data engineering with java: Data Science with Java Michael R. Brzustowicz, PhD, 2017-06-06 Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today’s data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java. You’ll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you’ll find code examples you can use in your applications. Examine methods for obtaining, cleaning, and arranging data into its purest form Understand the matrix structure that your data should take Learn basic concepts for testing the origin and validity of data Transform your data into stable and usable numerical values Understand supervised and unsupervised learning algorithms, and methods for evaluating their success Get up and running with MapReduce, using customized components suitable for data science algorithms |
data engineering with java: Designing Data Structures in Java Albert A. Brouillette, 2013-01-01 Designing Data Structures in Java provides a solid foundation for anyone seeking to understand the how and the why of programming data structures. Intended for the reader with an introductory Java background, this book aims to meet the needs of students enrolled in a typical Data Structures and Algorithms with Java (CS2) course. Starting with a description of the software development process, the book takes a problem-solving approach to programming, and shows how data structures form the building blocks of well-designed and cleanly-implemented programs. Topics include: Problem solving, Abstraction, Java objects and references, Arrays, Abstract Data Types, Ordered lists, Sorting, Algorithm evaluation, Binary searches, Stacks, Queues, Linked Lists, Double-ended lists, Recursion, Doubly-linked lists, Binary Search Trees, Traversals, Heaps, and more. Mr. Brouillette's 25+ years of experience as a software engineer and educator allow him to bring a unique and refreshing perspective to the topic of data structures which is rigorous, accessible and practical. Material is presented in a 'top down' approach, beginning with explanations of why different data structures are used, continuing with clearly illustrated concepts of how the structures work, and ending with clear, neat Java code examples. Succinct graphics provide visual representations of the ideas, and verbal explanations supplement the documented code. Each chapter ends with a Chapter Checklist summary page which distills and highlights the most important ideas from the chapter. The book is intended as a step by step explanation and exploration of the how and why of using Data Structures in modern computer program development. Even though the Java language is used in the explanation and implementation of the various structures, the concepts are applicable to other languages which the reader may encounter in the future. The topics included have been sequenced to build upon each other, always with the perspective of the beginning programming student in mind. There are discussions of software engineering concepts and goals, and motivations for learning different data structures. This text brings the beginning Java student from novice programmer to the next level of programming maturity. |
data engineering with java: Mastering Java for Data Science Alexey Grigorev, 2017-04-27 Use Java to create a diverse range of Data Science applications and bring Data Science into production About This Book An overview of modern Data Science and Machine Learning libraries available in Java Coverage of a broad set of topics, going from the basics of Machine Learning to Deep Learning and Big Data frameworks. Easy-to-follow illustrations and the running example of building a search engine. Who This Book Is For This book is intended for software engineers who are comfortable with developing Java applications and are familiar with the basic concepts of data science. Additionally, it will also be useful for data scientists who do not yet know Java but want or need to learn it. If you are willing to build efficient data science applications and bring them in the enterprise environment without changing the existing stack, this book is for you! What You Will Learn Get a solid understanding of the data processing toolbox available in Java Explore the data science ecosystem available in Java Find out how to approach different machine learning problems with Java Process unstructured information such as natural language text or images Create your own search engine Get state-of-the-art performance with XGBoost Learn how to build deep neural networks with DeepLearning4j Build applications that scale and process large amounts of data Deploy data science models to production and evaluate their performance In Detail Java is the most popular programming language, according to the TIOBE index, and it is a typical choice for running production systems in many companies, both in the startup world and among large enterprises. Not surprisingly, it is also a common choice for creating data science applications: it is fast and has a great set of data processing tools, both built-in and external. What is more, choosing Java for data science allows you to easily integrate solutions with existing software, and bring data science into production with less effort. This book will teach you how to create data science applications with Java. First, we will revise the most important things when starting a data science application, and then brush up the basics of Java and machine learning before diving into more advanced topics. We start by going over the existing libraries for data processing and libraries with machine learning algorithms. After that, we cover topics such as classification and regression, dimensionality reduction and clustering, information retrieval and natural language processing, and deep learning and big data. Finally, we finish the book by talking about the ways to deploy the model and evaluate it in production settings. Style and approach This is a practical guide where all the important concepts such as classification, regression, and dimensionality reduction are explained with the help of examples. |
data engineering with java: Java for Data Science Richard M. Reese, Jennifer L. Reese, 2017-01-10 Examine the techniques and Java tools supporting the growing field of data science About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples Make your Java applications more capable using machine learning Who This Book Is For This book is for Java developers who are comfortable developing applications in Java. Those who now want to enter the world of data science or wish to build intelligent applications will find this book ideal. Aspiring data scientists will also find this book very helpful. What You Will Learn Understand the nature and key concepts used in the field of data science Grasp how data is collected, cleaned, and processed Become comfortable with key data analysis techniques See specialized analysis techniques centered on machine learning Master the effective visualization of your data Work with the Java APIs and techniques used to perform data analysis In Detail Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this book, we cover the important data science concepts and how they are supported by Java, as well as the often statistically challenging techniques, to provide you with an understanding of their purpose and application. The book starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. The next section examines the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. The final chapter illustrates an in-depth data science problem and provides a comprehensive, Java-based solution. Due to the nature of the topic, simple examples of techniques are presented early followed by a more detailed treatment later in the book. This permits a more natural introduction to the techniques and concepts presented in the book. Style and approach This book follows a tutorial approach, providing examples of each of the major concepts covered. With a step-by-step instructional style, this book covers various facets of data science and will get you up and running quickly. |
data engineering with java: Learn Java the Easy Way Bryson Payne, 2017-11-14 Java is the world’s most popular programming language, but it’s known for having a steep learning curve. Learn Java the Easy Way takes the chore out of learning Java with hands-on projects that will get you building real, functioning apps right away. You’ll start by familiarizing yourself with JShell, Java’s interactive command line shell that allows programmers to run single lines of code and get immediate feedback. Then, you’ll create a guessing game, a secret message encoder, and a multitouch bubble-drawing app for both desktop and mobile devices using Eclipse, an industry-standard IDE, and Android Studio, the development environment for making Android apps. As you build these apps, you’ll learn how to: -Perform calculations, manipulate text strings, and generate random colors -Use conditions, loops, and methods to make your programs responsive and concise -Create functions to reuse code and save time -Build graphical user interface (GUI) elements, including buttons, menus, pop-ups, and sliders -Take advantage of Eclipse and Android Studio features to debug your code and find, fix, and prevent common mistakes If you’ve been thinking about learning Java, Learn Java the Easy Way will bring you up to speed in no time. |
data engineering with java: Object-Oriented Data Structures Using Java Nell Dale, Daniel Joyce, Chip Weems, 2012 Continuing the success of the popular second edition, the updated and revised Object-Oriented Data Structures Using Java, Third Edition is sure to be an essential resource for students learning data structures using the Java programming language. It presents traditional data structures and object-oriented topics with an emphasis on problem-solving, theory, and software engineering principles. Beginning early and continuing throughout the text, the authors introduce and expand upon the use of many Java features including packages, interfaces, abstract classes, inheritance, and exceptions. Numerous case studies provide readers with real-world examples and demonstrate possible solutions to interesting problems. The authors' lucid writing style guides readers through the rigor of standard data structures and presents essential concepts from logical, applications, and implementation levels. Key concepts throughout the Third Edition have been clarified to increase student comprehension and retention, and end-of-chapter exercises have been updated and modified. New and Key Features to the Third Edition: -Includes the use of generics throughout the text, providing the dual benefits of allowing for a type safe use of data structures plus exposing students to modern approaches. -This text is among the first data structures textbooks to address the topic of concurrency and synchonization, which are growing in the importance as computer systems move to using more cores and threads to obtain additional performance with each new generation. Concurrency and synchonization are introduced in the new Section 5.7, where it begins with the basics of Java threads. -Provides numerous case studies and examples of the problem solving process. Each case study includes problem description, an analysis of the problem input and required output, and a discussion of the appropriate data structures to use. -Expanded chapter exercises allow you as the instructor to reinforce topics for your students using both theoretical and practical questions. -Chapters conclude with a chapter summary that highlights the most important topics of the chapter and ties together related topics. |
data engineering with java: Practical Database Programming with Java Ying Bai, 2011-09-09 Covers fundamental and advanced Java database programming techniques for beginning and experienced readers This book covers the practical considerations and applications in database programming using Java NetBeans IDE, JavaServer Pages, JavaServer Faces, and Java Beans, and comes complete with authentic examples and detailed explanations. Two data-action methods are developed and presented in this important resource. With Java Persistence API and plug-in Tools, readers are directed step by step through the entire database programming development process and will be able to design and build professional data-action projects with a few lines of code in mere minutes. The second method, runtime object, allows readers to design and build more sophisticated and practical Java database applications. Advanced and updated Java database programming techniques such as Java Enterprise Edition development kits, Enterprise Java Beans, JavaServer Pages, JavaServer Faces, Java RowSet Object, and Java Updatable ResultSet are also discussed and implemented with numerous example projects. Ideal for classroom and professional training use, this text also features: A detailed introduction to NetBeans Integrated Development Environment Java web-based database programming techniques (web applications and web services) More than thirty detailed, real-life sample projects analyzed via line-by-line illustrations Problems and solutions for each chapter A wealth of supplemental material available for download from the book's ftp site, including PowerPoint slides, solution manual, JSP pages, sample image files, and sample databases Coverage of two popular database systems: SQL Server 2008 and Oracle This book provides undergraduate and graduate students as well as database programmers and software engineers with the necessary tools to handle the database programming issues in the Java NetBeans environment. To obtain instructor materials please send an email to: pressbooks@ieee.org |
data engineering with java: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected. |
data engineering with java: Data-Oriented Programming Yehonathan Sharvit, 2022-08-16 Eliminate the unavoidable complexity of object-oriented designs. The innovative data-oriented programming paradigm makes your systems less complex by making it simpler to access and manipulate data. In Data-Oriented Programming you will learn how to: Separate code from data Represent data with generic data structures Manipulate data with general-purpose functions Manage state without mutating data Control concurrency in highly scalable systems Write data-oriented unit tests Specify the shape of your data Benefit from polymorphism without objects Debug programs without a debugger Data-Oriented Programming is a one-of-a-kind guide that introduces the data-oriented paradigm. This groundbreaking approach represents data with generic immutable data structures. It simplifies state management, eases concurrency, and does away with the common problems you’ll find in object-oriented code. The book presents powerful new ideas through conversations, code snippets, and diagrams that help you quickly grok what’s great about DOP. Best of all, the paradigm is language-agnostic—you’ll learn to write DOP code that can be implemented in JavaScript, Ruby, Python, Clojure, and also in traditional OO languages like Java or C#. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Code that combines behavior and data, as is common in object-oriented designs, can introduce almost unmanageable complexity for state management. The Data-oriented programming (DOP) paradigm simplifies state management by holding application data in immutable generic data structures and then performing calculations using non-mutating general-purpose functions. Your applications are free of state-related bugs and your code is easier to understand and maintain. About the book Data-Oriented Programming teaches you to design software using the groundbreaking data-oriented paradigm. You’ll put DOP into action to design data models for business entities and implement a library management system that manages state without data mutation. The numerous diagrams, intuitive mind maps, and a unique conversational approach all help you get your head around these exciting new ideas. Every chapter has a lightbulb moment that will change the way you think about programming. What's inside Separate code from data Represent data with generic data structures Manage state without mutating data Control concurrency in highly scalable systems Write data-oriented unit tests Specify the shape of your data About the reader For programmers who have experience with a high-level programming language like JavaScript, Java, Python, C#, Clojure, or Ruby. About the author Yehonathan Sharvit has over twenty years of experience as a software engineer. He blogs, speaks at conferences, and leads Data-Oriented Programming workshops around the world. Table of Contents PART 1 FLEXIBILITY 1 Complexity of object-oriented programming 2 Separation between code and data 3 Basic data manipulation 4 State management 5 Basic concurrency control 6 Unit tests PART 2 SCALABILITY 7 Basic data validation 8 Advanced concurrency control 9 Persistent data structures 10 Database operations 11 Web services PART 3 MAINTAINABILITY 12 Advanced data validation 13 Polymorphism 14 Advanced data manipulation 15 Debugging |
data engineering with java: Big Data Analytics with Java Rajat Mehta, 2017-07-31 Learn the basics of analytics on big data using Java, machine learning and other big data tools About This Book Acquire real-world set of tools for building enterprise level data science applications Surpasses the barrier of other languages in data science and learn create useful object-oriented codes Extensive use of Java compliant big data tools like apache spark, Hadoop, etc. Who This Book Is For This book is for Java developers who are looking to perform data analysis in production environment. Those who wish to implement data analysis in their Big data applications will find this book helpful. What You Will Learn Start from simple analytic tasks on big data Get into more complex tasks with predictive analytics on big data using machine learning Learn real time analytic tasks Understand the concepts with examples and case studies Prepare and refine data for analysis Create charts in order to understand the data See various real-world datasets In Detail This book covers case studies such as sentiment analysis on a tweet dataset, recommendations on a movielens dataset, customer segmentation on an ecommerce dataset, and graph analysis on actual flights dataset. This book is an end-to-end guide to implement analytics on big data with Java. Java is the de facto language for major big data environments, including Hadoop. This book will teach you how to perform analytics on big data with production-friendly Java. This book basically divided into two sections. The first part is an introduction that will help the readers get acquainted with big data environments, whereas the second part will contain a hardcore discussion on all the concepts in analytics on big data. It will take you from data analysis and data visualization to the core concepts and advantages of machine learning, real-life usage of regression and classification using Naive Bayes, a deep discussion on the concepts of clustering,and a review of simple neural networks on big data using deepLearning4j or plain Java Spark code. This book is a must-have book for Java developers who want to start learning big data analytics and want to use it in the real world. Style and approach The approach of book is to deliver practical learning modules in manageable content. Each chapter is a self-contained unit of a concept in big data analytics. Book will step by step builds the competency in the area of big data analytics. Examples using real world case studies to give ideas of real applications and how to use the techniques mentioned. The examples and case studies will be shown using both theory and code. |
data engineering with java: Data Crunching Greg Wilson, 2005 Every day, all around the world, programmers have to recycle legacy data, translate from one vendor's proprietary format into another's, check that configuration files are internally consistent, and search through web logs to see how many people have downloaded the latest release of their product. This kind of data crunching, may not be glamorous, but knowing how to do it efficiently is essential to being a good programmer. This book describes the most useful data crunching techniques, explains when you should use them, and shows how they will make your life easier. Along the way, it will introduce you to some handy, but under-used, features of Java, Python, and other languages. It will also show you how to test data crunching programs, and how data crunching fits into the larger software development picture. |
data engineering with java: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required. |
data engineering with java: Java Data Objects David Jordan, Craig Russell, 2003-04-22 Java Data Objects revolutionizes the way Java developers interact with databases and other datastores. JDO allows you to store and retrieve objects in a way that's natural to Java programmers. Instead of working with JDBC or EJB's container-managed persistence, you work directly with your Java objects. You don't have to copy data to and from database tables or issue SELECTs to perform queries: your JDO implementation takes care of persistence behind-the-scenes, and you make queries based on the fields of your Java objects, using normal Java syntax. The result is software that is truly object-oriented: not code that is partially object-oriented, with a large database-shaped lump on the back end. JDO lets you save plain, ordinary Java objects, and does not force you to use different data models and types for dealing with storage. As a result, your code becomes easier to maintain, easier to re-use, and easier to test. And you're not tied to a specific database vendor: your JDO code is entirely database-independent. You don't even need to know whether the datastore is a relational database, an object database, or just a set of files. This book, written by the JDO Specification Lead and one of the key contributors to the JDO Specification, is the definitive work on the JDO API. It gives you a thorough introduction to JDO, starting with a simple application that demonstrates many of JDO's capabilities. It shows you how to make classes persistent, how JDO maps persistent classes to the database, how to configure JDO at runtime, how to perform transactions, and how to make queries. More advanced chapters cover optional features such as nontransactional access and optimistic transactions. The book concludes by discussing the use of JDO in web applications and J2EE environments. Whether you only want to read up on an interesting new technology, or are seriously considering an alternative to JDBC or EJB CMP, you'll find that this book is essential. It provides by far the most authoritative and complete coverage available. |
data engineering with java: Data Teams Jesse Anderson, 2020 |
data engineering with java: Software Engineering with Java Stephen R. Schach, 1997 |
data engineering with java: Streaming Systems Tyler Akidau, Slava Chernyak, Reuven Lax, 2018-07-16 Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts Streaming 101 and Streaming 102, this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra |
data engineering with java: Oracle Database Programming using Java and Web Services Kuassi Mensah, 2011-04-08 The traditional division of labor between the database (which only stores and manages SQL and XML data for fast, easy data search and retrieval) and the application server (which runs application or business logic, and presentation logic) is obsolete. Although the books primary focus is on programming the Oracle Database, the concepts and techniques provided apply to most RDBMS that support Java including Oracle, DB2, Sybase, MySQL, and PostgreSQL. This is the first book to cover new Java, JDBC, SQLJ, JPublisher and Web Services features in Oracle Database 10g Release 2 (the coverage starts with Oracle 9i Release 2). This book is a must-read for database developers audience (DBAs, database applications developers, data architects), Java developers (JDBC, SQLJ, J2EE, and OR Mapping frameworks), and to the emerging Web Services assemblers. - Describes pragmatic solutions, advanced database applications, as well as provision of a wealth of code samples. - Addresses programming models which run within the database as well as programming models which run in middle-tier or client-tier against the database. - Discusses languages for stored procedures: when to use proprietary languages such as PL/SQL and when to use standard languages such as Java; also running non-Java scripting languages in the database. - Describes the Java runtime in the Oracle database 10g (i.e., OracleJVM), its architecture, memory management, security management, threading, Java execution, the Native Compiler (i.e., NCOMP), how to make Java known to SQL and PL/SQL, data types mapping, how to call-out to external Web components, EJB components, ERP frameworks, and external databases. - Describes JDBC programming and the new Oracle JDBC 10g features, its advanced connection services (pooling, failover, load-balancing, and the fast database event notification mechanism) for clustered databases (RAC) in Grid environments. - Describes SQLJ programming and the latest Oracle SQLJ 10g features , contrasting it with JDBC. - Describes the latest Database Web services features, Web services concepts and Services Oriented Architecture (SOA) for DBA, the database as Web services provider and the database as Web services consumer. - Abridged coverage of JPublisher 10g, a versatile complement to JDBC, SQLJ and Database Web Services. |
data engineering with java: Learning Spark Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee, 2020-07-16 Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow |
data engineering with java: Modern Data Engineering with Apache Spark Scott Haines, 2022-03-23 Leverage Apache Spark within a modern data engineering ecosystem. This hands-on guide will teach you how to write fully functional applications, follow industry best practices, and learn the rationale behind these decisions. With Apache Spark as the foundation, you will follow a step-by-step journey beginning with the basics of data ingestion, processing, and transformation, and ending up with an entire local data platform running Apache Spark, Apache Zeppelin, Apache Kafka, Redis, MySQL, Minio (S3), and Apache Airflow. Apache Spark applications solve a wide range of data problems from traditional data loading and processing to rich SQL-based analysis as well as complex machine learning workloads and even near real-time processing of streaming data. Spark fits well as a central foundation for any data engineering workload. This book will teach you to write interactive Spark applications using Apache Zeppelin notebooks, write and compile reusable applications and modules, and fully test both batch and streaming. You will also learn to containerize your applications using Docker and run and deploy your Spark applications using a variety of tools such as Apache Airflow, Docker and Kubernetes. Reading this book will empower you to take advantage of Apache Spark to optimize your data pipelines and teach you to craft modular and testable Spark applications. You will create and deploy mission-critical streaming spark applications in a low-stress environment that paves the way for your own path to production. What You Will Learn Simplify data transformation with Spark Pipelines and Spark SQL Bridge data engineering with machine learning Architect modular data pipeline applications Build reusable application components and libraries Containerize your Spark applications for consistency and reliability Use Docker and Kubernetes to deploy your Spark applications Speed up application experimentation using Apache Zeppelin and Docker Understand serializable structured data and data contracts Harness effective strategies for optimizing data in your data lakes Build end-to-end Spark structured streaming applications using Redis and Apache Kafka Embrace testing for your batch and streaming applications Deploy and monitor your Spark applications Who This Book Is For Professional software engineers who want to take their current skills and apply them to new and exciting opportunities within the data ecosystem, practicing data engineers who are looking for a guiding light while traversing the many challenges of moving from batch to streaming modes, data architects who wish to provide clear and concise direction for how best to harness and use Apache Spark within their organization, and those interested in the ins and outs of becoming a modern data engineer in today's fast-paced and data-hungry world |
data engineering with java: Java Data Analysis John R. Hubbard, 2017-09-19 Get the most out of the popular Java libraries and tools to perform efficient data analysis About This Book Get your basics right for data analysis with Java and make sense of your data through effective visualizations. Use various Java APIs and tools such as Rapidminer and WEKA for effective data analysis and machine learning. This is your companion to understanding and implementing a solid data analysis solution using Java Who This Book Is For If you are a student or Java developer or a budding data scientist who wishes to learn the fundamentals of data analysis and learn to perform data analysis with Java, this book is for you. Some familiarity with elementary statistics and relational databases will be helpful but is not mandatory, to get the most out of this book. A firm understanding of Java is required. What You Will Learn Develop Java programs that analyze data sets of nearly any size, including text Implement important machine learning algorithms such as regression, classification, and clustering Interface with and apply standard open source Java libraries and APIs to analyze and visualize data Process data from both relational and non-relational databases and from time-series data Employ Java tools to visualize data in various forms Understand multimedia data analysis algorithms and implement them in Java. In Detail Data analysis is a process of inspecting, cleansing, transforming, and modeling data with the aim of discovering useful information. Java is one of the most popular languages to perform your data analysis tasks. This book will help you learn the tools and techniques in Java to conduct data analysis without any hassle. After getting a quick overview of what data science is and the steps involved in the process, you'll learn the statistical data analysis techniques and implement them using the popular Java APIs and libraries. Through practical examples, you will also learn the machine learning concepts such as classification and regression. In the process, you'll familiarize yourself with tools such as Rapidminer and WEKA and see how these Java-based tools can be used effectively for analysis. You will also learn how to analyze text and other types of multimedia. Learn to work with relational, NoSQL, and time-series data. This book will also show you how you can utilize different Java-based libraries to create insightful and easy to understand plots and graphs. By the end of this book, you will have a solid understanding of the various data analysis techniques, and how to implement them using Java. Style and approach The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy-to-follow examples, this book will turn you into an ace data analyst in no time. |
data engineering with java: Data Structures Using Java Duncan A. Buell, 2013 Data Structures & Theory of Computation |
data engineering with java: Java Data Mining Mark F. Hornick, Erik Marcadé, Sunil Venkayala, 2007 Java Data Mining (JDM) is a standard now implemented in core DBMSs and data mining/analysis software. Ideal for both the beginner and expert, this text is an essential guide to understanding and using the JDM standard interface. |
data engineering with java: Data Structures and Algorithms in Java Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, 2014-01-28 The design and analysis of efficient data structures has long been recognized as a key component of the Computer Science curriculum. Goodrich, Tomassia and Goldwasser's approach to this classic topic is based on the object-oriented paradigm as the framework of choice for the design of data structures. For each ADT presented in the text, the authors provide an associated Java interface. Concrete data structures realizing the ADTs are provided as Java classes implementing the interfaces. The Java code implementing fundamental data structures in this book is organized in a single Java package, net.datastructures. This package forms a coherent library of data structures and algorithms in Java specifically designed for educational purposes in a way that is complimentary with the Java Collections Framework. |
data engineering with java: Think Data Structures Allen B. Downey, 2017-07-07 If you’re a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that’s clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You’ll explore the important classes in the Java collections framework (JCF), how they’re implemented, and how they’re expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes. |
data engineering with java: Technical Java Grant Palmer, 2003 Annotation This is a technical programming book written by a real scientific programmer filled with practical, real-life technical programming examples that teach how to use Java to develop scientific and engineering programs. The book is for scientists and engineers, those studying to become scientists and engineers, or anyone who might want to use Java to develop technical applications. Technical Java gives the reader all the information she needs to use Java to create powerful, versatile, and flexible scientific and engineering applications. The book is full of practical example problems and valuable tips. The book is for people learning Java as their first programming language or for those transitioning to Java from FORTRAN or C. There are two handy chapters at the beginning of the book that explain the differences and similarities between FORTRAN, C, and Java. |
data engineering with java: Scalable Data Architecture with Java Sinchan Banerjee, 2022-09-30 Orchestrate data architecting solutions using Java and related technologies to evaluate, recommend and present the most suitable solution to leadership and clients Key FeaturesLearn how to adapt to the ever-evolving data architecture technology landscapeUnderstand how to choose the best suited technology, platform, and architecture to realize effective business valueImplement effective data security and governance principlesBook Description Java architectural patterns and tools help architects to build reliable, scalable, and secure data engineering solutions that collect, manipulate, and publish data. This book will help you make the most of the architecting data solutions available with clear and actionable advice from an expert. You'll start with an overview of data architecture, exploring responsibilities of a Java data architect, and learning about various data formats, data storage, databases, and data application platforms as well as how to choose them. Next, you'll understand how to architect a batch and real-time data processing pipeline. You'll also get to grips with the various Java data processing patterns, before progressing to data security and governance. The later chapters will show you how to publish Data as a Service and how you can architect it. Finally, you'll focus on how to evaluate and recommend an architecture by developing performance benchmarks, estimations, and various decision metrics. By the end of this book, you'll be able to successfully orchestrate data architecture solutions using Java and related technologies as well as to evaluate and present the most suitable solution to your clients. What you will learnAnalyze and use the best data architecture patterns for problemsUnderstand when and how to choose Java tools for a data architectureBuild batch and real-time data engineering solutions using JavaDiscover how to apply security and governance to a solutionMeasure performance, publish benchmarks, and optimize solutionsEvaluate, choose, and present the best architectural alternativesUnderstand how to publish Data as a Service using GraphQL and a REST APIWho this book is for Data architects, aspiring data architects, Java developers and anyone who wants to develop or optimize scalable data architecture solutions using Java will find this book useful. A basic understanding of data architecture and Java programming is required to get the best from this book. |
data engineering with java: Data Engineering and Management Rajkumar Kannan, Frederic Andres, 2012-01-16 This book constitutes the thoroughly refereed post-conference proceedings of the Second International Conference on Data Engineering and Management, ICDEM 2010, held in Tiruchirappalli, India, in July 2010. The 46 revised full papers presented together with 1 keynote paper and 2 tutorial papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on Digital Library; Knowledge and Mulsemedia; Data Management and Knowledge Extraction; Natural Language Processing; Workshop on Data Mining with Graphs and Matrices. |
data engineering with java: Big Data Processing with Apache Spark Srini Penchikala, 2018-03-13 Apache Spark is a popular open-source big-data processing framework thatÕs built around speed, ease of use, and unified distributed computing architecture. Not only it supports developing applications in different languages like Java, Scala, Python, and R, itÕs also hundred times faster in memory and ten times faster even when running on disk compared to traditional data processing frameworks. Whether you are currently working on a big data project or interested in learning more about topics like machine learning, streaming data processing, and graph data analytics, this book is for you. You can learn about Apache Spark and develop Spark programs for various use cases in big data analytics using the code examples provided. This book covers all the libraries in Spark ecosystem: Spark Core, Spark SQL, Spark Streaming, Spark ML, and Spark GraphX. |
data engineering with java: Java Concurrency in Practice Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, 2006-05-09 Threads are a fundamental part of the Java platform. As multicore processors become the norm, using concurrency effectively becomes essential for building high-performance applications. Java SE 5 and 6 are a huge step forward for the development of concurrent applications, with improvements to the Java Virtual Machine to support high-performance, highly scalable concurrent classes and a rich set of new concurrency building blocks. In Java Concurrency in Practice, the creators of these new facilities explain not only how they work and how to use them, but also the motivation and design patterns behind them. However, developing, testing, and debugging multithreaded programs can still be very difficult; it is all too easy to create concurrent programs that appear to work, but fail when it matters most: in production, under heavy load. Java Concurrency in Practice arms readers with both the theoretical underpinnings and concrete techniques for building reliable, scalable, maintainable concurrent applications. Rather than simply offering an inventory of concurrency APIs and mechanisms, it provides design rules, patterns, and mental models that make it easier to build concurrent programs that are both correct and performant. This book covers: Basic concepts of concurrency and thread safety Techniques for building and composing thread-safe classes Using the concurrency building blocks in java.util.concurrent Performance optimization dos and don'ts Testing concurrent programs Advanced topics such as atomic variables, nonblocking algorithms, and the Java Memory Model |
data engineering with java: Using and Understanding Java Data Objects David Ezzio, 2003-06-10 |
data engineering with java: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle |
data engineering with java: The Object of Data Abstraction and Structures Using Java David D. Riley, 2003 *JS123-6, 0-201-71359-4, Riley, David; The Object of Data Abstraction and Structures (Using Java) This book covers traditional data structures using an early object-oriented approach, and by paying special attention to developing sound software engineering skills. Provides extensive coverage of foundational material needed to study data structures (objects and classes, software specification, inheritance, exceptions, and recursion). Provides an object-oriented approach to abstract design using UML class diagrams and several design patterns. Emphasizes software-engineering skills as used in professional practice.MARKET Readers who want to use the most powerful features of Java to program data structures. |
data engineering with java: Artificial Intelligence Code Well Academy, 2016-04-10 Design the MIND of a Robotic Thinker! Every chapter is very clearly described and all of the information was presented consistently. - Amazon Customer Within this book you'll find GREAT coding skills to learn. Here I've learned so much from reading this book. - Stella Mill, from Amazon.com This is the most complete and comprehensive book I read on a subject of Artificial Intelligence so far and it's very well written as well. - Falli Conna, from Amazon.com * * INCLUDED BONUS: a Quick-start guide to Learning Ruby in less than a Day! * * How would you like to Create the Next AI bot? Artificial Intelligence. One of the most brilliant creations of mankind. No longer a sci-fi fantasy, but a realistic approach to making work more efficient and lives easier.And the best news? It's not that complicated after all Does it require THAT much advanced math? NO!And are you paying THOUSANDS of dollars just to learn this information? NO!Hundreds? Not even close. Within this book's pages, you'll find GREAT coding skills to learn - and more. Just some of the questions and topics include: - Complicated scheduling problem? Here's how to solve it. - How good are your AI algorithms? Analysis for Efficiency- How to interpret a system into logical code for the AI- How would an AI system would diagnose a system? We show you...- Getting an AI agent to solve problems for youand Much, much more!World-Class TrainingThis book breaks your training down into easy-to-understand modules. It starts from the very essentials of algorithms and program procedures, so you can write great code - even as a beginner! |
data engineering with java: Numerical Methods Using Java Haksun Li, 2021-06-17 Implement numerical algorithms in Java using NM Dev, an object-oriented and high-performance programming library for mathematics.You’ll see how it can help you easily create a solution for your complex engineering problem by quickly putting together classes. Numerical Methods Using Java covers a wide range of topics, including chapters on linear algebra, root finding, curve fitting, differentiation and integration, solving differential equations, random numbers and simulation, a whole suite of unconstrained and constrained optimization algorithms, statistics, regression and time series analysis. The mathematical concepts behind the algorithms are clearly explained, with plenty of code examples and illustrations to help even beginners get started. What You Will Learn Program in Java using a high-performance numerical library Learn the mathematics for a wide range of numerical computing algorithms Convert ideas and equations into code Put together algorithms and classes to build your own engineering solution Build solvers for industrial optimization problems Do data analysis using basic and advanced statistics Who This Book Is For Programmers, data scientists, and analysts with prior experience with programming in any language, especially Java. |
data engineering with java: Program Development in Java Barbara Liskov, John Guttag, 2001 Liskov (engineering, Massachusetts Institute of Technology) and Guttag (computer science and engineering, also at MIT) present a component- based methodology for software program development. The book focuses on modular program construction: how to get the modules right and how to organize a program as a collection of modules. It explains the key types of abstractions, demonstrates how to develop specifications that define these abstractions, and illustrates how to implement them using numerous examples. An introduction to key Java concepts is included. Annotation copyrighted by Book News, Inc., Portland, OR. |
data engineering with java: Hadoop For Dummies Dirk deRoos, 2014-04-14 Let Hadoop For Dummies help harness the power of your data and rein in the information overload Big data has become big business, and companies and organizations of all sizes are struggling to find ways to retrieve valuable information from their massive data sets with becoming overwhelmed. Enter Hadoop and this easy-to-understand For Dummies guide. Hadoop For Dummies helps readers understand the value of big data, make a business case for using Hadoop, navigate the Hadoop ecosystem, and build and manage Hadoop applications and clusters. Explains the origins of Hadoop, its economic benefits, and its functionality and practical applications Helps you find your way around the Hadoop ecosystem, program MapReduce, utilize design patterns, and get your Hadoop cluster up and running quickly and easily Details how to use Hadoop applications for data mining, web analytics and personalization, large-scale text processing, data science, and problem-solving Shows you how to improve the value of your Hadoop cluster, maximize your investment in Hadoop, and avoid common pitfalls when building your Hadoop cluster From programmers challenged with building and maintaining affordable, scaleable data systems to administrators who must deal with huge volumes of information effectively and efficiently, this how-to has something to help you with Hadoop. |
data engineering with java: Java Programming for Engineers Julio Sanchez, Maria P. Canton, 2002-06-20 While teaching Java programming at Minnesota State University, the authors noticed that engineering students were enrolling in Java programming courses in order to obtain basic programming skills, but there were no Java books suitable for courses intended for engineers. They realized the need for a comprehensive Java programming tutorial that offer |
data engineering with java: Apache Spark 2.x for Java Developers Sourav Gulati, Sumit Kumar, 2017-07-26 Unleash the data processing and analytics capability of Apache Spark with the language of choice: Java About This Book Perform big data processing with Spark—without having to learn Scala! Use the Spark Java API to implement efficient enterprise-grade applications for data processing and analytics Go beyond mainstream data processing by adding querying capability, Machine Learning, and graph processing using Spark Who This Book Is For If you are a Java developer interested in learning to use the popular Apache Spark framework, this book is the resource you need to get started. Apache Spark developers who are looking to build enterprise-grade applications in Java will also find this book very useful. What You Will Learn Process data using different file formats such as XML, JSON, CSV, and plain and delimited text, using the Spark core Library. Perform analytics on data from various data sources such as Kafka, and Flume using Spark Streaming Library Learn SQL schema creation and the analysis of structured data using various SQL functions including Windowing functions in the Spark SQL Library Explore Spark Mlib APIs while implementing Machine Learning techniques to solve real-world problems Get to know Spark GraphX so you understand various graph-based analytics that can be performed with Spark In Detail Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone. The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages. By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications. Style and approach This practical guide teaches readers the fundamentals of the Apache Spark framework and how to implement components using the Java language. It is a unique blend of theory and practical examples, and is written in a way that will gradually build your knowledge of Apache Spark. |
data engineering with java: Foundational Java David Parsons, 2020-09-21 Java is now well-established as one of the world’s major programming languages, used in everything from desktop applications to web-hosted applications, enterprise systems and mobile devices. Java applications cover cloud-based services, the Internet of Things, self-driving cars, animation, game development, big data analysis and many more domains. The second edition of Foundational Java: Key Elements and Practical Programming presents a detailed guide to the core features of Java – and some more recent innovations – enabling the reader to build their skills and confidence though tried-and-trusted stages, supported by exercises that reinforce the key learning points. All the most useful and commonly applied Java syntax and libraries are introduced, along with many example programs that can provide the basis for more substantial applications. Use of the Eclipse Integrated Development Environment (IDE) and the JUnit testing framework is integral to the book, ensuring maximum productivity and code quality when learning Java, although to ensure that skills are not confined to one environment the fundamentals of the Java compiler and run time are also explained. Additionally, coverage of the Ant tool will equip the reader with the skills to automatically build, test and deploy applications independent of an IDE. Topics and features: • Presents the most up-to-date information on Java, including Java 14 • Examines the key theme of unit testing, introducing the JUnit 5 testing framework to emphasize the importance of unit testing in modern software development • Describes the Eclipse IDE, the most popular open source Java IDE and explains how Java can be run from the command line • Includes coverage of the Ant build tool • Contains numerous code examples and exercises throughout • Provides downloadable source code, self-test questions, PowerPoint slides and other supplementary material at the website http://www.foundjava.com This hands-on, classroom-tested textbook/reference is ideal for undergraduate students on introductory and intermediate courses on programming with Java. Professional software developers will also find this an excellent self-study guide/refresher on the topic. Dr. David Parsons is National Postgraduate Director at The Mind Lab, Auckland, New Zealand. He has been teaching programming in both academia and industry since the 1980s and writing about it since the 1990s. |
data engineering with java: Data Structures, Algorithms, and Software Principles in C Thomas A. Standish, 1995 Using C, this book develops the concepts and theory of data structures and algorithm analysis in a gradual, step-by-step manner, proceeding from concrete examples to abstract principles. Standish covers a wide range of both traditional and contemporary software engineering topics. The text also includes an introduction to object-oriented programming using C++. By introducing recurring themes such as levels of abstraction, recursion, efficiency, representation and trade-offs, the author unifies the material throughout. Mathematical foundations can be incorporated at a variety of depths, allowing the appropriate amount of math for each user. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …