Data Management And Security

Advertisement



  data management and security: Security, Privacy, and Trust in Modern Data Management Milan Petkovic, Willem Jonker, 2007-06-12 The vision of ubiquitous computing and ambient intelligence describes a world of technology which is present anywhere, anytime in the form of smart, sensible devices that communicate with each other and provide personalized services. However, open interconnected systems are much more vulnerable to attacks and unauthorized data access. In the context of this threat, this book provides a comprehensive guide to security and privacy and trust in data management.
  data management and security: Secure Searchable Encryption and Data Management Brij B. Gupta, Mamta, 2021-03-16 With the advent of the IT revolution, the volume of data produced has increased exponentially and is still showing an upward trend. This data may be abundant and enormous, but it’s a precious resource and should be managed properly. Cloud technology plays an important role in data management. Storing data in the cloud rather than on local storage has many benefits, but apart from these benefits, there are privacy concerns in storing sensitive data over third-party servers. These concerns can be addressed by storing data in an encrypted form; however, while encryption solves the problem of privacy, it engenders other serious issues, including the infeasibility of the fundamental search operation and a reduction in flexibility when sharing data with other users, amongst others. The concept of searchable encryption addresses these issues. This book provides every necessary detail required to develop a secure, searchable encryption scheme using both symmetric and asymmetric cryptographic primitives along with the appropriate security models to ensure the minimum security requirements for real-world applications.
  data management and security: Database and Applications Security Bhavani Thuraisingham, 2005-05-26 This is the first book to provide an in-depth coverage of all the developments, issues and challenges in secure databases and applications. It provides directions for data and application security, including securing emerging applications such as bioinformatics, stream information processing and peer-to-peer computing. Divided into eight sections,
  data management and security: Data Management at Scale Piethein Strengholt, 2020-07-29 As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata
  data management and security: The Hidden Corporation David Schlesinger, 2011 Follow cybersecurity specialist Nancy MacBaron who fights in the corporate trenches against criminal hackers intent on stealing her company's sensitive information, yet discovers hidden data security gaps in her corporation while investigating a data theft.
  data management and security: Big Data Fei Hu, 2016-04-27 Although there are already some books published on Big Data, most of them only cover basic concepts and society impacts and ignore the internal implementation details-making them unsuitable to R&D people. To fill such a need, Big Data: Storage, Sharing, and Security examines Big Data management from an R&D perspective. It covers the 3S desi
  data management and security: Big Data Management Peter Ghavami, 2020-11-09 Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations.
  data management and security: Data Management for Researchers Kristin Briney, 2015-09-01 A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline. —Robert Buntrock, Chemical Information Bulletin
  data management and security: Data and Application Security B. Thuraisingham, Reind van de Riet, Klaus R. Dittrich, Zahir Tari, 2005-12-15 New technology is always evolving and companies must have appropriate security for their businesses to be able to keep up to date with the changes. With the rapid growth of the internet and the world wide web, data and applications security will always be a key topic in industry as well as in the public sector, and has implications for the whole of society. Data and Applications Security covers issues related to security and privacy of information in a wide range of applications, including: Electronic Commerce, XML and Web Security; Workflow Security and Role-based Access Control; Distributed Objects and Component Security; Inference Problem, Data Mining and Intrusion Detection; Language and SQL Security; Security Architectures and Frameworks; Federated and Distributed Systems Security; Encryption, Authentication and Security Policies. This book contains papers and panel discussions from the Fourteenth Annual Working Conference on Database Security, which is part of the Database Security: Status and Prospects conference series sponsored by the International Federation for Information Processing (IFIP). The conference was held in Schoorl, The Netherlands in August 2000.
  data management and security: Access Control in Data Management Systems Elena Ferrari, 2010 This book provides an overview of the various developments in access control for data management systems. Discretionary, mandatory, and role-based access control will be discussed, by surveying the most relevant proposals and analyzing the benefits and drawbacks of each paradigm in view of the requirements of different application domains. Access control mechanisms provided by commercial Data Management Systems are presented and discussed. Finally, the last part of the book is devoted to discussion of some of the most challenging and innovative research trends in the area of access control, such as those related to the Web 2.0 revolution or to the Database as a Service paradigm. --
  data management and security: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
  data management and security: Practical Cloud Security Chris Dotson, 2019-03-04 With their rapidly changing architecture and API-driven automation, cloud platforms come with unique security challenges and opportunities. This hands-on book guides you through security best practices for multivendor cloud environments, whether your company plans to move legacy on-premises projects to the cloud or build a new infrastructure from the ground up. Developers, IT architects, and security professionals will learn cloud-specific techniques for securing popular cloud platforms such as Amazon Web Services, Microsoft Azure, and IBM Cloud. Chris Dotson—an IBM senior technical staff member—shows you how to establish data asset management, identity and access management, vulnerability management, network security, and incident response in your cloud environment.
  data management and security: Privacy and Security Policies in Big Data Tamane, Sharvari, Solanki, Vijender Kumar, Dey, Nilanjan, 2017-03-03 In recent years, technological advances have led to significant developments within a variety of business applications. In particular, data-driven research provides ample opportunity for enterprise growth, if utilized efficiently. Privacy and Security Policies in Big Data is a pivotal reference source for the latest research on innovative concepts on the management of security and privacy analytics within big data. Featuring extensive coverage on relevant areas such as kinetic knowledge, cognitive analytics, and parallel computing, this publication is an ideal resource for professionals, researchers, academicians, advanced-level students, and technology developers in the field of big data.
  data management and security: Handbook of Database Security Michael Gertz, Sushil Jajodia, 2007-12-03 Handbook of Database Security: Applications and Trends provides an up-to-date overview of data security models, techniques, and architectures in a variety of data management applications and settings. In addition to providing an overview of data security in different application settings, this book includes an outline for future research directions within the field. The book is designed for industry practitioners and researchers, and is also suitable for advanced-level students in computer science.
  data management and security: Database and Applications Security Bhavani Thuraisingham, 2005-05-26 This is the first book to provide an in-depth coverage of all the developments, issues and challenges in secure databases and applications. It provides directions for data and application security, including securing emerging applications such as bioinformatics, stream information processing and peer-to-peer computing. Divided into eight sections,
  data management and security: Global Business Leadership Development for the Fourth Industrial Revolution Smith, Peter, Cockburn, Tom, 2020-09-25 As the world has adapted to the age of digital technology, present day business leaders are required to change with the times as well. Addressing and formatting their business practices to not only encompass digital technologies, but expand their capabilities, the leaders of today must be flexible and willing to familiarize themselves with all types of global business practices. Global Business Leadership Development for the Fourth Industrial Revolution is a collection of advanced research on the methods and tactics utilized to succeed as a leader in the digital age. While highlighting topics including data privacy, corporate governance, and risk management, this book is ideally designed for business professionals, administrators, managers, executives, researchers, academicians, and business students who want to improve their understanding of the strategic role of digital technologies in the global economy, in networks and organizations, in teams and work groups, in information systems, and at the level of individuals as actors in digitally networked environments
  data management and security: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
  data management and security: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
  data management and security: MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E Alex Berson, Larry Dubov, 2010-12-06 The latest techniques for building a customer-focused enterprise environment The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works. -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance
  data management and security: Big Data Security Shibakali Gupta, Indradip Banerjee, Siddhartha Bhattacharyya, 2019-10-08 After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology.
  data management and security: Effective Big Data Management and Opportunities for Implementation Singh, Manoj Kumar, G., Dileep Kumar, 2016-06-20 “Big data” has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. Effective Big Data Management and Opportunities for Implementation explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.
  data management and security: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness.
  data management and security: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.
  data management and security: Security Risk Management for the Internet of Things John Soldatos, 2020-06-15 In recent years, the rising complexity of Internet of Things (IoT) systems has increased their potential vulnerabilities and introduced new cybersecurity challenges. In this context, state of the art methods and technologies for security risk assessment have prominent limitations when it comes to large scale, cyber-physical and interconnected IoT systems. Risk assessments for modern IoT systems must be frequent, dynamic and driven by knowledge about both cyber and physical assets. Furthermore, they should be more proactive, more automated, and able to leverage information shared across IoT value chains. This book introduces a set of novel risk assessment techniques and their role in the IoT Security risk management process. Specifically, it presents architectures and platforms for end-to-end security, including their implementation based on the edge/fog computing paradigm. It also highlights machine learning techniques that boost the automation and proactiveness of IoT security risk assessments. Furthermore, blockchain solutions for open and transparent sharing of IoT security information across the supply chain are introduced. Frameworks for privacy awareness, along with technical measures that enable privacy risk assessment and boost GDPR compliance are also presented. Likewise, the book illustrates novel solutions for security certification of IoT systems, along with techniques for IoT security interoperability. In the coming years, IoT security will be a challenging, yet very exciting journey for IoT stakeholders, including security experts, consultants, security research organizations and IoT solution providers. The book provides knowledge and insights about where we stand on this journey. It also attempts to develop a vision for the future and to help readers start their IoT Security efforts on the right foot.
  data management and security: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition
  data management and security: Master Data Management in Practice Dalton Cervo, Mark Allen, 2011-05-25 In this book, authors Dalton Cervo and Mark Allen show you how to implement Master Data Management (MDM) within your business model to create a more quality controlled approach. Focusing on techniques that can improve data quality management, lower data maintenance costs, reduce corporate and compliance risks, and drive increased efficiency in customer data management practices, the book will guide you in successfully managing and maintaining your customer master data. You'll find the expert guidance you need, complete with tables, graphs, and charts, in planning, implementing, and managing MDM.
  data management and security: Computers at Risk National Research Council, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Commission on Physical Sciences, Mathematics, and Applications, System Security Study Committee, 1990-02-01 Computers at Risk presents a comprehensive agenda for developing nationwide policies and practices for computer security. Specific recommendations are provided for industry and for government agencies engaged in computer security activities. The volume also outlines problems and opportunities in computer security research, recommends ways to improve the research infrastructure, and suggests topics for investigators. The book explores the diversity of the field, the need to engineer countermeasures based on speculation of what experts think computer attackers may do next, why the technology community has failed to respond to the need for enhanced security systems, how innovators could be encouraged to bring more options to the marketplace, and balancing the importance of security against the right of privacy.
  data management and security: Secure Data Management Willem Jonker, Milan Petković, 2014-05-14 This book constitutes the refereed proceedings of the 10th VLDB Workshop on Secure Data Management held in Trento, Italy, on August 30, 2013. The 15 revised full papers and one keynote paper presented were carefully reviewed and selected from various submissions. The papers are organized in technical papers and 10 vision papers which address key challenges in secure data management and indicate interesting research questions.
  data management and security: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure
  data management and security: Data Matters National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Government-University-Industry Research Roundtable, Planning Committee for the Workshop on Ethics, Data, and International Research Collaboration in a Changing World, 2019-01-28 In an increasingly interconnected world, perhaps it should come as no surprise that international collaboration in science and technology research is growing at a remarkable rate. As science and technology capabilities grow around the world, U.S.-based organizations are finding that international collaborations and partnerships provide unique opportunities to enhance research and training. International research agreements can serve many purposes, but data are always involved in these collaborations. The kinds of data in play within international research agreements varies widely and may range from financial and consumer data, to Earth and space data, to population behavior and health data, to specific project-generated dataâ€this is just a narrow set of examples of research data but illustrates the breadth of possibilities. The uses of these data are various and require accounting for the effects of data access, use, and sharing on many different parties. Cultural, legal, policy, and technical concerns are also important determinants of what can be done in the realms of maintaining privacy, confidentiality, and security, and ethics is a lens through which the issues of data, data sharing, and research agreements can be viewed as well. A workshop held on March 14-16, 2018, in Washington, DC explored the changing opportunities and risks of data management and use across disciplinary domains. The third workshop in a series, participants gathered to examine advisory principles for consideration when developing international research agreements, in the pursuit of highlighting promising practices for sustaining and enabling international research collaborations at the highest ethical level possible. The intent of the workshop was to explore, through an ethical lens, the changing opportunities and risks associated with data management and use across disciplinary domainsâ€all within the context of international research agreements. This publication summarizes the presentations and discussions from the workshop.
  data management and security: Risk and Security Management Michael Blyth, 2015-05-14 Learn to measure risk and develop a plan to protect employees and company interests by applying the advice and tools in Risk and Security Management: Protecting People and Sites Worldwide. In a world concerned with global terrorism, instability of emerging markets, and hazardous commercial operations, this book shines as a relevant and timely text with a plan you can easily apply to your organization. Find a series of strategic to granular level policies, systems, and concepts which identify and address risk, enabling business to occur in a manner which best protects you and your company.
  data management and security: Access Control for Databases Elisa Bertino, Gabriel Ghinita, Ashish Kamra, 2011-02 A comprehensive survey of the foundational models and recent research trends in access control models and mechanisms for database management systems.
  data management and security: Modern Data Strategy Mike Fleckenstein, Lorraine Fellows, 2018-02-12 This book contains practical steps business users can take to implement data management in a number of ways, including data governance, data architecture, master data management, business intelligence, and others. It defines data strategy, and covers chapters that illustrate how to align a data strategy with the business strategy, a discussion on valuing data as an asset, the evolution of data management, and who should oversee a data strategy. This provides the user with a good understanding of what a data strategy is and its limits. Critical to a data strategy is the incorporation of one or more data management domains. Chapters on key data management domains—data governance, data architecture, master data management and analytics, offer the user a practical approach to data management execution within a data strategy. The intent is to enable the user to identify how execution on one or more data management domains can help solve business issues. This book is intended for business users who work with data, who need to manage one or more aspects of the organization’s data, and who want to foster an integrated approach for how enterprise data is managed. This book is also an excellent reference for students studying computer science and business management or simply for someone who has been tasked with starting or improving existing data management.
  data management and security: Data Stewardship David Plotkin, 2013-09-16 Data stewards in business and IT are the backbone of a successful data governance implementation because they do the work to make a company's data trusted, dependable, and high quality. Data Stewardship explains everything you need to know to successfully implement the stewardship portion of data governance, including how to organize, train, and work with data stewards, get high-quality business definitions and other metadata, and perform the day-to-day tasks using a minimum of the steward's time and effort. David Plotkin has loaded this book with practical advice on stewardship so you can get right to work, have early successes, and measure and communicate those successes, gaining more support for this critical effort. - Provides clear and concise practical advice on implementing and running data stewardship, including guidelines on how to organize based on company structure, business functions, and data ownership - Shows how to gain support for your stewardship effort, maintain that support over the long-term, and measure the success of the data stewardship effort and report back to management - Includes detailed lists of responsibilities for each type of data steward and strategies to help the Data Governance Program Office work effectively with the data stewards
  data management and security: Secure Data Management in Decentralized Systems Ting Yu, Sushil Jajodia, 2006-12-11 The field of database security has expanded greatly, with the rapid development of global inter-networked infrastructure. Databases are no longer stand-alone systems accessible only to internal users of organizations. Today, businesses must allow selective access from different security domains. New data services emerge every day, bringing complex challenges to those whose job is to protect data security. The Internet and the web offer means for collecting and sharing data with unprecedented flexibility and convenience, presenting threats and challenges of their own. This book identifies and addresses these new challenges and more, offering solid advice for practitioners and researchers in industry.
  data management and security: Database Security Silvana Castano, 1995 This book provides an authoritative account of security issues in database systems, and shows how current commercial or future systems may be designed to ensure both integrity and confidentiality. It gives a full account of alternative security models and protection measures. This invaluable reference can be used as a text for advanced courses on DB security.
  data management and security: Secure Data Management in Decentralized Systems Ting Yu, Sushil Jajodia, 2007-05-11 The field of database security has expanded greatly, with the rapid development of global inter-networked infrastructure. Databases are no longer stand-alone systems accessible only to internal users of organizations. Today, businesses must allow selective access from different security domains. New data services emerge every day, bringing complex challenges to those whose job is to protect data security. The Internet and the web offer means for collecting and sharing data with unprecedented flexibility and convenience, presenting threats and challenges of their own. This book identifies and addresses these new challenges and more, offering solid advice for practitioners and researchers in industry.
  data management and security: Digital Business Security Development: Management Technologies Kerr, Don, Gammack, John G., Bryant, Kay, 2010-07-31 This book provides comprehensive coverage of issues associated with maintaining business protection in digital environments, containing base level knowledge for managers who are not specialists in the field as well as advanced undergraduate and postgraduate students undertaking research and further study--Provided by publisher.
  data management and security: Cases on Edge Computing and Analytics Ambika, Paranthaman, Donald, A. Cecil, Kumar, A. Dalvin Vinoth, 2021-01-08 Edge computing and analytics are fascinating the whole world of computing. Industry and business are keenly embracing this sound concept to develop customer-centric solutions by enhancing their operations, offerings, and outputs. There is a bevy of advancements in this domain that came with the arrival of IoT devices. The seamless convergence of microservices and serverless computing creates vast opportunities. With the help of IoT devices and these other developments, there has become a deep interest in business automation and additional improvisations in edge computing. With the steady growth of edge devices and applications of IoT fog/edge computing and analytics, there are also distinct challenges and threats. Research has been keenly focused on identifying and understanding these issues and shortcomings to bring viable solution approaches and algorithms. Cases on Edge Computing and Analytics describes the latest innovations, improvements, and transformations happening with edge devices and computing. It addresses the key concerns of the edge computing paradigm, how they are processed, and the various technologies and tools empowering edge computing and analytics. While highlighting topics within edge computing such as the key drivers for implementation, computing capabilities, security considerations, and use-cases, this book is ideal for IT industry professionals and project managers, computer scientists, computer engineers, and practitioners, stakeholders, researchers, academicians, and students looking for research on the latest trends and transitions in edge computing.
  data management and security: Data-Driven Security Jay Jacobs, Bob Rudis, 2014-02-24 Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and make better decisions. Everything in this book will have practical application for information security professionals. Helps IT and security professionals understand and use data, so they can thwart attacks and understand and visualize vulnerabilities in their networks Includes more than a dozen real-world examples and hands-on exercises that demonstrate how to analyze security data and intelligence and translate that information into visualizations that make plain how to prevent attacks Covers topics such as how to acquire and prepare security data, use simple statistical methods to detect malware, predict rogue behavior, correlate security events, and more Written by a team of well-known experts in the field of security and data analysis Lock down your networks, prevent hacks, and thwart malware by improving visibility into the environment, all through the power of data and Security Using Data Analysis, Visualization, and Dashboards.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …