Data Engineering For Dummies

Advertisement



  data engineering for dummies: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  data engineering for dummies: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
  data engineering for dummies: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.
  data engineering for dummies: Data Warehousing For Dummies Thomas C. Hammergren, 2009-04-13 Data warehousing is one of the hottest business topics, and there’s more to understanding data warehousing technologies than you might think. Find out the basics of data warehousing and how it facilitates data mining and business intelligence with Data Warehousing For Dummies, 2nd Edition. Data is probably your company’s most important asset, so your data warehouse should serve your needs. The fully updated Second Edition of Data Warehousing For Dummies helps you understand, develop, implement, and use data warehouses, and offers a sneak peek into their future. You’ll learn to: Analyze top-down and bottom-up data warehouse designs Understand the structure and technologies of data warehouses, operational data stores, and data marts Choose your project team and apply best development practices to your data warehousing projects Implement a data warehouse, step by step, and involve end-users in the process Review and upgrade existing data storage to make it serve your needs Comprehend OLAP, column-wise databases, hardware assisted databases, and middleware Use data mining intelligently and find what you need Make informed choices about consultants and data warehousing products Data Warehousing For Dummies, 2nd Edition also shows you how to involve users in the testing process and gain valuable feedback, what it takes to successfully manage a data warehouse project, and how to tell if your project is on track. You’ll find it’s the most useful source of data on the topic!
  data engineering for dummies: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
  data engineering for dummies: Data Engineering on Azure Vlad Riscutia, 2021-08-17 Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
  data engineering for dummies: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
  data engineering for dummies: Cloud Computing For Dummies Judith S. Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper, 2010-01-19 The easy way to understand and implement cloud computing technology written by a team of experts Cloud computing can be difficult to understand at first, but the cost-saving possibilities are great and many companies are getting on board. If you've been put in charge of implementing cloud computing, this straightforward, plain-English guide clears up the confusion and helps you get your plan in place. You'll learn how cloud computing enables you to run a more green IT infrastructure, and access technology-enabled services from the Internet (in the cloud) without having to understand, manage, or invest in the technology infrastructure that supports them. You'll also find out what you need to consider when implementing a plan, how to handle security issues, and more. Cloud computing is a way for businesses to take advantage of storage and virtual services through the Internet, saving money on infrastructure and support This book provides a clear definition of cloud computing from the utility computing standpoint and also addresses security concerns Offers practical guidance on delivering and managing cloud computing services effectively and efficiently Presents a proactive and pragmatic approach to implementing cloud computing in any organization Helps IT managers and staff understand the benefits and challenges of cloud computing, how to select a service, and what's involved in getting it up and running Highly experienced author team consults and gives presentations on emerging technologies Cloud Computing For Dummies gets straight to the point, providing the practical information you need to know.
  data engineering for dummies: Mechanics of Materials For Dummies James H. Allen, III, 2011-06-15 Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!
  data engineering for dummies: Data Engineering with Google Cloud Platform Adi Wijaya, 2022-03-31 Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
  data engineering for dummies: Mastering Kafka Streams and ksqlDB Mitch Seymour, 2021-02-04 Working with unbounded and fast-moving data streams has historically been difficult. But with Kafka Streams and ksqlDB, building stream processing applications is easy and fun. This practical guide shows data engineers how to use these tools to build highly scalable stream processing applications for moving, enriching, and transforming large amounts of data in real time. Mitch Seymour, data services engineer at Mailchimp, explains important stream processing concepts against a backdrop of several interesting business problems. You'll learn the strengths of both Kafka Streams and ksqlDB to help you choose the best tool for each unique stream processing project. Non-Java developers will find the ksqlDB path to be an especially gentle introduction to stream processing. Learn the basics of Kafka and the pub/sub communication pattern Build stateless and stateful stream processing applications using Kafka Streams and ksqlDB Perform advanced stateful operations, including windowed joins and aggregations Understand how stateful processing works under the hood Learn about ksqlDB's data integration features, powered by Kafka Connect Work with different types of collections in ksqlDB and perform push and pull queries Deploy your Kafka Streams and ksqlDB applications to production
  data engineering for dummies: Data Teams Jesse Anderson, 2020
  data engineering for dummies: Official Google Cloud Certified Professional Data Engineer Study Guide Dan Sullivan, 2020-05-11 The proven Study Guide that prepares you for this new Google Cloud exam The Google Cloud Certified Professional Data Engineer Study Guide, provides everything you need to prepare for this important exam and master the skills necessary to land that coveted Google Cloud Professional Data Engineer certification. Beginning with a pre-book assessment quiz to evaluate what you know before you begin, each chapter features exam objectives and review questions, plus the online learning environment includes additional complete practice tests. Written by Dan Sullivan, a popular and experienced online course author for machine learning, big data, and Cloud topics, Google Cloud Certified Professional Data Engineer Study Guide is your ace in the hole for deploying and managing analytics and machine learning applications. Build and operationalize storage systems, pipelines, and compute infrastructure Understand machine learning models and learn how to select pre-built models Monitor and troubleshoot machine learning models Design analytics and machine learning applications that are secure, scalable, and highly available. This exam guide is designed to help you develop an in depth understanding of data engineering and machine learning on Google Cloud Platform.
  data engineering for dummies: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
  data engineering for dummies: Data Engineering Olaf Wolkenhauer, 2004-04-07 Although data engineering is a multi-disciplinary field withapplications in control, decision theory, and the emerging hot areaof bioinformatics, there are no books on the market that make thesubject accessible to non-experts. This book fills the gap in thefield, offering a clear, user-friendly introduction to the maintheoretical and practical tools for analyzing complex systems. Anftp site features the corresponding MATLAB and Mathematical toolsand simulations. Market: Researchers in data management, electrical engineering,computer science, and life sciences.
  data engineering for dummies: Data-Driven Science and Engineering Steven L. Brunton, J. Nathan Kutz, 2022-05-05 A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
  data engineering for dummies: Architecting Modern Data Platforms Jan Kunigk, Ian Buss, Paul Wilkinson, Lars George, 2018-12-05 There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability
  data engineering for dummies: Data Science Programming All-in-One For Dummies John Paul Mueller, Luca Massaron, 2020-01-09 Your logical, linear guide to the fundamentals of data science programming Data science is exploding—in a good way—with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you’re a beginning student or already mid-career, get your copy now and add even more meaning to your life—and everyone else’s!
  data engineering for dummies: Engineering MLOps Emmanuel Raj, 2021-04-19 Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.
  data engineering for dummies: The Self-Service Data Roadmap Sandeep Uttamchandani, 2020-09-10 Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization
  data engineering for dummies: Reference Data for Engineers Mac E. Van Valkenburg, Wendy M. Middleton, 2001-09-26 This standard handbook for engineers covers the fundamentals, theory and applications of radio, electronics, computers, and communications equipment. It provides information on essential, need-to-know topics without heavy emphasis on complicated mathematics. It is a must-have for every engineer who requires electrical, electronics, and communications data. Featured in this updated version is coverage on intellectual property and patents, probability and design, antennas, power electronics, rectifiers, power supplies, and properties of materials. Useful information on units, constants and conversion factors, active filter design, antennas, integrated circuits, surface acoustic wave design, and digital signal processing is also included. This work also offers new knowledge in the fields of satellite technology, space communication, microwave science, telecommunication, global positioning systems, frequency data, and radar.
  data engineering for dummies: Perspectives on Data Science for Software Engineering Tim Menzies, Laurie Williams, Thomas Zimmermann, 2016-07-14 Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains
  data engineering for dummies: Data Engineering Brian Shive, 2013 If you found a rusty old lamp on the beach, and upon touching it a genie appeared and granted you three wishes, what would you wish for? If you were wishing for a successful application development effort, most likely you would wish for accurate and robust data models, comprehensive data flow diagrams, and an acute understanding of human behavior. The wish for well-designed conceptual and logical data models means the requirements are well-understood and that the design has been built with flexibility and extensibility leading to high application agility and low maintenance costs. The wish for detailed data flow diagrams means a concrete understanding of the business' value chain exists and is documented. The wish to understand how we think means excellent team dynamics while analyzing, designing, and building the application. Why search the beaches for genie lamps when instead you can read this book? Learn the skills required for modeling, value chain analysis, and team dynamics by following the journey the author and son go through in establishing a profitable summer lemonade business. This business grew from season to season proportionately with his adoption of important engineering principles. All of the concepts and principles are explained in a novel format, so you will learn the important messages while enjoying the story that unfolds within these pages. The story is about an old man who has spent his life designing data models and databases and his newly adopted son. Father and son have a 54 year age difference that produces a large generation gap. The father attempts to narrow the generation gap by having his nine-year-old son earn his entertainment money. The son must run a summer business that turns a lemon grove into profits so he can buy new computers and games. As the son struggles for profits, it becomes increasingly clear that dad's career in information technology can provide critical leverage in achieving success in business. The failures and successes of the son's business over the summers are a microcosm of the ups and downs of many enterprises as they struggle to manage information technology.
  data engineering for dummies: Sailing For Dummies J. J. Isler, Peter Isler, 2011-03-03 Interested in learning to sail but feel like you’re navigating in murky waters? Sailing for Dummies, Second Edition introduces the basics of sailing, looks at the different types of sailboats and their basic parts, and teaches you everything you need to know before you leave the dock. In Sailing for Dummies, Second Edition, two U.S. sailing champions show you how to: Find and choose a sailing school Use life jackets correctly Tie ten nautical knots Handle sailing emergencies (such as capsizing and rescuing a man overboard) Launch your boat from a trailer, ramp, or beach Get your boat from point A to point B (and back again) Predict and respond to water and wind conditions Read charts, plot your course, use a compass, and find your position at sea Sailing for Dummies shows you that getting out on the water is easier than you think. The authors keep the sailor-speak to a minimum where possible, but give you a grasp of the terminology you need to safely and effectively communicate with your crew. A textbook, user’s manual, and reference all in one, this book takes the intimidation out of sailing and gives you the skills and confidence you need to get your feet wet and become the sailing pro you’ve always wanted to be. Anchors away!
  data engineering for dummies: Data Science For Dummies Lillian Pierson, 2017-03-06 Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles. Data Science For Dummies is the perfect starting point for IT professionals and students who want a quick primer on all areas of the expansive data science space. With a focus on business cases, the book explores topics in big data, data science, and data engineering, and how these three areas are combined to produce tremendous value. If you want to pick-up the skills you need to begin a new career or initiate a new project, reading this book will help you understand what technologies, programming languages, and mathematical methods on which to focus. While this book serves as a wildly fantastic guide through the broad, sometimes intimidating field of big data and data science, it is not an instruction manual for hands-on implementation. Here’s what to expect: Provides a background in big data and data engineering before moving on to data science and how it's applied to generate value Includes coverage of big data frameworks like Hadoop, MapReduce, Spark, MPP platforms, and NoSQL Explains machine learning and many of its algorithms as well as artificial intelligence and the evolution of the Internet of Things Details data visualization techniques that can be used to showcase, summarize, and communicate the data insights you generate It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
  data engineering for dummies: Azure Data Engineering Cookbook Ahmad Osama, 2021-04-05 Over 90 recipes to help you orchestrate modern ETL/ELT workflows and perform analytics using Azure services more easily Key FeaturesBuild highly efficient ETL pipelines using the Microsoft Azure Data servicesCreate and execute real-time processing solutions using Azure Databricks, Azure Stream Analytics, and Azure Data ExplorerDesign and execute batch processing solutions using Azure Data FactoryBook Description Data engineering is one of the faster growing job areas as Data Engineers are the ones who ensure that the data is extracted, provisioned and the data is of the highest quality for data analysis. This book uses various Azure services to implement and maintain infrastructure to extract data from multiple sources, and then transform and load it for data analysis. It takes you through different techniques for performing big data engineering using Microsoft Azure Data services. It begins by showing you how Azure Blob storage can be used for storing large amounts of unstructured data and how to use it for orchestrating a data workflow. You'll then work with different Cosmos DB APIs and Azure SQL Database. Moving on, you'll discover how to provision an Azure Synapse database and find out how to ingest and analyze data in Azure Synapse. As you advance, you'll cover the design and implementation of batch processing solutions using Azure Data Factory, and understand how to manage, maintain, and secure Azure Data Factory pipelines. You'll also design and implement batch processing solutions using Azure Databricks and then manage and secure Azure Databricks clusters and jobs. In the concluding chapters, you'll learn how to process streaming data using Azure Stream Analytics and Data Explorer. By the end of this Azure book, you'll have gained the knowledge you need to be able to orchestrate batch and real-time ETL workflows in Microsoft Azure. What you will learnUse Azure Blob storage for storing large amounts of unstructured dataPerform CRUD operations on the Cosmos Table APIImplement elastic pools and business continuity with Azure SQL DatabaseIngest and analyze data using Azure Synapse AnalyticsDevelop Data Factory data flows to extract data from multiple sourcesManage, maintain, and secure Azure Data Factory pipelinesProcess streaming data using Azure Stream Analytics and Data ExplorerWho this book is for This book is for Data Engineers, Database administrators, Database developers, and extract, load, transform (ETL) developers looking to build expertise in Azure Data engineering using a recipe-based approach. Technical architects and database architects with experience in designing data or ETL applications either on-premise or on any other cloud vendor who wants to learn Azure Data engineering concepts will also find this book useful. Prior knowledge of Azure fundamentals and data engineering concepts is needed.
  data engineering for dummies: Introduction to Machine Learning with Python Andreas C. Müller, Sarah Guido, 2016-09-26 Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills
  data engineering for dummies: Information Dashboard Design Stephen Few, 2006 Dashboards have become popular in recent years as uniquely powerful tools for communicating important information at a glance. Although dashboards are potentially powerful, this potential is rarely realized. The greatest display technology in the world won't solve this if you fail to use effective visual design. And if a dashboard fails to tell you precisely what you need to know in an instant, you'll never use it, even if it's filled with cute gauges, meters, and traffic lights. Don't let your investment in dashboard technology go to waste. This book will teach you the visual design skills you need to create dashboards that communicate clearly, rapidly, and compellingly. Information Dashboard Design will explain how to: Avoid the thirteen mistakes common to dashboard design Provide viewers with the information they need quickly and clearly Apply what we now know about visual perception to the visual presentation of information Minimize distractions, cliches, and unnecessary embellishments that create confusion Organize business information to support meaning and usability Create an aesthetically pleasing viewing experience Maintain consistency of design to provide accurate interpretation Optimize the power of dashboard technology by pairing it with visual effectiveness Stephen Few has over 20 years of experience as an IT innovator, consultant, and educator. As Principal of the consultancy Perceptual Edge, Stephen focuses on data visualization for analyzing and communicating quantitative business information. He provides consulting and training services, speaks frequently at conferences, and teaches in the MBA program at the University ofCalifornia in Berkeley. He is also the author of Show Me the Numbers: Designing Tables and Graphs to Enlighten. Visit his website at www.perceptualedge.com.
  data engineering for dummies: Signals and Systems For Dummies Mark Wickert, 2013-05-17 Getting mixed signals in your signals and systems course? The concepts covered in a typical signals and systems course are often considered by engineering students to be some of the most difficult to master. Thankfully, Signals & Systems For Dummies is your intuitive guide to this tricky course, walking you step-by-step through some of the more complex theories and mathematical formulas in a way that is easy to understand. From Laplace Transforms to Fourier Analyses, Signals & Systems For Dummies explains in plain English the difficult concepts that can trip you up. Perfect as a study aid or to complement your classroom texts, this friendly, hands-on guide makes it easy to figure out the fundamentals of signal and system analysis. Serves as a useful tool for electrical and computer engineering students looking to grasp signal and system analysis Provides helpful explanations of complex concepts and techniques related to signals and systems Includes worked-through examples of real-world applications using Python, an open-source software tool, as well as a custom function module written for the book Brings you up-to-speed on the concepts and formulas you need to know Signals & Systems For Dummies is your ticket to scoring high in your introductory signals and systems course.
  data engineering for dummies: Welding For Dummies Steven Robert Farnsworth, 2010-09-07 Get the know-how to weld like a pro Being a skilled welder is a hot commodity in today's job market, as well as a handy talent for industrious do-it-yourself repairpersons and hobbyists. Welding For Dummies gives you all the information you need to perform this commonly used, yet complex, task. This friendly, practical guide takes you from evaluating the material to be welded all the way through the step-by-step welding process, and everything in between. Plus, you'll get easy-to-follow guidance on how to apply finishing techniques and advice on how to adhere to safety procedures. Explains each type of welding, including stick, tig, mig, and fluxcore welding, as well as oxyfuel cutting, which receives sparse coverage in other books on welding Tips on the best welding technique to choose for a specific project Required training and certification information Whether you have no prior experience in welding or are looking for a thorough reference to supplement traditional welding instruction, the easy-to-understand information in Welding For Dummies is the ultimate resource for mastering this intricate skill.
  data engineering for dummies: Getting Started with Engineering Camille McCue, 2016-07-05 Fun engineering projects for kids Does your kid's love of 'tinkering' resemble that of a budding Thomas Edison? Then Getting Started with Engineering is guaranteed to spark their fascination! The focused, easy-to-complete projects offered inside are designed to broaden their understanding of basic engineering principles, challenge their problem-solving skills, and sharpen their creativity—all while having fun along the way. Engineers are experts on how things work—and this book is your youngster's best first step to developing the skills they need to think, design, and build things like the pros. The projects they'll complete feature a fun twist that appeal to their age group—from a tiny model roller coaster to a wearable toy that includes an electronic circuit—and the instructions are written in an easy-to-follow manner, making it possible for them to experience the pride and accomplishment of working independently. Appropriate for children aged 7-11 Simple explanations guide children to complete three projects using household items The full-color design, short page count, and easy-to-follow instructions are designed to appeal to kids Brought to you by the trusted For Dummies brand If you have a little engineer that could, Getting Started with Engineering is a great way to encourage their fascination of figuring out how things work.
  data engineering for dummies: Seven Databases in Seven Weeks Luc Perkins, Eric Redmond, Jim Wilson, 2018-04-05 Data is getting bigger and more complex by the day, and so are your choices in handling it. Explore some of the most cutting-edge databases available - from a traditional relational database to newer NoSQL approaches - and make informed decisions about challenging data storage problems. This is the only comprehensive guide to the world of NoSQL databases, with in-depth practical and conceptual introductions to seven different technologies: Redis, Neo4J, CouchDB, MongoDB, HBase, Postgres, and DynamoDB. This second edition includes a new chapter on DynamoDB and updated content for each chapter. While relational databases such as MySQL remain as relevant as ever, the alternative, NoSQL paradigm has opened up new horizons in performance and scalability and changed the way we approach data-centric problems. This book presents the essential concepts behind each database alongside hands-on examples that make each technology come alive. With each database, tackle a real-world problem that highlights the concepts and features that make it shine. Along the way, explore five database models - relational, key/value, columnar, document, and graph - from the perspective of challenges faced by real applications. Learn how MongoDB and CouchDB are strikingly different, make your applications faster with Redis and more connected with Neo4J, build a cluster of HBase servers using cloud services such as Amazon's Elastic MapReduce, and more. This new edition brings a brand new chapter on DynamoDB, updated code samples and exercises, and a more up-to-date account of each database's feature set. Whether you're a programmer building the next big thing, a data scientist seeking solutions to thorny problems, or a technology enthusiast venturing into new territory, you will find something to inspire you in this book. What You Need: You'll need a *nix shell (Mac OS or Linux preferred, Windows users will need Cygwin), Java 6 (or greater), and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.
  data engineering for dummies: Emerging Research in Data Engineering Systems and Computer Communications P. Venkata Krishna, Mohammad S. Obaidat, 2020-02-10 This book gathers selected papers presented at the 2nd International Conference on Computing, Communications and Data Engineering, held at Sri Padmavati Mahila Visvavidyalayam, Tirupati, India from 1 to 2 Feb 2019. Chiefly discussing major issues and challenges in data engineering systems and computer communications, the topics covered include wireless systems and IoT, machine learning, optimization, control, statistics, and social computing.
  data engineering for dummies: Intelligent Data Engineering and Automated Learning – IDEAL 2020 Cesar Analide, Paulo Novais, David Camacho, Hujun Yin, 2020-10-29 This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.
  data engineering for dummies: Spark: The Definitive Guide Bill Chambers, Matei Zaharia, 2018-02-08 Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
  data engineering for dummies: Technical Math For Dummies Barry Schoenborn, Bradley Simkins, 2010-07-13 Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses you’ll encounter as you work toward getting your degree, certification, or license in the skilled trades. You’ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. You’ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, you’ll find out how to perform basic arithmetic operations and solve word problems as they’re applied to specific trades. Maps to a course commonly required by vocational schools, community and technical college, or for certification in the skilled trades Covers the basic concepts of arithmetic, algebra, geometry, and trigonometry Helps professionals keep pace with job demands Whether you’re a student currently enrolled in a program or a professional who is already in the work force, Technical Math For Dummies gives you everything you need to improve your math skills and get ahead of the pack.
  data engineering for dummies: Computer Engineering for Babies Chase Roberts, 2021-10-20 An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
  data engineering for dummies: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
  data engineering for dummies: I Heart Logs Jay Kreps, 2014-09-23 Why a book about logs? That’s easy: the humble log is an abstraction that lies at the heart of many systems, from NoSQL databases to cryptocurrencies. Even though most engineers don’t think much about them, this short book shows you why logs are worthy of your attention. Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses—data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models. Go ahead and take the plunge with logs; you’re going love them. Learn how logs are used for programmatic access in databases and distributed systems Discover solutions to the huge data integration problem when more data of more varieties meet more systems Understand why logs are at the heart of real-time stream processing Learn the role of a log in the internals of online data systems Explore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn
  data engineering for dummies: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2013-07-01 Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …

Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …

Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …