data analysis in clinical research: Small Clinical Trials Institute of Medicine, Board on Health Sciences Policy, Committee on Strategies for Small-Number-Participant Clinical Research Trials, 2001-01-01 Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a large trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement. |
data analysis in clinical research: Clinical Trial Data Analysis Using R and SAS Ding-Geng (Din) Chen, Karl E. Peace, Pinggao Zhang, 2017-06-01 Review of the First Edition The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods.—Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials. |
data analysis in clinical research: Fundamentals of Clinical Data Science Pieter Kubben, Michel Dumontier, Andre Dekker, 2018-12-21 This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience. |
data analysis in clinical research: Sharing Clinical Trial Data Institute of Medicine, Board on Health Sciences Policy, Committee on Strategies for Responsible Sharing of Clinical Trial Data, 2015-04-20 Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients. |
data analysis in clinical research: The Prevention and Treatment of Missing Data in Clinical Trials National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Handling Missing Data in Clinical Trials, 2010-12-21 Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data. |
data analysis in clinical research: Understanding Clinical Data Analysis Ton J. Cleophas, Aeilko H. Zwinderman, 2016-08-23 This textbook consists of ten chapters, and is a must-read to all medical and health professionals, who already have basic knowledge of how to analyze their clinical data, but still, wonder, after having done so, why procedures were performed the way they were. The book is also a must-read to those who tend to submerge in the flood of novel statistical methodologies, as communicated in current clinical reports, and scientific meetings. In the past few years, the HOW-SO of current statistical tests has been made much more simple than it was in the past, thanks to the abundance of statistical software programs of an excellent quality. However, the WHY-SO may have been somewhat under-emphasized. For example, why do statistical tests constantly use unfamiliar terms, like probability distributions, hypothesis testing, randomness, normality, scientific rigor, and why are Gaussian curves so hard, and do they make non-mathematicians getting lost all the time? The book will cover the WHY-SOs. |
data analysis in clinical research: Clinical Trial Data Analysis Using R Ding-Geng (Din) Chen, Karl E. Peace, 2010-12-14 Too often in biostatistical research and clinical trials, a knowledge gap exists between developed statistical methods and the applications of these methods. Filling this gap, Clinical Trial Data Analysis Using R provides a thorough presentation of biostatistical analyses of clinical trial data and shows step by step how to implement the statistical methods using R. The book’s practical, detailed approach draws on the authors’ 30 years of real-world experience in biostatistical research and clinical development. Each chapter presents examples of clinical trials based on the authors’ actual experiences in clinical drug development. Various biostatistical methods for analyzing the data are then identified. The authors develop analysis code step by step using appropriate R packages and functions. This approach enables readers to gain an understanding of the analysis methods and R implementation so that they can use R to analyze their own clinical trial data. With step-by-step illustrations of R implementations, this book shows how to easily use R to simulate and analyze data from a clinical trial. It describes numerous up-to-date statistical methods and offers sound guidance on the processes involved in clinical trials. |
data analysis in clinical research: Clinical Trials Duolao Wang, Ameet Bakhai, 2006 This book explains statistics specifically for a medically literate audience. Readers gain not only an understanding of the basics of medical statistics, but also a critical insight into how to review and evaluate clinical trial evidence. |
data analysis in clinical research: Introduction to Statistical Methods for Clinical Trials Thomas D. Cook, David L DeMets, 2007-11-19 Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials. |
data analysis in clinical research: Statistical Design, Monitoring, and Analysis of Clinical Trials Weichung Joe Shih, Joseph Aisner, 2021-10-26 Statistical Design, Monitoring, and Analysis of Clinical Trials, Second Edition concentrates on the biostatistics component of clinical trials. This new edition is updated throughout and includes five new chapters. Developed from the authors' courses taught to public health and medical students, residents, and fellows during the past 20 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, phase 2/3 seamless design and trials with predictive biomarkers, exploit multiple testing procedures, and explain the concept of estimand, intercurrent events, and different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students and practitioners a multidisciplinary understanding of the concepts and techniques involved in designing, monitoring, and analyzing various types of trials. The book's balanced set of homework assignments and in-class exercises are appropriate for students and researchers in (bio)statistics, epidemiology, medicine, pharmacy, and public health. |
data analysis in clinical research: Access to Non-Summary Clinical Trial Data for Research Purposes Under EU Law Daria Kim, 2021-10-19 This book draws a unique perspective on the regulation of access to clinical trial data as a case on research and knowledge externalities. Notwithstanding numerous potential benefits for medical research and public health, many jurisdictions have struggled to ensure access to clinical trial data, even at the level of the trial results. Pro-access policy initiatives have been strongly opposed by research-based drug companies arguing that mandatory data disclosure impedes their innovation incentives. Conventionally, access to test data has been approached from the perspective of transparency and research ethics. The book offers a complementary view and considers access to individual patient-level trial data for exploratory analysis as a matter of research and innovation policy. Such approach appears to be especially relevant in the data-driven economy where digital data constitutes a valuable economic resource. The study seeks to define how the rules of access to clinical trial data should be designed to reconcile the policy objectives of leveraging the research potential of data through secondary analysis, on the one hand, and protecting economic incentives of research-based drug companies, on the other hand. Overall, it is argued that the mainstream innovation-based justification for exclusive control over the outcomes of research and development can hardly rationalise trial sponsors’ control over primary data from trials. Instead, access to such data and its robust analysis should be prioritised. |
data analysis in clinical research: Medical Statistics Jennifer Peat, Belinda Barton, 2008-04-15 Holistic approach to understanding medical statistics This hands-on guide is much more than a basic medical statistics introduction. It equips you with the statistical tools required for evidence-based clinical research. Each chapter provides a clear step-by-step guide to each statistical test with practical instructions on how to generate and interpret the numbers, and present the results as scientific tables or graphs. Showing you how to: analyse data with the help of data set examples (Click here to download datasets) select the correct statistics and report results for publication or presentation understand and critically appraise results reported in the literature Each statistical test is linked to the research question and the type of study design used. There are also checklists for critically appraising the literature and web links to useful internet sites. Clear and concise explanations, combined with plenty of examples and tabulated explanations are based on the authors’ popular medical statistics courses. Critical appraisal guidelines at the end of each chapter help the reader evaluate the statistical data in their particular contexts. |
data analysis in clinical research: Design of Experiments and Advanced Statistical Techniques in Clinical Research Basavarajaiah D. M., Bhamidipati Narasimha Murthy, 2020-11-05 Recent Statistical techniques are one of the basal evidence for clinical research, a pivotal in handling new clinical research and in evaluating and applying prior research. This book explores various choices of statistical tools and mechanisms, analyses of the associations among different clinical attributes. It uses advanced statistical methods to describe real clinical data sets, when the clinical processes being examined are still in the process. This book also discusses distinct methods for building predictive and probability distribution models in clinical situations and ways to assess the stability of these models and other quantitative conclusions drawn by realistic experimental data sets. Design of experiments and recent posthoc tests have been used in comparing treatment effects and precision of the experimentation. This book also facilitates clinicians towards understanding statistics and enabling them to follow and evaluate the real empirical studies (formulation of randomized control trial) that pledge insight evidence base for clinical practices. This book will be a useful resource for clinicians, postgraduates scholars in medicines, clinical research beginners and academicians to nurture high-level statistical tools with extensive scope. |
data analysis in clinical research: Sequential Experimentation in Clinical Trials Jay Bartroff, Tze Leung Lai, Mei-Chiung Shih, 2012-12-12 Sequential Experimentation in Clinical Trials: Design and Analysis is developed from decades of work in research groups, statistical pedagogy, and workshop participation. Different parts of the book can be used for short courses on clinical trials, translational medical research, and sequential experimentation. The authors have successfully used the book to teach innovative clinical trial designs and statistical methods for Statistics Ph.D. students at Stanford University. There are additional online supplements for the book that include chapter-specific exercises and information. Sequential Experimentation in Clinical Trials: Design and Analysis covers the much broader subject of sequential experimentation that includes group sequential and adaptive designs of Phase II and III clinical trials, which have attracted much attention in the past three decades. In particular, the broad scope of design and analysis problems in sequential experimentation clearly requires a wide range of statistical methods and models from nonlinear regression analysis, experimental design, dynamic programming, survival analysis, resampling, and likelihood and Bayesian inference. The background material in these building blocks is summarized in Chapter 2 and Chapter 3 and certain sections in Chapter 6 and Chapter 7. Besides group sequential tests and adaptive designs, the book also introduces sequential change-point detection methods in Chapter 5 in connection with pharmacovigilance and public health surveillance. Together with dynamic programming and approximate dynamic programming in Chapter 3, the book therefore covers all basic topics for a graduate course in sequential analysis designs. |
data analysis in clinical research: Understanding Clinical Data Analysis Ton J. Cleophas, Aeilko H. Zwinderman, 2017 This textbook consists of ten chapters, and is a must-read to all medical and health professionals, who already have basic knowledge of how to analyze their clinical data, but still, wonder, after having done so, why procedures were performed the way they were. The book is also a must-read to those who tend to submerge in the flood of novel statistical methodologies, as communicated in current clinical reports, and scientific meetings. In the past few years, the HOW-SO of current statistical tests has been made much more simple than it was in the past, thanks to the abundance of statistical software programs of an excellent quality. However, the WHY-SO may have been somewhat under-emphasized. For example, why do statistical tests constantly use unfamiliar terms, like probability distributions, hypothesis testing, randomness, normality, scientific rigor, and why are Gaussian curves so hard, and do they make non-mathematicians getting lost all the time? The book will cover the WHY-SOs. |
data analysis in clinical research: Strategy and Statistics in Clinical Trials Joseph Tal, 2011-07-14 Delineates the statistical building blocks and concepts of clinical trials. |
data analysis in clinical research: Assuring Data Quality and Validity in Clinical Trials for Regulatory Decision Making Institute of Medicine, Roundtable on Research and Development of Drugs, Biologics, and Medical Devices, 1999-07-27 In an effort to increase knowledge and understanding of the process of assuring data quality and validity in clinical trials, the IOM hosted a workshop to open a dialogue on the process to identify and discuss issues of mutual concern among industry, regulators, payers, and consumers. The presenters and panelists together developed strategies that could be used to address the issues that were identified. This IOM report of the workshop summarizes the present status and highlights possible strategies for making improvements to the education of interested and affected parties as well as facilitating future planning. |
data analysis in clinical research: Statistical Thinking in Clinical Trials Michael A. Proschan, 2021-11-24 Statistical Thinking in Clinical Trials combines a relatively small number of key statistical principles and several instructive clinical trials to gently guide the reader through the statistical thinking needed in clinical trials. Randomization is the cornerstone of clinical trials and randomization-based inference is the cornerstone of this book. Read this book to learn the elegance and simplicity of re-randomization tests as the basis for statistical inference (the analyze as you randomize principle) and see how re-randomization tests can save a trial that required an unplanned, mid-course design change. Other principles enable the reader to quickly and confidently check calculations without relying on computer programs. The `EZ’ principle says that a single sample size formula can be applied to a multitude of statistical tests. The `O minus E except after V’ principle provides a simple estimator of the log odds ratio that is ideally suited for stratified analysis with a binary outcome. The same principle can be used to estimate the log hazard ratio and facilitate stratified analysis in a survival setting. Learn these and other simple techniques that will make you an invaluable clinical trial statistician. |
data analysis in clinical research: Design and Analysis of Quality of Life Studies in Clinical Trials Diane L. Fairclough, 2002-03-28 More and more frequently, clinical trials include the evaluation of Health-Related Quality of Life (HRQoL), yet many investigators remain unaware of the unique measurement and analysis issues associated with the assessment of HRQoL. At the end of a study, clinicians and statisticians often face challenging and sometimes insurmountable analytic problems. Design and Analysis of Quality of Life Studies in Clinical Trials details these issues and presents a range of solutions. Written from the author's extensive experience in the field, it focuses on the very specific features of QoL data: its longitudinal nature, multidimensionality, and the problem of missing data. The author uses three real clinical trials throughout her discussions to illustrate practical implementation of the strategies and analytic methods presented. As Quality of Life becomes an increasingly important aspect of clinical trials, it becomes essential for clinicians, statisticians, and designers of these studies to understand and meet the challenges this kind of data present. In this book, SAS and S-PLUS programs, checklists, numerous figures, and a clear, concise presentation combine to provide readers with the tools and skills they need to successfully design, conduct, analyze, and report their own studies. |
data analysis in clinical research: Sharing Clinical Research Data Institute of Medicine, Board on Health Care Services, Board on Health Sciences Policy, Roundtable on Translating Genomic-Based Research for Health, National Cancer Policy Forum, Forum on Neuroscience and Nervous System Disorders, Forum on Drug Discovery, Development, and Translation, 2013-06-07 Pharmaceutical companies, academic researchers, and government agencies such as the Food and Drug Administration and the National Institutes of Health all possess large quantities of clinical research data. If these data were shared more widely within and across sectors, the resulting research advances derived from data pooling and analysis could improve public health, enhance patient safety, and spur drug development. Data sharing can also increase public trust in clinical trials and conclusions derived from them by lending transparency to the clinical research process. Much of this information, however, is never shared. Retention of clinical research data by investigators and within organizations may represent lost opportunities in biomedical research. Despite the potential benefits that could be accrued from pooling and analysis of shared data, barriers to data sharing faced by researchers in industry include concerns about data mining, erroneous secondary analyses of data, and unwarranted litigation, as well as a desire to protect confidential commercial information. Academic partners face significant cultural barriers to sharing data and participating in longer term collaborative efforts that stem from a desire to protect intellectual autonomy and a career advancement system built on priority of publication and citation requirements. Some barriers, like the need to protect patient privacy, pre- sent challenges for both sectors. Looking ahead, there are also a number of technical challenges to be faced in analyzing potentially large and heterogeneous datasets. This public workshop focused on strategies to facilitate sharing of clinical research data in order to advance scientific knowledge and public health. While the workshop focused on sharing of data from preplanned interventional studies of human subjects, models and projects involving sharing of other clinical data types were considered to the extent that they provided lessons learned and best practices. The workshop objectives were to examine the benefits of sharing of clinical research data from all sectors and among these sectors, including, for example: benefits to the research and development enterprise and benefits to the analysis of safety and efficacy. Sharing Clinical Research Data: Workshop Summary identifies barriers and challenges to sharing clinical research data, explores strategies to address these barriers and challenges, including identifying priority actions and low-hanging fruit opportunities, and discusses strategies for using these potentially large datasets to facilitate scientific and public health advances. |
data analysis in clinical research: Statistics in Clinical Vaccine Trials Jozef Nauta, 2010-10-07 This monograph offers well-founded training and expertise on the statistical analysis of data from clinical vaccine trials, i.e., immunogenicity and vaccine field efficacy studies. The book's scope is practical rather than theoretical. It opens with two introductory chapters on the immunology of vaccines to provide readers with the necessary background knowledge. It then continues with an in-depth exploration of the statistical methodology. Many real-life examples and SAS codes are presented, making application of the methods straightforward. Topics discussed include maximum likelihood estimation for censored antibody titers, ANCOVA for antibody values, analysis of equivalence and non-inferiority immunogenicity trial data, analysis of data from vaccine field efficacy trials (including data from studies with recurrent infection data), fitting protection curves to data of challenge or field efficacy studies, and the analysis of vaccine safety data. |
data analysis in clinical research: Common Statistical Methods for Clinical Research with SAS Examples, Third Edition Glenn Walker, Jack Shostak, 2010-02-15 Glenn Walker and Jack Shostak's Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, is a thoroughly updated edition of the popular introductory statistics book for clinical researchers. This new edition has been extensively updated to include the use of ODS graphics in numerous examples as well as a new emphasis on PROC MIXED. Straightforward and easy to use as either a text or a reference, the book is full of practical examples from clinical research to illustrate both statistical and SAS methodology. Each example is worked out completely, step by step, from the raw data. Common Statistical Methods for Clinical Research with SAS Examples, Third Edition, is an applications book with minimal theory. Each section begins with an overview helpful to nonstatisticians and then drills down into details that will be valuable to statistical analysts and programmers. Further details, as well as bonus information and a guide to further reading, are presented in the extensive appendices. This text is a one-source guide for statisticians that documents the use of the tests used most often in clinical research, with assumptions, details, and some tricks--all in one place. This book is part of the SAS Press program. |
data analysis in clinical research: Principles and Practice of Clinical Trials Steven Piantadosi, Curtis L. Meinert, 2022-07-19 This is a comprehensive major reference work for our SpringerReference program covering clinical trials. Although the core of the Work will focus on the design, analysis, and interpretation of scientific data from clinical trials, a broad spectrum of clinical trial application areas will be covered in detail. This is an important time to develop such a Work, as drug safety and efficacy emphasizes the Clinical Trials process. Because of an immense and growing international disease burden, pharmaceutical and biotechnology companies continue to develop new drugs. Clinical trials have also become extremely globalized in the past 15 years, with over 225,000 international trials ongoing at this point in time. Principles in Practice of Clinical Trials is truly an interdisciplinary that will be divided into the following areas: 1) Clinical Trials Basic Perspectives 2) Regulation and Oversight 3) Basic Trial Designs 4) Advanced Trial Designs 5) Analysis 6) Trial Publication 7) Topics Related Specific Populations and Legal Aspects of Clinical Trials The Work is designed to be comprised of 175 chapters and approximately 2500 pages. The Work will be oriented like many of our SpringerReference Handbooks, presenting detailed and comprehensive expository chapters on broad subjects. The Editors are major figures in the field of clinical trials, and both have written textbooks on the topic. There will also be a slate of 7-8 renowned associate editors that will edit individual sections of the Reference. |
data analysis in clinical research: Analysing Survival Data from Clinical Trials and Observational Studies Ettore Marubini, Maria Grazia Valsecchi, 2004-07-02 A practical guide to methods of survival analysis for medical researchers with limited statistical experience. Methods and techniques described range from descriptive and exploratory analysis to multivariate regression methods. Uses illustrative data from actual clinical trials and observational studies to describe methods of analysing and reporting results. Also reviews the features and performance of statistical software available for applying the methods of analysis discussed. |
data analysis in clinical research: Recent Advances in Clinical Trial Design and Analysis Peter F. Thall, 2012-12-06 Clinical trials have two purposes -- to treat the patients in the trial, and to obtain information which increases our understanding of the disease and especially how patients respond to treatment. Statistical design provides a means to achieve both these aims, while statistical data analysis provides methods for extracting useful information from the trial data. Recent advances in statistical computing have enabled statisticians to implement very rapidly a broad array of methods which previously were either impractical or impossible. Biostatisticians are now able to provide much greater support to medical researchers working in both clinical and laboratory settings. As our collective toolkit of techniques for analyzing data has grown, it has become increasingly difficult for biostatisticians to keep up with all the developments in our own field. Recent Advances in Clinical Trial Design and Analysis brings together biostatisticians doing cutting-edge research and explains some of the more recent developments in biostatistics to clinicians and scientists who work in clinical trials. |
data analysis in clinical research: Data Monitoring in Clinical Trials David L. DeMets, Curt D. Furberg, Lawrence M. Friedman, 2006-06-22 From the authors of Fundamentals of Clinical Trials which has sold over 15,000 copies world wide since its publication in 1998. No competition yet as the text does not focus on how to do clinical trials but on very specific situations that can be encountered during the process. |
data analysis in clinical research: Biomarker Analysis in Clinical Trials with R Nusrat Rabbee, 2020-03-11 The world is awash in data. This volume of data will continue to increase. In the pharmaceutical industry, much of this data explosion has happened around biomarker data. Great statisticians are needed to derive understanding from these data. This book will guide you as you begin the journey into communicating, understanding and synthesizing biomarker data. -From the Foreword, Jared Christensen, Vice President, Biostatistics Early Clinical Development, Pfizer, Inc. Biomarker Analysis in Clinical Trials with R offers practical guidance to statisticians in the pharmaceutical industry on how to incorporate biomarker data analysis in clinical trial studies. The book discusses the appropriate statistical methods for evaluating pharmacodynamic, predictive and surrogate biomarkers for delivering increased value in the drug development process. The topic of combining multiple biomarkers to predict drug response using machine learning is covered. Featuring copious reproducible code and examples in R, the book helps students, researchers and biostatisticians get started in tackling the hard problems of designing and analyzing trials with biomarkers. Features: Analysis of pharmacodynamic biomarkers for lending evidence target modulation. Design and analysis of trials with a predictive biomarker. Framework for analyzing surrogate biomarkers. Methods for combining multiple biomarkers to predict treatment response. Offers a biomarker statistical analysis plan. R code, data and models are given for each part: including regression models for survival and longitudinal data, as well as statistical learning models, such as graphical models and penalized regression models. |
data analysis in clinical research: Statistical Methods in Medical Research Charan Singh Rayat, 2018-08-23 This book covers all aspects of statistical methods in detail with applications. It presents solutions to the needs of post-graduate medical students, doctors and basic medical scientists for statistical evaluation of data. In present era, dependency on softwares for statistical analysis is eroding the basic understanding of the statistical methods and their applications. As a result, there are very few basic medical scientists capable of analyzing their research data due to lack of knowledge and ability. This book has been written in systematic way supported by figures and tables for basic understanding of various terms, definitions, formulae and applications of statistical methods with solved examples and graphic presentation of data to create interest in this mathematical science. |
data analysis in clinical research: Estimands, Estimators and Sensitivity Analysis in Clinical Trials Craig Mallinckrodt, Geert Molenberghs, Ilya Lipkovich, Bohdana Ratitch, 2019-12-23 The concepts of estimands, analyses (estimators), and sensitivity are interrelated. Therefore, great need exists for an integrated approach to these topics. This book acts as a practical guide to developing and implementing statistical analysis plans by explaining fundamental concepts using accessible language, providing technical details, real-world examples, and SAS and R code to implement analyses. The updated ICH guideline raises new analytic and cross-functional challenges for statisticians. Gaps between different communities have come to surface, such as between causal inference and clinical trialists, as well as among clinicians, statisticians, and regulators when it comes to communicating decision-making objectives, assumptions, and interpretations of evidence. This book lays out a path toward bridging some of these gaps. It offers A common language and unifying framework along with the technical details and practical guidance to help statisticians meet the challenges A thorough treatment of intercurrent events (ICEs), i.e., postrandomization events that confound interpretation of outcomes and five strategies for ICEs in ICH E9 (R1) Details on how estimands, integrated into a principled study development process, lay a foundation for coherent specification of trial design, conduct, and analysis needed to overcome the issues caused by ICEs: A perspective on the role of the intention-to-treat principle Examples and case studies from various areas Example code in SAS and R A connection with causal inference Implications and methods for analysis of longitudinal trials with missing data Together, the authors have offered the readers their ample expertise in clinical trial design and analysis, from an industrial and academic perspective. |
data analysis in clinical research: Analysis of Clinical Trials Using SAS Alex Dmitrienko, Gary G. Koch, 2017-07-17 Analysis of Clinical Trials Using SAS®: A Practical Guide, Second Edition bridges the gap between modern statistical methodology and real-world clinical trial applications. Tutorial material and step-by-step instructions illustrated with examples from actual trials serve to define relevant statistical approaches, describe their clinical trial applications, and implement the approaches rapidly and efficiently using the power of SAS. Topics reflect the International Conference on Harmonization (ICH) guidelines for the pharmaceutical industry and address important statistical problems encountered in clinical trials. Commonly used methods are covered, including dose-escalation and dose-finding methods that are applied in Phase I and Phase II clinical trials, as well as important trial designs and analysis strategies that are employed in Phase II and Phase III clinical trials, such as multiplicity adjustment, data monitoring, and methods for handling incomplete data. This book also features recommendations from clinical trial experts and a discussion of relevant regulatory guidelines. This new edition includes more examples and case studies, new approaches for addressing statistical problems, and the following new technological updates: SAS procedures used in group sequential trials (PROC SEQDESIGN and PROC SEQTEST) SAS procedures used in repeated measures analysis (PROC GLIMMIX and PROC GEE) macros for implementing a broad range of randomization-based methods in clinical trials, performing complex multiplicity adjustments, and investigating the design and analysis of early phase trials (Phase I dose-escalation trials and Phase II dose-finding trials) Clinical statisticians, research scientists, and graduate students in biostatistics will greatly benefit from the decades of clinical research experience and the ready-to-use SAS macros compiled in this book. |
data analysis in clinical research: Clinical Trials Stuart J. Pocock, 2013-07-17 This comprehensive, unified text on the principles and practice of clinical trials presents a detailed account of how to conduct the trials. It describes the design, analysis, and interpretation of clinical trials in a non-technical manner and provides a general perspective on their historical development, current status, and future strategy. Features examples derived from the author's personal experience. |
data analysis in clinical research: Meta-Analysis of Controlled Clinical Trials Anne Whitehead, 2003-01-17 Over the last twenty years there has been a dramatic upsurge in the application of meta-analysis to medical research. This has mainly been due to greater emphasis on evidence-based medicine and the need for reliable summaries of the vast and expanding volume of clinical research. At the same time there have been great strides in the development and refinement of the associated statistical methodology. This book describes the planning, conduct and reporting of a meta-analysis as applied to a series of randomized controlled clinical trials. * The various approaches are presented within a general unified framework. * Meta-analysis techniques are described in detail, from their theoretical development through to practical implementation. * Each topic discussed is supported by detailed worked examples. * A comparison of fixed and random effects approaches is included, as well as a discussion of Bayesian methods and cumulative meta-analysis. * Fully documented programs using standard statistical procedures in SAS are available on the Web. Ideally suited for practising statisticians and statistically-minded medical professionals, the book will also be of use to graduate students of medical statistics. The book is a self-contained and comprehensive account of the subject and an essential purchase for anyone involved in clinical trials. |
data analysis in clinical research: Clinical Trial Data Analysis Using R and SAS Ding-Geng Chen, Karl E. Peace, Pinggao Zhang, 2020-12-18 Review of the First Edition The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods.--Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book's practical, detailed approach draws on the authors' 30 years' experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What's New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials. |
data analysis in clinical research: Clinical Research Computing Prakash Nadkarni, 2016-04-29 Clinical Research Computing: A Practitioner's Handbook deals with the nuts-and-bolts of providing informatics and computing support for clinical research. The subjects that the practitioner must be aware of are not only technological and scientific, but also organizational and managerial. Therefore, the author offers case studies based on real life experiences in order to prepare the readers for the challenges they may face during their experiences either supporting clinical research or supporting electronic record systems. Clinical research computing is the application of computational methods to the broad field of clinical research. With the advent of modern digital computing, and the powerful data collection, storage, and analysis that is possible with it, it becomes more relevant to understand the technical details in order to fully seize its opportunities. - Offers case studies, based on real-life examples where possible, to engage the readers with more complex examples - Provides studies backed by technical details, e.g., schema diagrams, code snippets or algorithms illustrating particular techniques, to give the readers confidence to employ the techniques described in their own settings - Offers didactic content organization and an increasing complexity through the chapters |
data analysis in clinical research: Design and Analysis of Clinical Trials with Time-to-Event Endpoints Karl E. Peace, 2009-04-23 Using time-to-event analysis methodology requires careful definition of the event, censored observation, provision of adequate follow-up, number of events, and independence or noninformativeness of the censoring mechanisms relative to the event. Design and Analysis of Clinical Trials with Time-to-Event Endpoints provides a thorough presentation o |
data analysis in clinical research: Applied Statistical Considerations for Clinical Researchers David Culliford, 2021-11-18 This essential book details intermediate-level statistical methods and frameworks for the clinician and medical researcher with an elementary grasp of health statistics and focuses on selecting the appropriate statistical method for many scenarios. Detailed evaluation of various methodologies familiarizes readers with the available techniques and equips them with the tools to select the best from a range of options. The inclusion of a hypothetical case study between a clinician and statistician charting the conception of the research idea through to results dissemination enables the reader to understand how to apply the concepts covered into their day-to-day clinical practice. Applied Statistical Considerations for Clinical Researchers focuses on how clinicians can approach statistical issues when confronted with a medical research problem by considering the data structure, how this relates to their study's aims and any potential knock-on effects relating to the evidence required to make correct clinical decisions. It covers the application of intermediate-level techniques in health statistics making it an ideal resource for the clinician seeking an up-to-date resource on the topic. |
data analysis in clinical research: Biostatistics and Computer-based Analysis of Health Data Using SAS Christophe Lalanne, Mounir Mesbah, 2017-06-22 This volume of the Biostatistics and Health Sciences Set focuses on statistics applied to clinical research.The use of SAS for data management and statistical modeling is illustrated using various examples. Many aspects of data processing and statistical analysis of cross-sectional and experimental medical data are covered, including regression models commonly found in medical statistics. This practical book is primarily intended for health researchers with a basic knowledge of statistical methodology. Assuming basic concepts, the authors focus on the practice of biostatistical methods essential to clinical research, epidemiology and analysis of biomedical data (including comparison of two groups, analysis of categorical data, ANOVA, linear and logistic regression, and survival analysis). The use of examples from clinical trials and epidemiological studies provide the basis for a series of practical exercises, which provide instruction and familiarize the reader with essential SAS commands. - Presents the use of SAS software in the statistical approach for the management of data modeling - Includes elements of the language and descriptive statistics - Supplies measures of association, comparison of means, and proportions for two or more samples - Explores linear and logistic regression - Provides survival data analysis |
data analysis in clinical research: Oxford Handbook of Medical Statistics Janet Peacock, Philip Peacock, 2011 The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings. |
data analysis in clinical research: A Guide to Clinical Drug Research A. Cohen, J. Posner, 2000-04-30 Following the success of the first edition, published in 1995, this fully rewritten A Guide to Clinical Drug Research - Second Edition has been adapted to the most recent guidelines and developments in the field. It continues to provide a wealth of practical advice, ranging from the conception of an idea, planning a study and writing a protocol, through to the conduct of a study, data collection and analysis, and publication. It tells investigators what information they should expect sponsoring companies to provide, particularly when there is only limited information available about a new drug. It also explains what the company can expect of investigators, including the requirements of `good clinical practice'. Unlike other currently available texts on clinical trials and pharmaceutical medicine, A Guide to Clinical Drug Research concentrates on the needs of the practising clinician and research team. It is not restricted to drug investigation, and is relevant to all those involved in clinical research in a variety of settings. Audience: Required reading for clinical researchers and others involved as investigators in a drug project, often sponsored by a pharmacuetical company, plus agents of the sponsoring companies themselves. |
data analysis in clinical research: Multiple Analyses in Clinical Trials Lemuel A. Moyé, 2006-05-17 Concentrating on the rationale for the analyses, the difficulties posed by their interpretation, easily understood solutions, and useful problem sets, this book will help clinical investigators understand multiple analysis procedures and key issues. It is written for advanced medical students, clinical investigators at all levels, research groups within the pharmaceutical industry, regulators at the local, state, and federal level, and biostatisticians. |
Clinical Data Management - C…
Discuss what constitutes data management activities in clinical research. …
The Principles and Practice of Clinic…
Unlike ISO and HL7, CDISC was formed solely to create standards for clinical …
Management of Data and Informa…
• for most clinical trials, retaining research data for 15 years or more may be …
Data Management Considerations for Clinical Trials - UC …
How important are research IT/informatics solutions for novel clinical trial designs? I think that informatics/research IT should be core competencies in clinical and translational research. …
Clinical Data Management - Cancer
Discuss what constitutes data management activities in clinical research. Describe regulations and guidelines related to data management practices. Describe what a case report form is and …
The Principles and Practice of Clinical Research Data …
Unlike ISO and HL7, CDISC was formed solely to create standards for clinical research data. Make sure you are collecting the correct data to run specific analysis! What is Data …
Management of Data and Information in Research - National …
• for most clinical trials, retaining research data for 15 years or more may be necessary • for areas such as gene therapy, research data must be retained permanently (e.g. data in the form of …
Essentials of data management: an overview - Nature
Data management is a multistep process that involves obtaining, cleaning, and storing data to allow accurate analysis and produce meaningful results.
Data Quality Management In Clinical Research - National …
Data quality management (DQM) is a formal process for managing the quality, validity and integrity of the research data captured throughout the study from the time it is collected, stored …
Unlocking the Potential: A Comprehensive Review of Clinical …
Clinical data management (CDM) plays a critical role in ensuring the quality, integrity, and reliability of data collected during clinical trials. With the increasing complexity of studies and …
Data Management and Analysis in Clinical Trials
This paper provides an overview of the key components of data management and analysis in clinical trials, highlighting the importance of adherence to data standards, ensuring data …
Flow of Data in Clinical Trials - Chalmers
We describe the flow of clinical trial data throughout its journey from visit/collection to CSR to NDA/BLA, provide useful metrics to show how much time is saved by using data standards …
Secondary Data Analysis: Using existing data to answer new …
Mar 29, 2024 · Secondary data analysis is a valuable research approach that can be used to advance knowledge across many disciplines through the use of quantitative, qualitative, or …
Introduction to Data Management For Introduction to Data Mana
Data management in clinical research relates to the processes of gathering, capturing, monitoring, analysing and reporting on data. Data management begins with the development of the data …
Introduction to the Principles and Practice of Clinical …
What is Clinical Data Management? What is the data used for? What activities are part of clinical data management? What is a Data Management Plan (DMP)? Documentation acceptable in …
Strategies for Data Analysis: Randomized Controlled Trials
Design: Randomized controlled trial conducted in 470 centers worldwide among 20,201 patients with STEMI who presented within 12 hours of sumptom onset. Main Outcome Measure: …
STANDARD OPERATING PROCEDURE FOR …
This document describes the purpose and content of the statistical analysis plan for clinical research and complies with the principles of Good Clinical Practice (GCP). It is the …
Assessing Data Quality for Healthcare Systems Data Used in …
Quality assessment of healthcare data used in clinical research is a developing area of inquiry. The methods used to assess healthcare data quality in practice are varied, and evidence …
The Importance of Good Clinical Data Management and …
Good Clinical Data Management Practices (GCDMP) Charter: The review and approval of new pharmaceuticals by federal regulatory agencies is contingent upon a trust that the clinical trials …
Administration of Data Management in Clinical Research: …
A crucial stage in clinical research is clinical data management (CDM), which produces high-quality, trustworthy, and statistically sound data from clinical trials. This results in a significantly …
Statistical modeling approaches in clinical trial analysis using …
In the world of clinical trials, SAS (Statistical Analysis System) programming has emerged as a pivotal tool. Its comprehensive features allow for meticulous management, analysis, and …
Data and analysis considerations in oncology clinical trials
Aug 20, 2016 · We review data collection, cleaning, and analysis considerations in oncology clinical trials in the area of dosing, adverse events, tumor assessments, and survival follow-up. …
Commonly Used Data-collection Approaches in Clinical …
We provide an overview of the different data-collection approaches that are commonly used in carrying out clinical, public health, and translational research.