Advertisement
data management policy examples: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
data management policy examples: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness. |
data management policy examples: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development |
data management policy examples: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data management policy examples: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure |
data management policy examples: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
data management policy examples: Data Management for Researchers Kristin Briney, 2015-09-01 A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline. —Robert Buntrock, Chemical Information Bulletin |
data management policy examples: Going Digital Guide to Data Governance Policy Making OECD, 2022-12-14 The ubiquitous collection, use, and sharing of data that power today’s economies challenge existing governance frameworks and policy approaches. Drawing on the extensive research and analysis conducted at the OECD on data governance, on countries’ policies and practices, and the OECD legal instruments in this area, the Going Digital Guide to Data Governance Policy Making supports policy makers in navigating three fundamental policy tensions that characterise efforts to develop, revise, and implement policies for data governance across policy domains in the digital age. |
data management policy examples: Data Governance Handbook Wendy S. Batchelder, 2024-05-31 Build an actionable, business value driven case for data governance to obtain executive support and implement with excellence Key Features Develop a solid foundation in data governance and increase your confidence in data solutions Align data governance solutions with measurable business results and apply practical knowledge from real-world projects Learn from a three-time chief data officer who has worked in leading Fortune 500 companies Purchase of the print or Kindle book includes a free PDF eBook Book Description2.5 quintillion bytes! This is the amount of data being generated every single day across the globe. As this number continues to grow, understanding and managing data becomes more complex. Data professionals know that it’s their responsibility to navigate this complexity and ensure effective governance, empowering businesses with the right data, at the right time, and with the right controls. If you are a data professional, this book will equip you with valuable guidance to conquer data governance complexities with ease. Written by a three-time chief data officer in global Fortune 500 companies, the Data Governance Handbook is an exhaustive guide to understanding data governance, its key components, and how to successfully position solutions in a way that translates into tangible business outcomes. By the end, you’ll be able to successfully pitch and gain support for your data governance program, demonstrating tangible outcomes that resonate with key stakeholders. What you will learn Comprehend data governance from ideation to delivery and beyond Position data governance to obtain executive buy-in Launch a governance program at scale with a measurable impact Understand real-world use cases to drive swift and effective action Obtain support for data governance-led digital transformation Launch your data governance program with confidence Who this book is for Chief data officers, data governance leaders, data stewards, and engineers who want to understand the business value of their work, and IT professionals seeking further understanding of data management, will find this book useful. You need a basic understanding of working with data, business needs, and how to meet those needs with data solutions. Prior coding experience or skills in selling data solutions to executives are not required. |
data management policy examples: Super Charge Your Data Warehouse Dan Linstedt, 2011-11-11 Do You Know If Your Data Warehouse Flexible, Scalable, Secure and Will It Stand The Test Of Time And Avoid Being Part Of The Dreaded Life Cycle? The Data Vault took the Data Warehouse world by storm when it was released in 2001. Some of the world's largest and most complex data warehouse situations understood the value it gave especially with the capabilities of unlimited scaling, flexibility and security. Here is what industry leaders say about the Data Vault The Data Vault is the optimal choice for modeling the EDW in the DW 2.0 framework - Bill Inmon, The Father of Data Warehousing The Data Vault is foundationally strong and an exceptionally scalable architecture - Stephen Brobst, CTO, Teradata The Data Vault should be considered as a potential standard for RDBMS-based analytic data management by organizations looking to achieve a high degree of flexibility, performance and openness - Doug Laney, Deloitte Analytics Institute I applaud Dan's contribution to the body of Business Intelligence and Data Warehousing knowledge and recommend this book be read by both data professionals and end users - Howard Dresner, From the Foreword - Speaker, Author, Leading Research Analyst and Advisor You have in your hands the work, experience and testing of 2 decades of building data warehouses. The Data Vault model and methodology has proven itself in hundreds (perhaps thousands) of solutions in Insurance, Crime-Fighting, Defense, Retail, Finance, Banking, Power, Energy, Education, High-Tech and many more. Learn the techniques and implement them and learn how to build your Data Warehouse faster than you have ever done before while designing it to grow and scale no matter what you throw at it. Ready to Super Charge Your Data Warehouse? |
data management policy examples: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
data management policy examples: Data Management for Libraries Laura Krier, Carly A. Strasser, 2014 Since the National Science Foundation joined the National Institutes of Health in requiring that grant proposals include a data management plan, academic librarians have been inundated with related requests from faculty and campus-based grant consulting offices. Data management is a new service area for many library staff, requiring careful planning and implementation. This guide offers a start-to-finish primer on understanding, building, and maintaining a data management service, showing another way the academic library can be invaluable to researchers. Krier and Strasser of the California Digital Library guide readers through every step of a data management plan by Offering convincing arguments to persuade researchers to create a data management plan, with advice on collaborating with them Laying out all the foundations of starting a service, complete with sample data librarian job descriptions and data management plans Providing tips for conducting successful data management interviews Leading readers through making decisions about repositories and other infrastructure Addressing sensitive questions such as ownership, intellectual property, sharing and access, metadata, and preservation This LITA guide will help academic librarians work with researchers, faculty, and other stakeholders to effectively organize, preserve, and provide access to research data. |
data management policy examples: Managing Research Data Graham Pryor, 2012-01-20 This title defines what is required to achieve a culture of effective data management offering advice on the skills required, legal and contractual obligations, strategies and management plans and the data management infrastructure of specialists and services. Data management has become an essential requirement for information professionals over the last decade, particularly for those supporting the higher education research community, as more and more digital information is created and stored. As budgets shrink and funders of research demand evidence of value for money and demonstrable benefits for society, there is increasing pressure to provide plans for the sustainable management of data. Ensuring that important data remains discoverable, accessible and intelligible and is shared as part of a larger web of knowledge will mean that research has a life beyond its initial purpose and can offer real utility to the wider community. This edited collection, bringing together leading figures in the field from the UK and around the world, provides an introduction to all the key data issues facing the HE and information management communities. Each chapter covers a critical element of data management: • Why manage research data? • The lifecycle of data management • Research data policies: principles, requirements and trends • Sustainable research data • Data management plans and planning • Roles and responsibilities – libraries, librarians and data • Research data management: opportunities and challenges for HEIs • The national data centres • Contrasting national research data strategies: Australia and the USA • Emerging infrastructure and services for research data management and curation in the UK and Europe Readership: This is essential reading for librarians and information professionals working in the higher education sector, the research community, policy makers and university managers. It will also be a useful introduction for students taking courses in information management, archivists and national library services. |
data management policy examples: Practitioner's Guide to Operationalizing Data Governance Mary Anne Hopper, 2023-05-09 Discover what does—and doesn’t—work when designing and building a data governance program In A Practitioner’s Guide to Operationalizing Data Governance, veteran SAS and data management expert Mary Anne Hopper walks readers through the planning, design, operationalization, and maintenance of an effective data governance program. She explores the most common challenges organizations face during and after program development and offers sound, hands-on advice to meet tackle those problems head-on. Ideal for companies trying to resolve a wide variety of issues around data governance, this book: Offers a straightforward starting point for companies just beginning to think about data governance Provides solutions when company employees and leaders don’t—for whatever reason—trust the data the company has Suggests proven strategies for getting a data governance program that’s gone off the rails back on track Complete with visual examples based in real-world case studies, A Practitioner’s Guide to Operationalizing Data Governance will earn a place in the libraries of information technology executives and managers, data professionals, and project managers seeking a one-stop resource to help them deliver practical data governance solutions. |
data management policy examples: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition |
data management policy examples: Research Data Management Joyce M. Ray, 2014 It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations. |
data management policy examples: Target-setting Methods and Data Management to Support Performance-based Resource Allocation by Transportation Agencies National Cooperative Highway Research Program, 2010 TRB's National Cooperative Highway Research Program (NCHRP) Report 666: Target Setting Methods and Data Management to Support Performance-Based Resource Allocation by Transportation Agencies - Volume I: Research Report, and Volume II: Guide for Target-Setting and Data Management provides a framework and specific guidance for setting performance targets and for ensuring that appropriate data are available to support performance-based decision-making. Volume III to this report was published separately in an electronic-only format as NCHRP Web-Only Document 154. Volume III includes case studies of organizations investigated in the research used to develop NCHRP Report 666. |
data management policy examples: Effective Document and Data Management Bob Wiggins, 2016-04-29 Effective Document and Data Management illustrates the operational and strategic significance of how documents and data are captured, managed and utilized. Without a coherent and consistent approach the efficiency and effectiveness of the organization may be undermined by less poor management and use of its information. The third edition of the book is restructured to take this broader view and to establish an organizational context in which information is management. Along the way Bob Wiggins clarifies the distinction between information management, data management and knowledge management; helps make sense of the concept of an information life cycle to present and describe the processes and techniques of information and data management, storage and retrieval; uses worked examples to illustrate the coordinated application of data and process analysis; and provides guidance on the application of appropriate project management techniques for document and records management projects. The book will benefit a range of organizations and people, from those senior managers who need to develop coherent and consistent business and IT strategies; to information professionals, such as records managers and librarians who will gain an appreciation of the impact of the technology and of how their particular areas of expertise can best be applied; to system designers, developers and implementers and finally to users. The author can be contacted at curabyte@gmail.com for further information. |
data management policy examples: Executing Data Quality Projects Danette McGilvray, 2021-05-27 Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online |
data management policy examples: iRODS Primer Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher A. Lee, 2022-05-31 Policy-based data management enables the creation of community-specific collections. Every collection is created for a purpose. The purpose defines the set of properties that will be associated with the collection. The properties are enforced by management policies that control the execution of procedures that are applied whenever data are ingested or accessed. The procedures generate state information that defines the outcome of enforcing the management policy. The state information can be queried to validate assessment criteria and verify that the required collection properties have been conserved. The integrated Rule-Oriented Data System implements the data management framework required to support policy-based data management. Policies are turned into computer actionable Rules. Procedures are composed from a Micro-service-oriented architecture. The result is a highly extensible and tunable system that can enforce management policies, automate administrative tasks, and periodically validate assessment criteria. Table of Contents: Introduction / Integrated Rule-Oriented Data System / iRODS Architecture / Rule-Oriented Programming / The iRODS Rule System / iRODS Micro-services / Example Rules / Extending iRODS / Appendix A: iRODS Shell Commands / Appendix B: Rulegen Grammar / Appendix C: Exercises / Author Biographies |
data management policy examples: Information Security Policies, Procedures, and Standards Douglas J. Landoll, 2017-03-27 Information Security Policies, Procedures, and Standards: A Practitioner's Reference gives you a blueprint on how to develop effective information security policies and procedures. It uses standards such as NIST 800-53, ISO 27001, and COBIT, and regulations such as HIPAA and PCI DSS as the foundation for the content. Highlighting key terminology, policy development concepts and methods, and suggested document structures, it includes examples, checklists, sample policies and procedures, guidelines, and a synopsis of the applicable standards. The author explains how and why procedures are developed and implemented rather than simply provide information and examples. This is an important distinction because no two organizations are exactly alike; therefore, no two sets of policies and procedures are going to be exactly alike. This approach provides the foundation and understanding you need to write effective policies, procedures, and standards clearly and concisely. Developing policies and procedures may seem to be an overwhelming task. However, by relying on the material presented in this book, adopting the policy development techniques, and examining the examples, the task will not seem so daunting. You can use the discussion material to help sell the concepts, which may be the most difficult aspect of the process. Once you have completed a policy or two, you will have the courage to take on even more tasks. Additionally, the skills you acquire will assist you in other areas of your professional and private life, such as expressing an idea clearly and concisely or creating a project plan. |
data management policy examples: Distributed Data Management for Grid Computing Michael Di Stefano, 2005-09-15 Discover grid computing-how to successfully build, implement, and manage widely distributed computing architecture With technology budgets under increasing scrutiny and system architecture becoming more and more complex, many organizations are rethinking how they manage and use technology. Keeping a strong business focus, this publication clearly demonstrates that the current ways of tying applications to dedicated hardware are no longer viable in today's competitive, bottom line-oriented environment. This evolution in distributed computing is leading a paradigm shift in leveraging widely distributed architectures to get the most processing power per IT dollar. Presenting a solid foundation of data management issues and techniques, this practical book delves into grid architecture, services, practices, and much more, including: * Why businesses should adopt grid computing * How to master the fundamental concepts and programming techniques and apply them successfully to reach objectives * How to maximize the value of existing IT investments The author has tailored this publication for two distinct audiences. Business professionals will gain a better understanding of how grid computing improves productivity and performance, what impact it can have on their organization's bottom line, and the technical foundations necessary to discuss grid computing with their IT colleagues. Following the author's expert guidance and practical examples, IT professionals, architects, and developers will be equipped to initiate and carry out successful grid computing projects within their own organizations. |
data management policy examples: XML in Data Management Peter Aiken, M. David Allen, 2004-07-01 XML in Data Management is for IT managers and technical staff involved in the creation, administration, or maintenance of a data management infrastructure that includes XML. For most IT staff, XML is either just a buzzword that is ignored or a silver bullet to be used in every nook and cranny of their organization. The truth is in between the two. This book provides the guidance necessary for data managers to make measured decisions about XML within their organizations. Readers will understand the uses of XML, its component architecture, its strategic implications, and how these apply to data management. - Takes a data-centric view of XML - Explains how, when, and why to apply XML to data management systems - Covers XML component architecture, data engineering, frameworks, metadata, legacy systems, and more - Discusses the various strengths and weaknesses of XML technologies in the context of organizational data management and integration |
data management policy examples: Secure Data Management Willem Jonker, 2008-08-11 This book constitutes the refereed proceedings of the Fifth VLDB Workshop on Secure Data Management, SDM 2008, held in Auckland, New Zealand, on August 24, 2008, in conjunction with VLDB 2008. The 11 full papers were selected for publication in the book from 32 submissions. In addition, 3 position papers and a keynote paper are included. The papers are organized in topical sections on database security, trust management, privacy protection, and security and privacy in healthcare. |
data management policy examples: Report of the workshop on strategic data policies: Food and Agriculture Organization of the United Nations, 2018-11-14 This document contains the report of the Strategic Data policy workshop held in Rome from 21 to 22 September. Originally targeting the South West Indian Ocean (SWIO) Region, it expended to a global scope with the SWIO Region as an example. As a consequence, its main objective was “Developing strategies and best practices for investments in an efficient data supply chain, of global value, building on the Indian Ocean situation used as case study. Working sessions aimed to analyze different cases though projects/initiatives presentations and discussions to identify what worked and what didn’t to define general principles, identify challenges and propose strategies and best practices for cost-efficient and sustainable investments in fisheries data collection, sharing and utilization. Key principles were raised by the participants to keep tools, methodology and process in the data supply chain simple and to reuse as much as possible what already exists. Seventeen key points were identified during the discussion as common issues/common needs/general principles and were organized and developed in the Expert Document “Strategies and Best Practices”. |
data management policy examples: Music Research Data Management Amy S. Jackson, Sean Luyk, 2020-01-01 What is research data for music researchers and performers? How can music librarians develop their knowledge and skills to better meet the research data needs of their constituents, and contribute to the data-intensive turn in academia? Music Research Data Management: A Guide for Librarians explores these questions, provides readers with a background in research data management as it applies to specific music disciplines, and presents examples of the data used within several of the major music and music-related disciplines. Many academic libraries offer extensive research data management services, which may include support for data management planning, data description and access, preservation, and the promotion of open data initiatives. Because of a lack of shared vocabulary, music researchers may not realize that they work with “data” and are eligible for these services. Music researchers and performers work with items such as texts, datasets, and recordings, and create new items for the library to curate and preserve. By drawing upon research data management principles, music librarians can define music research data and articulate its importance. Music Research Data situates research data management within the music disciplines and examines how music librarians can become leaders in the evolving turn towards data-focused research and scholarship, including ways in which our libraries can better support and curate these data. Useful to music librarians with varying levels of experience and development in research data management services at their libraries, this book offers a solid foundation for building these services. |
data management policy examples: The Chief Data Officer Management Handbook Martin Treder, 2020-10-03 There is no denying that the 21st century is data driven, with many digital industries relying on careful collection and analysis of mass volumes of information. A Chief Data Officer (CDO) at a company is the leader of this process, making the position an often daunting one. The Chief Data Officer Management Handbook is here to help. With this book, author Martin Treder advises CDOs on how to be better prepared for their swath of responsibilities, how to develop a more sustainable approach, and how to avoid the typical pitfalls. Based on positive and negative experiences shared by current CDOs, The Chief Data Officer Management Handbook guides you in designing the ideal structure of a data office, implementing it, and getting the right people on board. Important topics such as the data supply chain, data strategy, and data governance are thoughtfully covered by Treder. As a CDO it is important to use your position effectively with your entire team. The Chief Data Officer Management Handbook allows all employees to take ownership in data collaboration. Data is the foundation of present and future tech innovations, and you could be the leader that makes the next big impact. What You Will Learn Apply important elements of effective data management Gain a comprehensive overview of all areas of data (which are often managed independently Work with the data supply chain, from data acquisition to its usage, a review of all relevant stakeholders, data strategy, and data governance Who This Book is For CDOs, data executives, data advisors, and all professionals looking to understand about how a data office functions in an organization. |
data management policy examples: IT Modernization using Catalogic ECX Copy Data Management and IBM Spectrum Storage Jon Tate, Christian Burns, Kamlesh Lad, Prashant Jagannathan, Peter Eicher, IBM Redbooks, 2016-04-05 Data is the currency of the new economy, and organizations are increasingly tasked with finding better ways to protect, recover, access, share, and use data. Traditional storage technologies are being stretched to the breaking point. This challenge is not because of storage hardware performance, but because management tools and techniques have not kept pace with new requirements. Primary data growth rates of 35% to 50% annually only amplify the problem. Organizations of all sizes find themselves needing to modernize their IT processes to enable critical new use cases such as storage self-service, Development and Operations (DevOps), and integration of data centers with the Cloud. They are equally challenged with improving management efficiencies for long established IT processes such as data protection, disaster recovery, reporting, and business analytics. Access to copies of data is the one common feature of all these use cases. However, the slow, manual processes common to IT organizations, including a heavy reliance on labor-intensive scripting and disparate tool sets, are no longer able to deliver the speed and agility required in today's fast-paced world. Copy Data Management (CDM) is an IT modernization technology that focuses on using existing data in a manner that is efficient, automated, scalable, and easy to use, delivering the data access that is urgently needed to meet the new use cases. Catalogic ECX, with IBM® storage, provides in-place copy data management that modernizes IT processes, enables key use cases, and does it all within existing infrastructure. This IBM Redbooks® publication shows how Catalogic Software and IBM have partnered together to create an integrated solution that addresses today's IT environment. |
data management policy examples: Practical Tips for Facilitating Research Moira J. Bent, 2016-03-16 This practical guide offers innovative tips and reliable best practice to enable new and experienced library and information professionals to evaluate their current provision and develop their service to meet the evolving needs of the research community. Interacting effectively with information is at the heart of all research, consequently information professionals have a key role to play in facilitating the development of researchers who are able to operate confidently and successfully in the information world. Grounded in current theory and informed by practitioners from around the world, this practical book offers a wide range of ideas and methods to assist library and information professionals in developing and managing their role in the research environment. Part of the Practical Tips for Library and Information Professionals series, the book is organised into eight sections: landscapes and models structures and strategies places and spaces library staff roles collections specific interventions in the research process or lifecycle teaching approaches information literacy skills workshops and programmes. Practical Tips for Facilitating Research will be essential reading for academic liaison librarians, research support librarians and all library and information professionals who work with research staff and students. |
data management policy examples: Data Management Margaret E. Henderson, 2016-10-25 Libraries organize information and data is information, so it is natural that librarians should help people who need to find, organize, use, or store data. Organizations need evidence for decision making; data provides that evidence. Inventors and creators build upon data collected by others. All around us, people need data. Librarians can help increase the relevance of their library to the research and education mission of their institution by learning more about data and how to manage it. Data Management will guide readers through: Understanding data management basics and best practices. Using the reference interview to help with data management Writing data management plans for grants. Starting and growing a data management service. Finding collaborators inside and outside the library. Collecting and using data in different disciplines. |
data management policy examples: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. |
data management policy examples: The Data Book Meredith Zozus, 2017-07-12 The Data Book: Collection and Management of Research Data is the first practical book written for researchers and research team members covering how to collect and manage data for research. The book covers basic types of data and fundamentals of how data grow, move and change over time. Focusing on pre-publication data collection and handling, the text illustrates use of these key concepts to match data collection and management methods to a particular study, in essence, making good decisions about data. The first section of the book defines data, introduces fundamental types of data that bear on methodology to collect and manage them, and covers data management planning and research reproducibility. The second section covers basic principles of and options for data collection and processing emphasizing error resistance and traceability. The third section focuses on managing the data collection and processing stages of research such that quality is consistent and ultimately capable of supporting conclusions drawn from data. The final section of the book covers principles of data security, sharing, and archival. This book will help graduate students and researchers systematically identify and implement appropriate data collection and handling methods. |
data management policy examples: Data Management: a gentle introduction Bas van Gils, 2020-03-03 The overall objective of this book is to show that data management is an exciting and valuable capability that is worth time and effort. More specifically it aims to achieve the following goals: 1. To give a “gentle” introduction to the field of DM by explaining and illustrating its core concepts, based on a mix of theory, practical frameworks such as TOGAF, ArchiMate, and DMBOK, as well as results from real-world assignments. 2. To offer guidance on how to build an effective DM capability in an organization.This is illustrated by various use cases, linked to the previously mentioned theoretical exploration as well as the stories of practitioners in the field. The primary target groups are: busy professionals who “are actively involved with managing data”. The book is also aimed at (Bachelor’s/ Master’s) students with an interest in data management. The book is industry-agnostic and should be applicable in different industries such as government, finance, telecommunications etc. Typical roles for which this book is intended: data governance office/ council, data owners, data stewards, people involved with data governance (data governance board), enterprise architects, data architects, process managers, business analysts and IT analysts. The book is divided into three main parts: theory, practice, and closing remarks. Furthermore, the chapters are as short and to the point as possible and also make a clear distinction between the main text and the examples. If the reader is already familiar with the topic of a chapter, he/she can easily skip it and move on to the next. |
data management policy examples: Data Management for Social Scientists Nils B. Weidmann, 2023-03-09 Equips social scientists with the tools and techniques to conduct quantitative research in the age of big data. |
data management policy examples: The Privacy Engineer's Manifesto Michelle Dennedy, Jonathan Fox, Tom Finneran, 2014-03-04 It's our thesis that privacy will be an integral part of the next wave in the technology revolution and that innovators who are emphasizing privacy as an integral part of the product life cycle are on the right track. --The authors of The Privacy Engineer's Manifesto The Privacy Engineer's Manifesto: Getting from Policy to Code to QA to Value is the first book of its kind, offering industry-proven solutions that go beyond mere theory and adding lucid perspectives on the challenges and opportunities raised with the emerging personal information economy. The authors, a uniquely skilled team of longtime industry experts, detail how you can build privacy into products, processes, applications, and systems. The book offers insight on translating the guiding light of OECD Privacy Guidelines, the Fair Information Practice Principles (FIPPs), Generally Accepted Privacy Principles (GAPP) and Privacy by Design (PbD) into concrete concepts that organizations, software/hardware engineers, and system administrators/owners can understand and apply throughout the product or process life cycle—regardless of development methodology—from inception to retirement, including data deletion and destruction. In addition to providing practical methods to applying privacy engineering methodologies, the authors detail how to prepare and organize an enterprise or organization to support and manage products, process, systems, and applications that require personal information. The authors also address how to think about and assign value to the personal information assets being protected. Finally, the team of experts offers thoughts about the information revolution that has only just begun, and how we can live in a world of sensors and trillions of data points without losing our ethics or value(s)...and even have a little fun. The Privacy Engineer's Manifesto is designed to serve multiple stakeholders: Anyone who is involved in designing, developing, deploying and reviewing products, processes, applications, and systems that process personal information, including software/hardware engineers, technical program and product managers, support and sales engineers, system integrators, IT professionals, lawyers, and information privacy and security professionals. This book is a must-read for all practitioners in the personal information economy. Privacy will be an integral part of the next wave in the technology revolution; innovators who emphasize privacy as an integral part of the product life cycle are on the right track. Foreword by Dr. Eric Bonabeau, PhD, Chairman, Icosystem, Inc. & Dean of Computational Sciences, Minerva Schools at KGI. |
data management policy examples: Master Data Management in Practice Dalton Cervo, Mark Allen, 2011-07-05 In this book, authors Dalton Cervo and Mark Allen show you how to implement Master Data Management (MDM) within your business model to create a more quality controlled approach. Focusing on techniques that can improve data quality management, lower data maintenance costs, reduce corporate and compliance risks, and drive increased efficiency in customer data management practices, the book will guide you in successfully managing and maintaining your customer master data. You'll find the expert guidance you need, complete with tables, graphs, and charts, in planning, implementing, and managing MDM. |
data management policy examples: Trustworthy Policies for Distributed Repositories Reagan W. Moore, Hao XU, Mike Conway, Arcot Rajasekar, Jon Crabtree, 2022-05-31 A trustworthy repository provides assurance in the form of management documents, event logs, and audit trails that digital objects are being managed correctly. The assurance includes plans for the sustainability of the repository, the accession of digital records, the management of technology evolution, and the mitigation of the risk of data loss. A detailed assessment is provided by the ISO-16363:2012 standard, Space data and information transfer systems—Audit and certification of trustworthy digital repositories. This book examines whether the ISO specification for trustworthiness can be enforced by computer actionable policies. An implementation of the policies is provided and the policies are sorted into categories for procedures to manage externally generated documents, specify repository parameters, specify preservation metadata attributes, specify audit mechanisms for all preservation actions, specify control of preservation operations, and control preservation properties as technology evolves. An application of the resulting procedures is made to enforce trustworthiness within National Science Foundation data management plans. |
data management policy examples: Data Governance Evren Eryurek, Uri Gilad, Jessi Ashdown, Valliappa Lakshmanan, Anita Kibunguchy, 2021-04-13 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness |
data management policy examples: Data Driven Thomas C. Redman, 2008-09-22 Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the Data Doc, shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that. |
data management policy examples: OECD Reviews of Risk Management Policies: Sweden 2007 The Safety of Older People OECD, 2007-02-22 Focusing on fall-related injuries, this report looks at Sweden's policies in the area of older people's safety and well-being, seeking out and identifying good practices and areas where improvements could be made. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …