Data Analytics Coding Languages

Advertisement



  data analytics coding languages: Java for Data Science Richard M. Reese, Jennifer L. Reese, 2017-01-10 Examine the techniques and Java tools supporting the growing field of data science About This Book Your entry ticket to the world of data science with the stability and power of Java Explore, analyse, and visualize your data effectively using easy-to-follow examples Make your Java applications more capable using machine learning Who This Book Is For This book is for Java developers who are comfortable developing applications in Java. Those who now want to enter the world of data science or wish to build intelligent applications will find this book ideal. Aspiring data scientists will also find this book very helpful. What You Will Learn Understand the nature and key concepts used in the field of data science Grasp how data is collected, cleaned, and processed Become comfortable with key data analysis techniques See specialized analysis techniques centered on machine learning Master the effective visualization of your data Work with the Java APIs and techniques used to perform data analysis In Detail Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this book, we cover the important data science concepts and how they are supported by Java, as well as the often statistically challenging techniques, to provide you with an understanding of their purpose and application. The book starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. The next section examines the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. The final chapter illustrates an in-depth data science problem and provides a comprehensive, Java-based solution. Due to the nature of the topic, simple examples of techniques are presented early followed by a more detailed treatment later in the book. This permits a more natural introduction to the techniques and concepts presented in the book. Style and approach This book follows a tutorial approach, providing examples of each of the major concepts covered. With a step-by-step instructional style, this book covers various facets of data science and will get you up and running quickly.
  data analytics coding languages: The Decision Maker's Handbook to Data Science Stylianos Kampakis, 2019-11-26 Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics.Become skilled at thinking like a data scientist, without being one.Discover how to hire and manage data scientists.Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science.
  data analytics coding languages: Data Science Programming All-in-One For Dummies John Paul Mueller, Luca Massaron, 2020-01-09 Your logical, linear guide to the fundamentals of data science programming Data science is exploding—in a good way—with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you’re a beginning student or already mid-career, get your copy now and add even more meaning to your life—and everyone else’s!
  data analytics coding languages: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data analytics coding languages: Python for Data Science For Dummies John Paul Mueller, Luca Massaron, 2015-06-23 Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.
  data analytics coding languages: Development Research in Practice Kristoffer Bjärkefur, Luíza Cardoso de Andrade, Benjamin Daniels, Maria Ruth Jones, 2021-07-16 Development Research in Practice leads the reader through a complete empirical research project, providing links to continuously updated resources on the DIME Wiki as well as illustrative examples from the Demand for Safe Spaces study. The handbook is intended to train users of development data how to handle data effectively, efficiently, and ethically. “In the DIME Analytics Data Handbook, the DIME team has produced an extraordinary public good: a detailed, comprehensive, yet easy-to-read manual for how to manage a data-oriented research project from beginning to end. It offers everything from big-picture guidance on the determinants of high-quality empirical research, to specific practical guidance on how to implement specific workflows—and includes computer code! I think it will prove durably useful to a broad range of researchers in international development and beyond, and I learned new practices that I plan on adopting in my own research group.†? —Marshall Burke, Associate Professor, Department of Earth System Science, and Deputy Director, Center on Food Security and the Environment, Stanford University “Data are the essential ingredient in any research or evaluation project, yet there has been too little attention to standardized practices to ensure high-quality data collection, handling, documentation, and exchange. Development Research in Practice: The DIME Analytics Data Handbook seeks to fill that gap with practical guidance and tools, grounded in ethics and efficiency, for data management at every stage in a research project. This excellent resource sets a new standard for the field and is an essential reference for all empirical researchers.†? —Ruth E. Levine, PhD, CEO, IDinsight “Development Research in Practice: The DIME Analytics Data Handbook is an important resource and a must-read for all development economists, empirical social scientists, and public policy analysts. Based on decades of pioneering work at the World Bank on data collection, measurement, and analysis, the handbook provides valuable tools to allow research teams to more efficiently and transparently manage their work flows—yielding more credible analytical conclusions as a result.†? —Edward Miguel, Oxfam Professor in Environmental and Resource Economics and Faculty Director of the Center for Effective Global Action, University of California, Berkeley “The DIME Analytics Data Handbook is a must-read for any data-driven researcher looking to create credible research outcomes and policy advice. By meticulously describing detailed steps, from project planning via ethical and responsible code and data practices to the publication of research papers and associated replication packages, the DIME handbook makes the complexities of transparent and credible research easier.†? —Lars Vilhuber, Data Editor, American Economic Association, and Executive Director, Labor Dynamics Institute, Cornell University
  data analytics coding languages: Python for Data Analysis Wes McKinney, 2017-09-25 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
  data analytics coding languages: R Programming for Data Science Roger D. Peng, 2012-04-19 Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox.
  data analytics coding languages: Introduction to Machine Learning with Python Andreas C. Müller, Sarah Guido, 2016-09-26 Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills
  data analytics coding languages: Python and R for the Modern Data Scientist Rick J. Scavetta, Boyan Angelov, 2021-06-22 Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together
  data analytics coding languages: Mastering Algorithms with C Kyle Loudon, 1999 Implementations, as well as interesting, real-world examples of each data structure and algorithm, are shown in the text. Full source code appears on the accompanying disk.
  data analytics coding languages: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  data analytics coding languages: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data analytics coding languages: Programming Machine Learning Paolo Perrotta, 2020-03-31 You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.
  data analytics coding languages: Advanced R Hadley Wickham, 2015-09-15 An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
  data analytics coding languages: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
  data analytics coding languages: Beginning Mathematica and Wolfram for Data Science Jalil Villalobos Alva, 2021-03-28 Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book introduces you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages. You’ll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages. You’ll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you’ll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You’ll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out. What You Will Learn Use Mathematica to explore data and describe the concepts using Wolfram language commands Create datasets, work with data frames, and create tables Import, export, analyze, and visualize data Work with the Wolfram data repository Build reports on the analysis Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering The fundamentals of the Wolfram Neural Network Framework and how to build your neural network for different tasks How to use pre-trained models from the Wolfram Neural Net Repository Who This Book Is For Data scientists new to using Wolfram and Mathematica as a language/tool to program in. Programmers should have some prior programming experience, but can be new to the Wolfram language.
  data analytics coding languages: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
  data analytics coding languages: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
  data analytics coding languages: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data analytics coding languages: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
  data analytics coding languages: Advanced Data Science and Analytics with Python Jesus Rogel-Salazar, 2020-05-05 Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.
  data analytics coding languages: R Programming: An Approach to Data Analytics G. Sudhamathy, C. Jothi Venkateswaran, 2019-06-03 Chapter 1 - Basics of R, Chapter 2 - Data Types in R , Chapter 3 - Data Preparation. Chapter 4 - Graphics using R, Chapter 5 - Statistical Analysis Using R, Chapter 6 - Data Mining Using R, Chapter 7 - Case Studies. Huge volumes of data are being generated by many sources like commercial enterprises, scientific domains and general public daily. According to a recent research, data production will be 44 times greater in 2020 than it was in 2010. Data being a vital resource for business organizations and other domains like education, health, manufacturing etc., its management and analysis is becoming increasingly important. This data, due to its volume, variety and velocity, often referred to as Big Data, also includes highly unstructured data in the form of textual documents, web pages, graphical information and social media comments. Since Big Data is characterised by massive sample sizes, high dimensionality and intrinsic heterogeneity, traditional approaches to data management, visualisation and analytics are no longer satisfactorily applicable. There is therefore an urgent need for newer tools, better frameworks and workable methodologies for such data to be appropriately categorised, logically segmented, efficiently analysed and securely managed. This requirement has resulted in an emerging new discipline of Data Science that is now gaining much attention with researchers and practitioners in the field of Data Analytics.
  data analytics coding languages: Data Analytic Literacy Andrew Banasiewicz, 2023-07-24 The explosive growth in volume and varieties of data generated by the seemingly endless arrays of digital systems and applications is rapidly elevating the importance of being able to utilize data; in fact, data analytic literacy is becoming as important now, at the onset of the Digital Era, as rudimentary literacy and numeracy were throughout the Industrial Era. And yet, what constitutes data analytic literacy is poorly understood. To some, data analytic literacy is the ability to use basic statistics, to others it is data science ‘light’, and to still others it is just general familiarity with common data analytic outcomes. Exploring the scope and the structure of rudimentary data analytic competencies is at the core of this book which takes the perspective that data analytics is a new and distinct domain of knowledge and practice. It offers application-minded framing of rudimentary data analytic competencies built around conceptually sound and practically meaningful processes and mechanics of systematically transforming messy and heterogeneous data into informative insights. Data Analytic Literacy is meant to offer an easy-to-follow overview of the critical elements of the reasoning behind basic data manipulation and analysis approaches and steps, coupled with the commonly used data analytic and data communication techniques and tools. It offers an all-inclusive guide to developing basic data analytic competencies.
  data analytics coding languages: The Consulting Bible Alan Weiss, 2011-04-05 Everything you need to know about building a successful, world-class consulting practice Whether you are a veteran consultant or new to the industry, an entrepreneur or the principal of a small firm, The Consulting Bible tells you absolutely everything you need to know to create and expand a seven-figure independent or boutique consulting practice. Expert author Alan Weiss, who coaches consultants globally and has written more books on solo consulting than anyone in history, shares his expertise comprehensively. Learn and appreciate the origins and evolution of the consulting profession Launch your practice or firm and propel it to top performance Implement your consulting strategies in public and private organizations, large or small, global or domestic Select from the widest variety of consulting methodologies Achieve lasting success in your professional career and personal goals The author is recognized as one of the most highly regarded independent consultants in America by the New York Post and a worldwide expert in executive education by Success Magazine Whether you're just starting out or looking for the latest trends in modern practice, The Consulting Bible gives you an unparalleled toolset to build a thriving consultancy.
  data analytics coding languages: Programming Skills For Data Science Freeman, Programming Skills for Data Science brings together all the foundation skills needed to transform raw data into actionable insights for domains ranging from urban planning to precision medicine, even if you have no programming or data science experience. Guided by expert instructors Michael Freeman and Joel Ross, this book will help learners install the tools required to solve professional-level data science problems, including widely used R language, RStudio integrated development environment, and Git version-control system. It explains how to wrangle data into a form where it can be easily used, analyzed, and visualized so others can see the patterns uncovered. Step by step, students will master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales.
  data analytics coding languages: Statistical Computing with R Maria L. Rizzo, 2007-11-15 Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditiona
  data analytics coding languages: Text Analytics with Python Dipanjan Sarkar, 2019-05-21 Leverage Natural Language Processing (NLP) in Python and learn how to set up your own robust environment for performing text analytics. This second edition has gone through a major revamp and introduces several significant changes and new topics based on the recent trends in NLP. You’ll see how to use the latest state-of-the-art frameworks in NLP, coupled with machine learning and deep learning models for supervised sentiment analysis powered by Python to solve actual case studies. Start by reviewing Python for NLP fundamentals on strings and text data and move on to engineering representation methods for text data, including both traditional statistical models and newer deep learning-based embedding models. Improved techniques and new methods around parsing and processing text are discussed as well. Text summarization and topic models have been overhauled so the book showcases how to build, tune, and interpret topic models in the context of an interest dataset on NIPS conference papers. Additionally, the book covers text similarity techniques with a real-world example of movie recommenders, along with sentiment analysis using supervised and unsupervised techniques. There is also a chapter dedicated to semantic analysis where you’ll see how to build your own named entity recognition (NER) system from scratch. While the overall structure of the book remains the same, the entire code base, modules, and chapters has been updated to the latest Python 3.x release. What You'll Learn • Understand NLP and text syntax, semantics and structure• Discover text cleaning and feature engineering• Review text classification and text clustering • Assess text summarization and topic models• Study deep learning for NLP Who This Book Is For IT professionals, data analysts, developers, linguistic experts, data scientists and engineers and basically anyone with a keen interest in linguistics, analytics and generating insights from textual data.
  data analytics coding languages: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  data analytics coding languages: R Cookbook Paul Teetor, 2011-03-03 With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time.—Jeffrey Ryan, software consultant and R package author
  data analytics coding languages: Learning Python Mark Lutz, 2013-06-12 Get a comprehensive, in-depth introduction to the core Python language with this hands-on book. Based on author Mark Lutz’s popular training course, this updated fifth edition will help you quickly write efficient, high-quality code with Python. It’s an ideal way to begin, whether you’re new to programming or a professional developer versed in other languages. Complete with quizzes, exercises, and helpful illustrations, this easy-to-follow, self-paced tutorial gets you started with both Python 2.7 and 3.3— the latest releases in the 3.X and 2.X lines—plus all other releases in common use today. You’ll also learn some advanced language features that recently have become more common in Python code. Explore Python’s major built-in object types such as numbers, lists, and dictionaries Create and process objects with Python statements, and learn Python’s general syntax model Use functions to avoid code redundancy and package code for reuse Organize statements, functions, and other tools into larger components with modules Dive into classes: Python’s object-oriented programming tool for structuring code Write large programs with Python’s exception-handling model and development tools Learn advanced Python tools, including decorators, descriptors, metaclasses, and Unicode processing
  data analytics coding languages: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.
  data analytics coding languages: Pandas for Everyone Daniel Y. Chen, 2017-12-15 The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
  data analytics coding languages: Murach's Python for Data Analysis Scott McCoy, 2021-08 Data is collected everywhere these days, in massive quantities. But data alone does not do you much good. That is why data analysis -- making sense of the data -- has become a must-have skill in the fields of business, science, and social science. But it is a tough skill to acquire. The concepts are challenging, and too many books and online tutorials treat only parts of the total skillset needed. Now, though, this book draws all the essential skills together and presents them in a clear and example-packed way. So you will soon be applying your programming skills to complex data analysis problems, more easily than you ever thought possible. In terms of content, this book gets you started the right way by using Pandas for data analysis and Seaborn for data visualisation, with JupyterLab as your IDE. Then, it helps you master descriptive analysis by teaching you how to get, clean, prepare, and analyse data, including time-series data. Next, it gets you started with predictive analysis by showing you how to use linear regression models to predict unknown and future values. And to tie everything together, it gives you 4 real-world case studies that show you how to apply your new skills to political, environmental, social, and sports analysis. At the end, you will have a solid set of the professional skills that can lead to all sorts of new career opportunities. Sound too good to be true? Download a sample chapter for free from the Murach website and see for yourself how this book can turn you into the data analyst that companies are looking for.
  data analytics coding languages: Practical Python Data Wrangling and Data Quality Susan E. McGregor, 2021-12-03 The world around us is full of data that holds unique insights and valuable stories, and this book will help you uncover them. Whether you already work with data or want to learn more about its possibilities, the examples and techniques in this practical book will help you more easily clean, evaluate, and analyze data so that you can generate meaningful insights and compelling visualizations. Complementing foundational concepts with expert advice, author Susan E. McGregor provides the resources you need to extract, evaluate, and analyze a wide variety of data sources and formats, along with the tools to communicate your findings effectively. This book delivers a methodical, jargon-free way for data practitioners at any level, from true novices to seasoned professionals, to harness the power of data. Use Python 3.8+ to read, write, and transform data from a variety of sources Understand and use programming basics in Python to wrangle data at scale Organize, document, and structure your code using best practices Collect data from structured data files, web pages, and APIs Perform basic statistical analyses to make meaning from datasets Visualize and present data in clear and compelling ways
  data analytics coding languages: SAS and R Ken Kleinman, Nicholas J. Horton, 2014-07-17 An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.
  data analytics coding languages: Python Crash Course for Data Analysis: A Complete Beginner Guide for Python Coding, NumPy, Pandas and Data Visualization Ai Publishing, 2019-09-22 **GET YOUR COPY NOW, the price will be 21.99$ soon**Learn Python coding for Data Analysis from scratch very easilyWelcome to the Python Crash Course for Data Analysis!The book offers you a solid introduction to the world of Python Coding for data analysis. In this book, you'll learn fundamentals that will enable you to go further in Python Coding, launch or advance a career, and join the next generation of Data Analyst talent that will help define a beneficial, new, powered future for our world. You will study important libraries such as NumPy, Pandas and some Data Visualization libraries.Educational Objectives: This introductory book teaches the foundational skills all Python programmers use to analyze data. It is ideal for beginners who want to learn Python coding or Python for Data Analysis, make informed choices about career goals, and set themselves up for success in this path. At the end of this learning, you will become an great Python Programmer for data Analysis, and learn to analyse data using frameworks like NumPy, Pandas and Matplotlib. Prerequisites: No prior experience with programming is required. You will need to be comfortable with basic computer skills, such as managing files, running programs, and using a web browser to navigate the Internet.You will need to be self-driven and genuinely interested in the Python Coding. No matter how well structured the program is, any attempt to learn programming will involve many hours of studying, practice, and experimentation. Success in this book requires devoting at least 10 hours to your work. This requires some tenacity, and it is especially difficult to do if you don't find Python coding interesting or aren't willing to play around and tinker with your code-so drive, curiosity, and an adventurous attitude are highly recommended!You will need to be able to learn English.Contact Info: While going through the book, if you have questions about anything, you can reach us at contact@aispublishing.net.**GET YOUR COPY NOW, the price will be 15.99$ soon**
  data analytics coding languages: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.
  data analytics coding languages: Hands-On Machine Learning with R Brad Boehmke, Brandon M. Greenwell, 2019-11-07 Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
  data analytics coding languages: Data Science for Beginners Andrew Park, 2020-05-14 Master the world of Python, Data Analysis, Machine Learning and Data Science with this comprehensive 4-in-1 bundle. Are you interested in becoming a Python geek? Or do you want to learn more about the fascinating world of Data Science, and what it can do for you? Then keep reading. Created with the beginner in mind, this powerful bundle delves into the fundamentals behind Python and Data Science, from basic code and concepts to complex Neural Networks and data manipulation. Inside, you'll discover everything you need to know to get started with Python and Data Science, and begin your journey to success! In book one, PYTHON FOR BEGINNERS, you'll learn: How to install Python What are the different Python Data Types, Variables and Basic Operators Data Structures, Functions and Files Conditional and Loops in Python Object-Oriented Programming (OOP), Inheritance and Polymorphism Essential Programming Tools and Exception Handling An application to Decision Trees And Much More! In book two, PYTHON FOR DATA ANALYSIS, you will: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Neural Network The 7 Python libraries that make Python one of the best choices for Data Analysis How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! In book three, PYTHON MACHINE LEARNING, you'll discover: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Machine learning training models, Regression techniques and Linear Regression in Python How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python Artificial Neural Networks And Much More! And in book four, PYTHON DATA SCIENCE, you will: What Data Science is all about and why so many companies are using it to give them a competitive edge. Why Python and how to use it to implement Data Science The main Data Structures & Object-Oriented Programming, Functions and Modules in Python with practical codes and exercises The 7 most important algorithms and models in Data Science Data Aggregation, Group Operations, Databases and Data in the Cloud 9 important Data Mining techniques in Data Science And So Much More! Whether you're a complete beginner or a programmer looking to improve his skillset, Data Science for Beginners is your all-in-one solution to mastering the world of Python and Data Science. Would you like to know more?Scroll Up and Click the BUY NOW Button to Get Your Copy!
Languages for Big Data analysis - Springer
Boosted by Big Data popularity, new languages and frameworks for data analytics are appearing at an increasing pace. Each of them introduces its own concepts and terminology and …

Data Analytics and Dynamic Languages - sss.cs.purdue.edu
languages (interpreters) for data analytics (statistics) I am a long-time user and commercial developer of dynamic languages for data analysis, but I am also a hard-core C++ programmer

Programming Languages in Data Science: a Comparison from …
The big data analytics revolution was born with data mining [2], which optimized machine learning statistics and pattern detection algorithms to analyze large data sets.

Data Science from Scratch: The #1 Data Science Guide for …
Chapter four will cover how data science differs from big data, and how the two work together. Chapter five will go into what a data scientist is and what they do.

Full-Time Program Data Analytics Career Track - Coding Temple
We offer intensive, hands-on training in the latest programming languages and technologies, taught by experienced instructors who are passionate about helping our students succeed.

BIG DATA ANALYTICS: A COMPARISON OF PROGRAMMING …
In this paper, we propose to visually analyze the big data using R statistical software, and we are going to focus on so called as big data statistical languages, such as Python, R, SQL, SAS. …

Data Analytics with Python and R Programming Languages
Downloading latest free Python package from.

Coding Languages For Data Analysis - blog.amf
coding languages for data analysis: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. …

Visual Languages for Supporting Big Data Analytics …
Abstract: We present BiDaML (Big Data Analytics Modeling Languages), an integrated suite of visual languages and supporting tool to help end-users with the engineering of big data …

ALTAIR ANALYTICS WORKBENCH COMPREHENSIVE DATA …
Altair Analytics Workbench is a sophisticated coding environment that’s ideal for developing models and programs written in the SAS language. With it, developers can include Python, R, …

LABORATORY MANUAL - Dronacharya College of Engineering
Through a combination of programming assignments, coding exercises, and mini-projects, students will gain proficiency in using programming languages and frameworks commonly …

Laboratory Manual of Data Analytics Using R Programming Lab
Data analysis with R is done in a series of steps; programming, transforming, discovering, modeling and communicate the results. Program : R is a clear and accessible programming tool

Advanced Data Analytics Using Python - AITS Kadapa
In this introductory chapter, I explain why a data scientist should choose Python as a programming language. Then I highlight some situations where Python is not a good choice. …

Scripting for Data Analysis - Cornell University
Why are Scripting Languages Important? • Languages have nice features that C and Fortran can’t afford. – Don’t declare types. – Query an object for its type. – Inherently object-oriented and/or …

DATA 301 Introduction to Data Analytics - Excel VBA
Using Excel VBA will be our first practice with programming and allow us to explore fundamental programming concepts of commands, variables, decisions, repetition, objects, and events.

Most Popular Types of Coding and Coding Languages in 2023 …
Python is an ideal coding language for beginners because it rejects complexity and provides a simple learning curve. This makes it perfect for creating web applications, such as the famous …

Visual Languages for Supporting Big Data Analytics …
Abstract: We present BiDaML (Big Data Analytics Modeling Languages), an integrated suite of visual languages and supporting tool to help end-users with the engineering of big data …

Data Analytics Skills Evaluation Framework - CodeSignal
phasis on core data analytics skills and com-petencies, tests based on the DAA framework should focus on assessing analytical thinking and data manipulation skills/competencies while …

DATA 301 Introduction to Data Analytics - Python
Python is increasingly the most popular choice of programming language for data analysts because it is designed to be simple, efficient, and easy to read …

Languages for Big Data analysis - Springer
Boosted by Big Data popularity, new languages and frameworks for data analytics are appearing at an increasing pace. Each of them introduces its …

Programming Skills for Data Science: Start Writing Cod…
In this text, Michael Freeman and Joel Ross have created the definitive resource for new and aspiring data scientists to learn foundational …

Data Analytics and Dynamic Languages - sss.cs.purdue.…
languages (interpreters) for data analytics (statistics) I am a long-time user and commercial developer of dynamic languages for data analysis, …

Programming Languages in Data Science: a Compariso…
The big data analytics revolution was born with data mining [2], which optimized machine learning statistics and pattern detection algorithms to …