Data Engineering Process Steps

Advertisement



  data engineering process steps: Data Engineering on Azure Vlad Riscutia, 2021-08-17 Build a data platform to the industry-leading standards set by Microsoft’s own infrastructure. Summary In Data Engineering on Azure you will learn how to: Pick the right Azure services for different data scenarios Manage data inventory Implement production quality data modeling, analytics, and machine learning workloads Handle data governance Using DevOps to increase reliability Ingesting, storing, and distributing data Apply best practices for compliance and access control Data Engineering on Azure reveals the data management patterns and techniques that support Microsoft’s own massive data infrastructure. Author Vlad Riscutia, a data engineer at Microsoft, teaches you to bring an engineering rigor to your data platform and ensure that your data prototypes function just as well under the pressures of production. You'll implement common data modeling patterns, stand up cloud-native data platforms on Azure, and get to grips with DevOps for both analytics and machine learning. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. About the book In Data Engineering on Azure you’ll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you’ll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms. What's inside Data inventory and data governance Assure data quality, compliance, and distribution Build automated pipelines to increase reliability Ingest, store, and distribute data Production-quality data modeling, analytics, and machine learning About the reader For data engineers familiar with cloud computing and DevOps. About the author Vlad Riscutia is a software architect at Microsoft. Table of Contents 1 Introduction PART 1 INFRASTRUCTURE 2 Storage 3 DevOps 4 Orchestration PART 2 WORKLOADS 5 Processing 6 Analytics 7 Machine learning PART 3 GOVERNANCE 8 Metadata 9 Data quality 10 Compliance 11 Distributing data
  data engineering process steps: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle
  data engineering process steps: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
  data engineering process steps: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.
  data engineering process steps: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
  data engineering process steps: Data Engineering Yupo Chan, John Talburt, Terry M. Talley, 2009-10-15 DATA ENGINEERING: Mining, Information, and Intelligence describes applied research aimed at the task of collecting data and distilling useful information from that data. Most of the work presented emanates from research completed through collaborations between Acxiom Corporation and its academic research partners under the aegis of the Acxiom Laboratory for Applied Research (ALAR). Chapters are roughly ordered to follow the logical sequence of the transformation of data from raw input data streams to refined information. Four discrete sections cover Data Integration and Information Quality; Grid Computing; Data Mining; and Visualization. Additionally, there are exercises at the end of each chapter. The primary audience for this book is the broad base of anyone interested in data engineering, whether from academia, market research firms, or business-intelligence companies. The volume is ideally suited for researchers, practitioners, and postgraduate students alike. With its focus on problems arising from industry rather than a basic research perspective, combined with its intelligent organization, extensive references, and subject and author indices, it can serve the academic, research, and industrial audiences.
  data engineering process steps: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.
  data engineering process steps: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite.
  data engineering process steps: Modelling and Management of Engineering Processes Michael Schabacker, Kilian Gericke, Nikoletta Szélig, Sándor Vajna, 2014-09-01 Innovative processes for the development of products and services are more and more considered as an organisational capability, which is recognised to be increasingly important for business success in today’s competitive environment. However, management and academia need a more profound understanding of these processes and to develop improved management approaches to exploit such business potentials. This book contains the proceedings of the 3rd International Conference on Modelling and Management of Engineering Processes (MMEP2013) held in Magdeburg, Germany, in November 2013. It includes contributions from international leading researchers in the fields of process modelling and process management. The conference topics were recent trends in modelling and management of engineering processes, potential synergies between different modelling approaches, future challenges for the management of engineering processes as well as future research in these areas.
  data engineering process steps: Data Engineering Fundamentals Sandeep Kumar Pandey, 2024-08-28 Data Engineering Fundamental: A Step by Step Approach Unlock the Power of Data with Practical Guidance from a Data Engineering Expert In today's data-driven world, organizations thrive on the ability to harness, process, and analyze data effectively. Data Engineering Fundamental: A Step by Step Approach is the ultimate guide for aspiring data engineers, data analysts, and professionals seeking to build a robust foundation in data engineering. This comprehensive book breaks down the core concepts of data engineering, offering a practical, hands-on approach to mastering key tools and techniques. From data pipelines and ETL processes to cloud technologies and database optimization, you'll explore a wide range of topics essential for managing and transforming data at scale. Key features include: Real-World Case Studies: Apply your learning to scenarios faced by data engineers in leading industries. Step-by-Step Guides: Detailed instructions to walk you through complex data engineering processes. Tool Mastery: In-depth coverage of popular platforms such as AWS, Azure, Databricks, and SQL databases. Best Practices: Learn how to design, optimize, and maintain efficient data pipelines.
  data engineering process steps: Model and Data Engineering Ladjel Bellatreche, Óscar Pastor, Jesús M. Almendros Jiménez, Yamine Aït-Ameur, 2016-09-06 This book constitutes the refereed proceedings of the 6th International Conference on Model and Data Engineering, MEDI 2016, held in Almería, Spain, in September 2016. The 17 full papers and 10 short papers presented together with 2 invited talks were carefully reviewed and selected from 62 submissions. The papers range on a wide spectrum covering fundamental contributions, applications and tool developments and improvements in model and data engineering activities.
  data engineering process steps: Data Engineering with Alteryx Paul Houghton, 2022-06-30 Build and deploy data pipelines with Alteryx by applying practical DataOps principles Key Features • Learn DataOps principles to build data pipelines with Alteryx • Build robust data pipelines with Alteryx Designer • Use Alteryx Server and Alteryx Connect to share and deploy your data pipelines Book Description Alteryx is a GUI-based development platform for data analytic applications. Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have. This book will teach you the principles of DataOps and how they can be used with the Alteryx software stack. You'll build data pipelines with Alteryx Designer and incorporate the error handling and data validation needed for reliable datasets. Next, you'll take the data pipeline from raw data, transform it into a robust dataset, and publish it to Alteryx Server following a continuous integration process. By the end of this Alteryx book, you'll be able to build systems for validating datasets, monitoring workflow performance, managing access, and promoting the use of your data sources. What you will learn • Build a working pipeline to integrate an external data source • Develop monitoring processes for the pipeline example • Understand and apply DataOps principles to an Alteryx data pipeline • Gain skills for data engineering with the Alteryx software stack • Work with spatial analytics and machine learning techniques in an Alteryx workflow Explore Alteryx workflow deployment strategies using metadata validation and continuous integration • Organize content on Alteryx Server and secure user access Who this book is for If you're a data engineer, data scientist, or data analyst who wants to set up a reliable process for developing data pipelines using Alteryx, this book is for you. You'll also find this book useful if you are trying to make the development and deployment of datasets more robust by following the DataOps principles. Familiarity with Alteryx products will be helpful but is not necessary.
  data engineering process steps: Data Engineering for Machine Learning Pipelines Pavan Kumar Narayanan,
  data engineering process steps: New Trends in Model and Data Engineering El Hassan Abdelwahed, Ladjel Bellatreche, Djamal Benslimane, Matteo Golfarelli, Stéphane Jean, Dominique Mery, Kazumi Nakamatsu, Carlos Ordonez, 2018-10-17 This book constitutes the thoroughly refereed papers of the workshops held at the 8th International Conference on New Trends in Model and Data Engineering, MEDI 2018, in Marrakesh, Morocco, in October 2018. The 19 full and the one short workshop papers were carefully reviewed and selected from 50 submissions. The papers are organized according to the 4 workshops: International Workshop on Modeling, Verification and Testing of Dependable Critical Systems, DETECT 2018, Model and Data Engineering for Social Good Workshop, MEDI4SG 2018, Second International Workshop on Cybersecurity and Functional Safety in Cyber-Physical Systems, IWCFS 2018, International Workshop on Formal Model for Mastering Multifaceted Systems, REMEDY 2018.
  data engineering process steps: Google Cloud Platform for Data Engineering Alasdair Gilchrist, Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable.
  data engineering process steps: Model and Data Engineering Christian Attiogbé, Sadok Ben Yahia, 2021-06-14 This book constitutes the refereed proceedings of the 10th International Conference on Model and Data Engineering, MEDI 2021, held in Tallinn, Estonia, in June 2021. The 16 full papers and 8 short papers presented in this book were carefully reviewed and selected from 47 submissions. Additionally, the volume includes 3 abstracts of invited talks. The papers cover broad research areas on both theoretical, systems and practical aspects. Some papers include mining complex databases, concurrent systems, machine learning, swarm optimization, query processing, semantic web, graph databases, formal methods, model-driven engineering, blockchain, cyber physical systems, IoT applications, and smart systems. Due to the Corona pandemic the conference was held virtually.
  data engineering process steps: Semantic Web Technologies for Intelligent Engineering Applications Stefan Biffl, Marta Sabou, 2016-11-14 This is the first book to explore how Semantic Web technologies (SWTs) can be used to create intelligent engineering applications (IEAs). Technology-specific chapters reflect the state of the art in relevant SWTs and offer guidelines on how they can be applied in multi-disciplinary engineering settings characteristic of engineering production systems. In addition, a selection of case studies from various engineering domains demonstrate how SWTs can be used to create IEAs that enable, for example, defect detection or constraint checking. Part I “Background and Requirements of Industrie 4.0 for Semantic Web Solutions” provides the background information needed to understand the book and addresses questions concerning the semantic challenges and requirements of Industrie 4.0, and which key SWT capabilities may be suitable for implementing engineering applications. In turn, Part II “Semantic Web-Enabled Data Integration in Multi-Disciplinary Engineering” focuses on how SWTs can be used for data integration in heterogeneous, multi-disciplinary engineering settings typically encountered in the creation of flexible production systems. Part III “Creating Intelligent Applications for Multi-Disciplinary Engineering” demonstrates how the integrated engineering data can be used to support the creation of IEAs, while Part IV “Related and Emerging Trends in the Use of Semantic Web in Engineering” presents an overview of the broader spectrum of approaches that make use of SWTs to support engineering settings. A final chapter then rounds out the book with an assessment of the strengths, weaknesses and compatibilities of SWTs and an outlook on future opportunities for applying SWTs to create IEAs in flexible industrial production systems. This book seeks to build a bridge between two communities: industrial production on one hand and Semantic Web on the other. Accordingly, stakeholders from both communities should find this book useful in their work. Semantic Web researchers will gain a better understanding of the challenges and requirements of the industrial production domain, offering them guidance in the development of new technologies and solutions for this important application area. In turn, engineers and managers from engineering domains will arrive at a firmer grasp of the benefits and limitations of using SWTs, helping them to select and adopt appropriate SWTs more effectively. In addition, researchers and students interested in industrial production-related issues will gain valuable insights into how and to what extent SWTs can help to address those issues.
  data engineering process steps: Enterprise Big Data Engineering, Analytics, and Management Atzmueller, Martin, 2016-06-01 The significance of big data can be observed in any decision-making process as it is often used for forecasting and predictive analytics. Additionally, big data can be used to build a holistic view of an enterprise through a collection and analysis of large data sets retrospectively. As the data deluge deepens, new methods for analyzing, comprehending, and making use of big data become necessary. Enterprise Big Data Engineering, Analytics, and Management presents novel methodologies and practical approaches to engineering, managing, and analyzing large-scale data sets with a focus on enterprise applications and implementation. Featuring essential big data concepts including data mining, artificial intelligence, and information extraction, this publication provides a platform for retargeting the current research available in the field. Data analysts, IT professionals, researchers, and graduate-level students will find the timely research presented in this publication essential to furthering their knowledge in the field.
  data engineering process steps: Intelligent Data Engineering and Automated Learning – IDEAL 2018 Hujun Yin, David Camacho, Paulo Novais, Antonio J. Tallón-Ballesteros, 2018-11-08 This two-volume set LNCS 11314 and 11315 constitutes the thoroughly refereed conference proceedings of the 19th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2018, held in Madrid, Spain, in November 2018. The 125 full papers presented were carefully reviewed and selected from 204 submissions. These papers provided a timely sample of the latest advances in data engineering and automated learning, from methodologies, frameworks and techniques to applications. In addition to various topics such as evolutionary algorithms, deep learning neural networks, probabilistic modelling, particle swarm intelligence, big data analytics, and applications in image recognition, regression, classification, clustering, medical and biological modelling and prediction, text processing and social media analysis.
  data engineering process steps: Google Cloud Professional Data Engineer , 2024-10-26 Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
  data engineering process steps: Python Automation Mastery Rob Botwright, 101-01-01 🚀 PYTHON AUTOMATION MASTERY: From Novice to Pro Book Bundle 🚀 Are you ready to unlock the full potential of Python for automation? Look no further than the Python Automation Mastery book bundle, a comprehensive collection designed to take you from a beginner to an automation pro! 📘 Book 1 - Python Automation Mastery: A Beginner's Guide · Perfect for newcomers to programming and Python. · Learn Python fundamentals and the art of automation. · Start automating everyday tasks right away! 📗 Book 2 - Python Automation Mastery: Intermediate Techniques · Take your skills to the next level. · Discover web scraping, scripting, error handling, and data manipulation. · Tackle real-world automation challenges with confidence. 📙 Book 3 - Python Automation Mastery: Advanced Strategies · Explore advanced automation concepts. · Master object-oriented programming and external libraries. · Design and implement complex automation projects. 📕 Book 4 - Python Automation Mastery: Expert-Level Solutions · Become an automation architect. · Handle high-level use cases in AI, network security, and data analysis. · Elevate your automation skills to expert status. 🌟 What Makes This Bundle Special? · Comprehensive journey from novice to pro in one bundle. · Easy-to-follow, step-by-step guides in each book. · Real-world examples and hands-on exercises. · Learn ethical automation practices and best strategies. · Access a treasure trove of automation knowledge. 🚀 Why Python? Python is the go-to language for automation due to its simplicity and versatility. Whether you're looking to streamline everyday tasks or tackle complex automation challenges, Python is your ultimate tool. 📈 Invest in Your Future Automation skills are in high demand across industries. By mastering Python automation, you'll enhance your career prospects, supercharge your productivity, and become a sought-after automation expert. 📚 Grab the Complete Bundle Now! Don't miss out on this opportunity to become a Python automation master. Get all four books in one bundle and embark on your journey from novice to pro. Buy now and transform your Python skills into automation mastery!
  data engineering process steps: Essential PySpark for Scalable Data Analytics Sreeram Nudurupati, 2021-10-29 Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key FeaturesDiscover how to convert huge amounts of raw data into meaningful and actionable insightsUse Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analyticsPerform data ingestion, cleansing, and integration for ML, data analytics, and data visualizationBook Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learnUnderstand the role of distributed computing in the world of big dataGain an appreciation for Apache Spark as the de facto go-to for big data processingScale out your data analytics process using Apache SparkBuild data pipelines using data lakes, and perform data visualization with PySpark and Spark SQLLeverage the cloud to build truly scalable and real-time data analytics applicationsExplore the applications of data science and scalable machine learning with PySparkIntegrate your clean and curated data with BI and SQL analysis toolsWho this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts who are already using data analytics to explore distributed and scalable data analytics. Basic to intermediate knowledge of the disciplines of data engineering, data science, and SQL analytics is expected. General proficiency in using any programming language, especially Python, and working knowledge of performing data analytics using frameworks such as pandas and SQL will help you to get the most out of this book.
  data engineering process steps: Data Engineering with AWS Gareth Eagar, 2021-12-29 The missing expert-led manual for the AWS ecosystem — go from foundations to building data engineering pipelines effortlessly Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Learn about common data architectures and modern approaches to generating value from big data Explore AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Learn how to architect and implement data lakes and data lakehouses for big data analytics from a data lakes expert Book DescriptionWritten by a Senior Data Architect with over twenty-five years of experience in the business, Data Engineering for AWS is a book whose sole aim is to make you proficient in using the AWS ecosystem. Using a thorough and hands-on approach to data, this book will give aspiring and new data engineers a solid theoretical and practical foundation to succeed with AWS. As you progress, you’ll be taken through the services and the skills you need to architect and implement data pipelines on AWS. You'll begin by reviewing important data engineering concepts and some of the core AWS services that form a part of the data engineer's toolkit. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how the transformed data is used by various data consumers. You’ll also learn about populating data marts and data warehouses along with how a data lakehouse fits into the picture. Later, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. In the final chapters, you'll understand how the power of machine learning and artificial intelligence can be used to draw new insights from data. By the end of this AWS book, you'll be able to carry out data engineering tasks and implement a data pipeline on AWS independently.What you will learn Understand data engineering concepts and emerging technologies Ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Run complex SQL queries on data lake data using Amazon Athena Load data into a Redshift data warehouse and run queries Create a visualization of your data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Who this book is for This book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts while gaining practical experience with common data engineering services on AWS will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along.
  data engineering process steps: Data Engineering with AWS Cookbook Trâm Ngọc Phạm, Gonzalo Herreros González, Viquar Khan, Huda Nofal, 2024-11-29 Master AWS data engineering services and techniques for orchestrating pipelines, building layers, and managing migrations Key Features Get up to speed with the different AWS technologies for data engineering Learn the different aspects and considerations of building data lakes, such as security, storage, and operations Get hands on with key AWS services such as Glue, EMR, Redshift, QuickSight, and Athena for practical learning Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPerforming data engineering with Amazon Web Services (AWS) combines AWS's scalable infrastructure with robust data processing tools, enabling efficient data pipelines and analytics workflows. This comprehensive guide to AWS data engineering will teach you all you need to know about data lake management, pipeline orchestration, and serving layer construction. Through clear explanations and hands-on exercises, you’ll master essential AWS services such as Glue, EMR, Redshift, QuickSight, and Athena. Additionally, you’ll explore various data platform topics such as data governance, data quality, DevOps, CI/CD, planning and performing data migration, and creating Infrastructure as Code. As you progress, you will gain insights into how to enrich your platform and use various AWS cloud services such as AWS EventBridge, AWS DataZone, and AWS SCT and DMS to solve data platform challenges. Each recipe in this book is tailored to a daily challenge that a data engineer team faces while building a cloud platform. By the end of this book, you will be well-versed in AWS data engineering and have gained proficiency in key AWS services and data processing techniques. You will develop the necessary skills to tackle large-scale data challenges with confidence.What you will learn Define your centralized data lake solution, and secure and operate it at scale Identify the most suitable AWS solution for your specific needs Build data pipelines using multiple ETL technologies Discover how to handle data orchestration and governance Explore how to build a high-performing data serving layer Delve into DevOps and data quality best practices Migrate your data from on-premises to AWS Who this book is for If you're involved in designing, building, or overseeing data solutions on AWS, this book provides proven strategies for addressing challenges in large-scale data environments. Data engineers as well as big data professionals looking to enhance their understanding of AWS features for optimizing their workflow, even if they're new to the platform, will find value. Basic familiarity with AWS security (users and roles) and command shell is recommended.
  data engineering process steps: Model and Data Engineering Yamine Ait Ameur, Ladjel Bellatreche, George A. Papadopoulos, 2014-09-19 This book constitutes the refereed proceedings of the 4th International Conference on Model and Data Engineering, MEDI 2014, held in Larnaca, Cyprus, in September 2014. The 16 long papers and 12 short papers presented together with 2 invited talks were carefully reviewed and selected from 64 submissions. The papers specifically focus on model engineering and data engineering with special emphasis on most recent and relevant topics in the areas of modeling and models engineering; data engineering; modeling for data management; and applications and tooling.
  data engineering process steps: DATA ENGINEERING IN THE AGE OF AI GENERATIVE MODELS AND DEEP LEARNING UNLEASHED Siddharth Konkimalla, MANIKANTH SARISA, MOHIT SURENDER REDDY, SANJAY BAUSKAR, .The advances in data engineering technologies, including big data infrastructure, knowledge graphs, and mechanism design, will have a long-lasting impact on artificial intelligence (AI) research and development. This paper introduces data engineering in AI with a focus on the basic concepts, applications, and emerging frontiers. As a new research field, most data engineering in AI is yet to be properly defined, and there are abundant problems and applications to be explored. The primary purpose of this paper is to expose the AI community to this shining star of data science, stimulate AI researchers to think differently and form a roadmap of data engineering for AI. Since this is primarily an informal essay rather than an academic paper, its coverage is limited. The vast majority of the stimulating studies and ongoing projects are not mentioned in the paper.
  data engineering process steps: Ultimate Data Engineering with Databricks Mayank Malhotra, 2024-02-14 Navigating Databricks with Ease for Unparalleled Data Engineering Insights. KEY FEATURES ● Navigate Databricks with a seamless progression from fundamental principles to advanced engineering techniques. ● Gain hands-on experience with real-world examples, ensuring immediate relevance and practicality. ● Discover expert insights and best practices for refining your data engineering skills and achieving superior results with Databricks. DESCRIPTION Ultimate Data Engineering with Databricks is a comprehensive handbook meticulously designed for professionals aiming to enhance their data engineering skills through Databricks. Bridging the gap between foundational and advanced knowledge, this book employs a step-by-step approach with detailed explanations suitable for beginners and experienced practitioners alike. Focused on practical applications, the book employs real-world examples and scenarios to teach how to construct, optimize, and maintain robust data pipelines. Emphasizing immediate applicability, it equips readers to address real data challenges using Databricks effectively. The goal is not just understanding Databricks but mastering it to offer tangible solutions. Beyond technical skills, the book imparts best practices and expert tips derived from industry experience, aiding readers in avoiding common pitfalls and adopting strategies for optimal data engineering solutions. This book will help you develop the skills needed to make impactful contributions to organizations, enhancing your value as data engineering professionals in today's competitive job market. WHAT WILL YOU LEARN ● Acquire proficiency in Databricks fundamentals, enabling the construction of efficient data pipelines. ● Design and implement high-performance data solutions for scalability. ● Apply essential best practices for ensuring data integrity in pipelines. ● Explore advanced Databricks features for tackling complex data tasks. ● Learn to optimize data pipelines for streamlined workflows. WHO IS THIS BOOK FOR? This book caters to a diverse audience, including data engineers, data architects, BI analysts, data scientists and technology enthusiasts. Suitable for both professionals and students, the book appeals to those eager to master Databricks and stay at the forefront of data engineering trends. A basic understanding of data engineering concepts and familiarity with cloud computing will enhance the learning experience. TABLE OF CONTENTS 1. Fundamentals of Data Engineering 2. Mastering Delta Tables in Databricks 3. Data Ingestion and Extraction 4. Data Transformation and ETL Processes 5. Data Quality and Validation 6. Data Modeling and Storage 7. Data Orchestration and Workflow Management 8. Performance Tuning and Optimization 9. Scalability and Deployment Considerations 10. Data Security and Governance Last Words Index
  data engineering process steps: Data Engineering with Google Cloud Platform Adi Wijaya, 2024-04-30 Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you.
  data engineering process steps: Executing Data Quality Projects Danette McGilvray, 2021-05-27 Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
  data engineering process steps: Data Engineering with Scala and Spark Eric Tome, Rupam Bhattacharjee, David Radford, 2024-01-31 Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate data Key Features Transform data into a clean and trusted source of information for your organization using Scala Build streaming and batch-processing pipelines with step-by-step explanations Implement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD) Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learn Set up your development environment to build pipelines in Scala Get to grips with polymorphic functions, type parameterization, and Scala implicits Use Spark DataFrames, Datasets, and Spark SQL with Scala Read and write data to object stores Profile and clean your data using Deequ Performance tune your data pipelines using Scala Who this book is for This book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies.
  data engineering process steps: Applications of Machine Learning and Deep Learning for Privacy and Cybersecurity Lobo, Victor, Correia, Anacleto, 2022-06-24 The growth of innovative cyber threats, many based on metamorphosing techniques, has led to security breaches and the exposure of critical information in sites that were thought to be impenetrable. The consequences of these hacking actions were, inevitably, privacy violation, data corruption, or information leaking. Machine learning and data mining techniques have significant applications in the domains of privacy protection and cybersecurity, including intrusion detection, authentication, and website defacement detection, that can help to combat these breaches. Applications of Machine Learning and Deep Learning for Privacy and Cybersecurity provides machine and deep learning methods for analysis and characterization of events regarding privacy and anomaly detection as well as for establishing predictive models for cyber attacks or privacy violations. It provides case studies of the use of these techniques and discusses the expected future developments on privacy and cybersecurity applications. Covering topics such as behavior-based authentication, machine learning attacks, and privacy preservation, this book is a crucial resource for IT specialists, computer engineers, industry professionals, privacy specialists, security professionals, consultants, researchers, academicians, and students and educators of higher education.
  data engineering process steps: Model and Data Engineering Yassine Ouhammou, Mirjana Ivanovic, Alberto Abelló, Ladjel Bellatreche, 2017-09-18 This book constitutes the refereed proceedings of the 7th International Conference on Model and Data Engineering, MEDI 2017, held in Barcelona, Spain, in October 2017. The 20 full papers and 7 short papers presented together with 2 invited talks were carefully reviewed and selected from 69 submissions. The papers are organized in topical sections on domain specific languages; systems and software assessments; modeling and formal methods; data engineering; data exploration and exp loitation; modeling heterogeneity and behavior; model-based applications; and ontology-based applications.
  data engineering process steps: Bartholomew and the Oobleck Dr. Seuss, 2013-11-05 Join Bartholomew Cubbins in Dr. Seuss’s Caldecott Honor–winning picture book about a king’s magical mishap! Bored with rain, sunshine, fog, and snow, King Derwin of Didd summons his royal magicians to create something new and exciting to fall from the sky. What he gets is a storm of sticky green goo called Oobleck—which soon wreaks havock all over his kingdom! But with the assistance of the wise page boy Bartholomew, the king (along with young readers) learns that the simplest words can sometimes solve the stickiest problems.
  data engineering process steps: Azure Data Engineer Associate Certification Guide Giacinto Palmieri, Surendra Mettapalli, Newton Alex, 2024-05-23 Achieve Azure Data Engineer Associate certification success with this DP-203 exam guide Purchase of this book unlocks access to web-based exam prep resources including mock exams, flashcards, and exam tips, and the eBook PDF Key Features Prepare for the DP-203 exam with expert insights, real-world examples, and practice resources Gain up-to-date skills to thrive in the dynamic world of cloud data engineering Build secure and sustainable data solutions using Azure services Book DescriptionOne of the top global cloud providers, Azure offers extensive data hosting and processing services, driving widespread cloud adoption and creating a high demand for skilled data engineers. The Azure Data Engineer Associate (DP-203) certification is a vital credential, demonstrating your proficiency as an Azure data engineer to prospective employers. This comprehensive exam guide is designed for both beginners and seasoned professionals, aligned with the latest DP-203 certification exam, to help you pass the exam on your first try. The book provides a foundational understanding of IaaS, PaaS, and SaaS, starting with core concepts like virtual machines (VMs), VNETS, and App Services and progressing to advanced topics such as data storage, processing, and security. What sets this exam guide apart is its hands-on approach, seamlessly integrating theory with practice through real-world examples, practical exercises, and insights into Azure's evolving ecosystem. Additionally, you'll unlock lifetime access to supplementary practice material on an online platform, including mock exams, interactive flashcards, and exam tips, ensuring a comprehensive exam prep experience. By the end of this book, you’ll not only be ready to excel in the DP-203 exam, but also be equipped to tackle complex challenges as an Azure data engineer.What you will learn Design and implement data lake solutions with batch and stream pipelines Secure data with masking, encryption, RBAC, and ACLs Perform standard extract, transform, and load (ETL) and analytics operations Implement different table geometries in Azure Synapse Analytics Write Spark code, design ADF pipelines, and handle batch and stream data Use Azure Databricks or Synapse Spark for data processing using Notebooks Leverage Synapse Analytics and Purview for comprehensive data exploration Confidently manage VMs, VNETS, App Services, and more Who this book is for This book is for data engineers who want to take the Azure Data Engineer Associate (DP-203) exam and delve deep into the Azure cloud stack. Engineers and product managers new to Azure or preparing for interviews with companies working on Azure technologies will find invaluable hands-on experience with Azure data technologies through this book. A basic understanding of cloud technologies, ETL, and databases will assist with understanding the concepts covered.
  data engineering process steps: Intelligent Data Engineering and Analytics Suresh Chandra Satapathy, Peter Peer, Jinshan Tang, Vikrant Bhateja, Anumoy Ghosh, 2022-02-28 This book presents the proceedings of the 9th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2021), held at NIT Mizoram, Aizwal, Mizoram, India, during June 25 – 26, 2021. FICTA conference aims to bring together researchers, scientists, engineers, and practitioners to exchange their new ideas and experiences in the domain of intelligent computing theories with prospective applications to various engineering disciplines. This volume covers broad areas of Intelligent Data Engineering and Analytics. The conference papers included herein presents both theoretical as well as practical aspects of data intensive computing, data mining, big data, knowledge management, intelligent data acquisition and processing from sensors, data communication networks protocols and architectures, etc. The volume will also serve as a knowledge centre for students of post-graduate level in various engineering disciplines.
  data engineering process steps: Ultimate Azure Data Engineering Ashish Agarwal, 2024-07-22 TAGLINE Discover the world of data engineering in an on-premises setting versus the Azure cloud KEY FEATURES ● Explore Azure data engineering from foundational concepts to advanced techniques, spanning SQL databases, ETL processes, and cloud-native solutions. ● Learn to implement real-world data projects with Azure services, covering data integration, storage, and analytics, tailored for diverse business needs. ● Prepare effectively for Azure data engineering certifications with detailed exam-focused content and practical exercises to reinforce learning. DESCRIPTION Embark on a comprehensive journey into Azure data engineering with “Ultimate Azure Data Engineering”. Starting with foundational topics like SQL and relational database concepts, you'll progress to comparing data engineering practices in Azure versus on-premises environments. Next, you will dive deep into Azure cloud fundamentals, learning how to effectively manage heterogeneous data sources and implement robust Extract, Transform, Load (ETL) concepts using Azure Data Factory, mastering the orchestration of data workflows and pipeline automation. The book then moves to explore advanced database design strategies and discover best practices for optimizing data performance and ensuring stringent data security measures. You will learn to visualize data insights using Power BI and apply these skills to real-world scenarios. Whether you're aiming to excel in your current role or preparing for Azure data engineering certifications, this book equips you with practical knowledge and hands-on expertise to thrive in the dynamic field of Azure data engineering. WHAT WILL YOU LEARN ● Master the core principles and methodologies that drive data engineering such as data processing, storage, and management techniques. ● Gain a deep understanding of Structured Query Language (SQL) and relational database management systems (RDBMS) for Azure Data Engineering. ● Learn about Azure cloud services for data engineering, such as Azure SQL Database, Azure Data Factory, Azure Synapse Analytics, and Azure Blob Storage. ● Gain proficiency to orchestrate data workflows, schedule data pipelines, and monitor data integration processes across cloud and hybrid environments. ● Design optimized database structures and data models tailored for performance and scalability in Azure. ● Implement techniques to optimize data performance such as query optimization, caching strategies, and resource utilization monitoring. ● Learn how to visualize data insights effectively using tools like Power BI to create interactive dashboards and derive data-driven insights. ● Equip yourself with the knowledge and skills needed to pass Microsoft Azure data engineering certifications. WHO IS THIS BOOK FOR? This book is tailored for a diverse audience including aspiring and current Azure data engineers, data analysts, and data scientists, along with database and BI developers, administrators, and analysts. It is an invaluable resource for those aiming to obtain Azure data engineering certifications. TABLE OF CONTENTS 1. Introduction to Data Engineering 2. Understanding SQL and RDBMS Concepts 3. Data Engineering: Azure Versus On-Premises 4. Azure Cloud Concepts 5. Working with Heterogenous Data Sources 6. ETL Concepts 7. Database Design and Modeling 8. Performance Best Practices and Data Security 9. Data Visualization and Application in Real World 10. Data Engineering Certification Guide Index
  data engineering process steps: Conceptual Modeling for Discrete-Event Simulation Stewart Robinson, Roger Brooks, Kathy Kotiadis, Durk-Jouke Van Der Zee, 2010-08-02 Bringing together an international group of researchers involved in military, business, and health modeling and simulation, Conceptual Modeling for Discrete-Event Simulation presents a comprehensive view of the current state of the art in the field. The book addresses a host of issues, including: What is a conceptual model?How is conceptual modelin
  data engineering process steps: Architecting IoT Solutions on Azure Blaize Stewart, 2024-01-09 How can you make sense of the complex IoT landscape? With dozens of components ranging from devices to metadata about the devices, it's easy to get lost among the possibilities. But it's not impossible if you have the right guide to help you navigate all the complexities. This practical book shows developers, architects, and IT managers how to build IoT solutions on Azure. Author Blaize Stewart presents a comprehensive view of the IoT landscape. You'll learn about devices, device management at scale, and the tools Azure provides for building globally distributed systems. You'll also explore ways to organize data by choosing the appropriate dataflow and data storage technologies. The final chapters examine data consumption and solutions for delivering data to consumers with Azure. Get the architectural guidance you need to create holistic solutions with devices, data, and everything in between. This book helps you: Meet the demands of an IoT solution with Azure-provided functionality Use Azure to create complete scalable and secure IoT systems Understand how to articulate IoT architecture and solutions Guide conversations around common problems that IoT applications solve Select the appropriate technologies in the Azure space to build IoT applications
  data engineering process steps: Data Engineering for AI/ML Pipelines Venkata Karthik Penikalapati, Mitesh Mangaonkar, 2024-10-18 DESCRIPTION Data engineering is the art of building and managing data pipelines that enable efficient data flow for AI/ML projects. This book serves as a comprehensive guide to data engineering for AI/ML systems, equipping you with the knowledge and skills to create robust and scalable data infrastructure. This book covers everything from foundational concepts to advanced techniques. It begins by introducing the role of data engineering in AI/ML, followed by exploring the lifecycle of data, from data generation and collection to storage and management. Readers will learn how to design robust data pipelines, transform data, and deploy AI/ML models effectively for real-world applications. The book also explains security, privacy, and compliance, ensuring responsible data management. Finally, it explores future trends, including automation, real-time data processing, and advanced architectures, providing a forward-looking perspective on the evolution of data engineering. By the end of this book, you will have a deep understanding of the principles and practices of data engineering for AI/ML. You will be able to design and implement efficient data pipelines, select appropriate technologies, ensure data quality and security, and leverage data for building successful AI/ML models. KEY FEATURES ● Comprehensive guide to building scalable AI/ML data engineering pipelines. ● Practical insights into data collection, storage, processing, and analysis. ● Emphasis on data security, privacy, and emerging trends in AI/ML. WHAT YOU WILL LEARN ● Architect scalable data solutions for AI/ML-driven applications. ● Design and implement efficient data pipelines for machine learning. ● Ensure data security and privacy in AI/ML systems. ● Leverage emerging technologies in data engineering for AI/ML. ● Optimize data transformation processes for enhanced model performance. WHO THIS BOOK IS FOR This book is ideal for software engineers, ML practitioners, IT professionals, and students wanting to master data pipelines for AI/ML. It is also valuable for developers and system architects aiming to expand their knowledge of data-driven technologies. TABLE OF CONTENTS 1. Introduction to Data Engineering for AI/ML 2. Lifecycle of AI/ML Data Engineering 3. Architecting Data Solutions for AI/ML 4. Technology Selection in AI/ML Data Engineering 5. Data Generation and Collection for AI/ML 6. Data Storage and Management in AI/ML 7. Data Ingestion and Preparation for ML 8. Transforming and Processing Data for AI/ML 9. Model Deployment and Data Serving 10. Security and Privacy in AI/ML Data Engineering 11. Emerging Trends and Future Direction
  data engineering process steps: Software Project Management for Distributed Computing Zaigham Mahmood, 2017-04-04 This unique volume explores cutting-edge management approaches to developing complex software that is efficient, scalable, sustainable, and suitable for distributed environments. Practical insights are offered by an international selection of pre-eminent authorities, including case studies, best practices, and balanced corporate analyses. Emphasis is placed on the use of the latest software technologies and frameworks for life-cycle methods, including the design, implementation and testing stages of software development. Topics and features: · Reviews approaches for reusability, cost and time estimation, and for functional size measurement of distributed software applications · Discusses the core characteristics of a large-scale defense system, and the design of software project management (SPM) as a service · Introduces the 3PR framework, research on crowdsourcing software development, and an innovative approach to modeling large-scale multi-agent software systems · Examines a system architecture for ambient assisted living, and an approach to cloud migration and management assessment · Describes a software error proneness mechanism, a novel Scrum process for use in the defense domain, and an ontology annotation for SPM in distributed environments · Investigates the benefits of agile project management for higher education institutions, and SPM that combines software and data engineering This important text/reference is essential reading for project managers and software engineers involved in developing software for distributed computing environments. Students and researchers interested in SPM technologies and frameworks will also find the work to be an invaluable resource. Prof. Zaigham Mahmood is a Senior Technology Consultant at Debesis Education UK and an Associate Lecturer (Research) at the University of Derby, UK. He also holds positions as Foreign Professor at NUST and IIU in Islamabad, Pakistan, and Professor Extraordinaire at the North West University Potchefstroom, South Africa.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …