode and Conquer Many of you have read the PM interview frameworks revealed in Decode and Conquer, including the CIRCLES(TM), AARM(TM) and DIGS(TM) Methods. The Product Manager Interview is the perfect complement to Decode and Conquer. With over 160 practice questions, you'll see what the best PM interview responses look and feel like. Brand New Third Edition Many of the sample answers have been re-written from scratch. The sample answers are now stronger and easier to follow. In total, thousands of changes have made in this brand new third edition of the book. Preferred by the World's Top Universities Here's what students and staff have to say about the Lewis C. Lin: DUKE UNIVERSITY I was so touched by your presentation this morning. It was really helpful. UNIVERSITY OF MICHIGAN I can say your class is the best that I have ever attended. I will definitely use knowledge I learned today for future interviews. COLUMBIA UNIVERSITY I'd like to let you know that your workshop today is super awesome! It's the best workshop I have been to since I came to Columbia Business School. Thank you very much for the tips, frameworks, and the very clear and well-structured instruction! UNIVERSITY OF TEXAS AT AUSTIN I wanted to reiterate how much I enjoyed your workshops today. Thank you so much for taking time out and teaching us about these much-needed principles and frameworks. I actually plan to print out a few slides and paste them on my walls! CARNEGIE MELLON UNIVERSITY I'm a very big admirer of your work. We, at Tepper, follow your books like the Bible. As a former associate product manager, I was able to connect your concepts back to my work experience back and Pragmatic Marketing training. I'm really looking forward to apply your teachings. |
data engineer mock interview: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
data engineer mock interview: Understanding Distributed Systems, Second Edition Roberto Vitillo, 2022-02-23 Learning to build distributed systems is hard, especially if they are large scale. It's not that there is a lack of information out there. You can find academic papers, engineering blogs, and even books on the subject. The problem is that the available information is spread out all over the place, and if you were to put it on a spectrum from theory to practice, you would find a lot of material at the two ends but not much in the middle. That is why I decided to write a book that brings together the core theoretical and practical concepts of distributed systems so that you don't have to spend hours connecting the dots. This book will guide you through the fundamentals of large-scale distributed systems, with just enough details and external references to dive deeper. This is the guide I wished existed when I first started out, based on my experience building large distributed systems that scale to millions of requests per second and billions of devices. If you are a developer working on the backend of web or mobile applications (or would like to be!), this book is for you. When building distributed applications, you need to be familiar with the network stack, data consistency models, scalability and reliability patterns, observability best practices, and much more. Although you can build applications without knowing much of that, you will end up spending hours debugging and re-architecting them, learning hard lessons that you could have acquired in a much faster and less painful way. However, if you have several years of experience designing and building highly available and fault-tolerant applications that scale to millions of users, this book might not be for you. As an expert, you are likely looking for depth rather than breadth, and this book focuses more on the latter since it would be impossible to cover the field otherwise. The second edition is a complete rewrite of the previous edition. Every page of the first edition has been reviewed and where appropriate reworked, with new topics covered for the first time. |
data engineer mock interview: Learning How to Learn Barbara Oakley, PhD, Terrence Sejnowski, PhD, Alistair McConville, 2018-08-07 A surprisingly simple way for students to master any subject--based on one of the world's most popular online courses and the bestselling book A Mind for Numbers A Mind for Numbers and its wildly popular online companion course Learning How to Learn have empowered more than two million learners of all ages from around the world to master subjects that they once struggled with. Fans often wish they'd discovered these learning strategies earlier and ask how they can help their kids master these skills as well. Now in this new book for kids and teens, the authors reveal how to make the most of time spent studying. We all have the tools to learn what might not seem to come naturally to us at first--the secret is to understand how the brain works so we can unlock its power. This book explains: Why sometimes letting your mind wander is an important part of the learning process How to avoid rut think in order to think outside the box Why having a poor memory can be a good thing The value of metaphors in developing understanding A simple, yet powerful, way to stop procrastinating Filled with illustrations, application questions, and exercises, this book makes learning easy and fun. |
data engineer mock interview: Azure Data Engineer Associate Certification Guide Newton Alex, 2022-02-28 Become well-versed with data engineering concepts and exam objectives to achieve Azure Data Engineer Associate certification Key Features Understand and apply data engineering concepts to real-world problems and prepare for the DP-203 certification exam Explore the various Azure services for building end-to-end data solutions Gain a solid understanding of building secure and sustainable data solutions using Azure services Book DescriptionAzure is one of the leading cloud providers in the world, providing numerous services for data hosting and data processing. Most of the companies today are either cloud-native or are migrating to the cloud much faster than ever. This has led to an explosion of data engineering jobs, with aspiring and experienced data engineers trying to outshine each other. Gaining the DP-203: Azure Data Engineer Associate certification is a sure-fire way of showing future employers that you have what it takes to become an Azure Data Engineer. This book will help you prepare for the DP-203 examination in a structured way, covering all the topics specified in the syllabus with detailed explanations and exam tips. The book starts by covering the fundamentals of Azure, and then takes the example of a hypothetical company and walks you through the various stages of building data engineering solutions. Throughout the chapters, you'll learn about the various Azure components involved in building the data systems and will explore them using a wide range of real-world use cases. Finally, you’ll work on sample questions and answers to familiarize yourself with the pattern of the exam. By the end of this Azure book, you'll have gained the confidence you need to pass the DP-203 exam with ease and land your dream job in data engineering.What you will learn Gain intermediate-level knowledge of Azure the data infrastructure Design and implement data lake solutions with batch and stream pipelines Identify the partition strategies available in Azure storage technologies Implement different table geometries in Azure Synapse Analytics Use the transformations available in T-SQL, Spark, and Azure Data Factory Use Azure Databricks or Synapse Spark to process data using Notebooks Design security using RBAC, ACL, encryption, data masking, and more Monitor and optimize data pipelines with debugging tips Who this book is for This book is for data engineers who want to take the DP-203: Azure Data Engineer Associate exam and are looking to gain in-depth knowledge of the Azure cloud stack. The book will also help engineers and product managers who are new to Azure or interviewing with companies working on Azure technologies, to get hands-on experience of Azure data technologies. A basic understanding of cloud technologies, extract, transform, and load (ETL), and databases will help you get the most out of this book. |
data engineer mock interview: How Smart Machines Think Sean Gerrish, 2018-10-30 Everything you've always wanted to know about self-driving cars, Netflix recommendations, IBM's Watson, and video game-playing computer programs. The future is here: Self-driving cars are on the streets, an algorithm gives you movie and TV recommendations, IBM's Watson triumphed on Jeopardy over puny human brains, computer programs can be trained to play Atari games. But how do all these things work? In this book, Sean Gerrish offers an engaging and accessible overview of the breakthroughs in artificial intelligence and machine learning that have made today's machines so smart. Gerrish outlines some of the key ideas that enable intelligent machines to perceive and interact with the world. He describes the software architecture that allows self-driving cars to stay on the road and to navigate crowded urban environments; the million-dollar Netflix competition for a better recommendation engine (which had an unexpected ending); and how programmers trained computers to perform certain behaviors by offering them treats, as if they were training a dog. He explains how artificial neural networks enable computers to perceive the world—and to play Atari video games better than humans. He explains Watson's famous victory on Jeopardy, and he looks at how computers play games, describing AlphaGo and Deep Blue, which beat reigning world champions at the strategy games of Go and chess. Computers have not yet mastered everything, however; Gerrish outlines the difficulties in creating intelligent agents that can successfully play video games like StarCraft that have evaded solution—at least for now. Gerrish weaves the stories behind these breakthroughs into the narrative, introducing readers to many of the researchers involved, and keeping technical details to a minimum. Science and technology buffs will find this book an essential guide to a future in which machines can outsmart people. |
data engineer mock interview: The IOS Interview Guide Alex Bush, 2017-05-31 |
data engineer mock interview: Programming Pearls Jon Bentley, 2016-04-21 When programmers list their favorite books, Jon Bentley’s collection of programming pearls is commonly included among the classics. Just as natural pearls grow from grains of sand that irritate oysters, programming pearls have grown from real problems that have irritated real programmers. With origins beyond solid engineering, in the realm of insight and creativity, Bentley’s pearls offer unique and clever solutions to those nagging problems. Illustrated by programs designed as much for fun as for instruction, the book is filled with lucid and witty descriptions of practical programming techniques and fundamental design principles. It is not at all surprising that Programming Pearls has been so highly valued by programmers at every level of experience. In this revision, the first in 14 years, Bentley has substantially updated his essays to reflect current programming methods and environments. In addition, there are three new essays on testing, debugging, and timing set representations string problems All the original programs have been rewritten, and an equal amount of new code has been generated. Implementations of all the programs, in C or C++, are now available on the Web. What remains the same in this new edition is Bentley’s focus on the hard core of programming problems and his delivery of workable solutions to those problems. Whether you are new to Bentley’s classic or are revisiting his work for some fresh insight, the book is sure to make your own list of favorites. |
data engineer mock interview: A Common-Sense Guide to Data Structures and Algorithms, Second Edition Jay Wengrow, 2020-08-10 Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable. |
data engineer mock interview: Some Of Myself Suzanne D Williams, 2022-02-14 I can't do this again, she cried. I can't. It'll be like last time, and my life will be ruined. I just wanted to start over. Shh. No, it won't. You have me. The last thing Eden Riske expected when she came home was the discernment of fellow teacher Austin Lowell. Football coach, history teacher, fitness buff, Austin is strength and patience in a handsome package. However, it seems even his presence can't stop the rumors swirling around her or the hatred of someone determined to do her harm. But this job is supposed to be her salvation, her way out of her troubled past. Except now, everything is falling apart, and the one thing that might destroy her is the very secret she's held inside for so long. |
data engineer mock interview: Business Intelligence Demystified Anoop Kumar V K, 2021-09-25 Clear your doubts about Business Intelligence and start your new journey KEY FEATURES ● Includes successful methods and innovative ideas to achieve success with BI. ● Vendor-neutral, unbiased, and based on experience. ● Highlights practical challenges in BI journeys. ● Covers financial aspects along with technical aspects. ● Showcases multiple BI organization models and the structure of BI teams. DESCRIPTION The book demystifies misconceptions and misinformation about BI. It provides clarity to almost everything related to BI in a simplified and unbiased way. It covers topics right from the definition of BI, terms used in the BI definition, coinage of BI, details of the different main uses of BI, processes that support the main uses, side benefits, and the level of importance of BI, various types of BI based on various parameters, main phases in the BI journey and the challenges faced in each of the phases in the BI journey. It clarifies myths about self-service BI and real-time BI. The book covers the structure of a typical internal BI team, BI organizational models, and the main roles in BI. It also clarifies the doubts around roles in BI. It explores the different components that add to the cost of BI and explains how to calculate the total cost of the ownership of BI and ROI for BI. It covers several ideas, including unconventional ideas to achieve BI success and also learn about IBI. It explains the different types of BI architectures, commonly used technologies, tools, and concepts in BI and provides clarity about the boundary of BI w.r.t technologies, tools, and concepts. The book helps you lay a very strong foundation and provides the right perspective about BI. It enables you to start or restart your journey with BI. WHAT YOU WILL LEARN ● Builds a strong conceptual foundation in BI. ● Gives the right perspective and clarity on BI uses, challenges, and architectures. ● Enables you to make the right decisions on the BI structure, organization model, and budget. ● Explains which type of BI solution is required for your business. ● Applies successful BI ideas. WHO THIS BOOK IS FOR This book is a must-read for business managers, BI aspirants, CxOs, and all those who want to drive the business value with data-driven insights. TABLE OF CONTENTS 1. What is Business Intelligence? 2. Why do Businesses need BI? 3. Types of Business Intelligence 4. Challenges in Business Intelligence 5. Roles in Business Intelligence 6. Financials of Business Intelligence 7. Ideas for Success with BI 8. Introduction to IBI 9. BI Architectures 10. Demystify Tech, Tools, and Concepts in BI |
data engineer mock interview: Topics for Group Discussion Prof Shrikant Prasoon, 2017-09 There are no specific rules to prepare for a GD. And no one knows what the topic of GD is going to be. This book includes topics that are likely to be put by the Group Testing Officer before the candidates to gauge their personality and leadership qualities. It will be a good idea to keep yourself abreast with topics from: 1. Current Affairs - Current Affairs is something that you have to be thorough with. Understand the recent crises affecting the world, latest developmental initiatives, and important national & global events. 2. Historical topics- Have a fair knowledge about the history of India and the world. Having historical information will help you cite examples and make references whenever needed. 3. Sports, Arts & Literature - In these topics, try to have a decent idea about what is popular, who are the leaders in each area, the latest that has happened in these areas. 4. Data crunching - Do familiarize yourself with important data. Throwing in some data if required in your GD will definitely create an impression among the assessors. Speak with a measure of confidence on the given topic; and secure the nod of the evaluator. |
data engineer mock interview: Site Reliability Engineering Niall Richard Murphy, Betsy Beyer, Chris Jones, Jennifer Petoff, 2016-03-23 The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use |
data engineer mock interview: Decode and Conquer Lewis C. Lin, 2013-11-28 Land that Dream Product Manager Job...TODAYSeeking a product management position?Get Decode and Conquer, the world's first book on preparing you for the product management (PM) interview. Author and professional interview coach, Lewis C. Lin provides you with an industry insider's perspective on how to conquer the most difficult PM interview questions. Decode and Conquer reveals: Frameworks for tackling product design and metrics questions, including the CIRCLES Method(tm), AARM Method(tm), and DIGS Method(tm) Biggest mistakes PM candidates make at the interview and how to avoid them Insider tips on just what interviewers are looking for and how to answer so they can't say NO to hiring you Sample answers for the most important PM interview questions Questions and answers covered in the book include: Design a new iPad app for Google Spreadsheet. Brainstorm as many algorithms as possible for recommending Twitter followers. You're the CEO of the Yellow Cab taxi service. How do you respond to Uber? You're part of the Google Search web spam team. How would you detect duplicate websites? The billboard industry is under monetized. How can Google create a new product or offering to address this? Get the Book that's Recommended by Executives from Google, Amazon, Microsoft, Oracle & VMWare...TODAY |
data engineer mock interview: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …