Advertisement
data analysis using excel and sql: Data Analysis Using SQL and Excel Gordon S. Linoff, 2010-09-16 Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like. |
data analysis using excel and sql: Excel 2016 Bible John Walkenbach, 2015-10-09 The complete guide to Excel 2016, from Mr. Spreadsheet himself Whether you are just starting out or an Excel novice, the Excel 2016 Bible is your comprehensive, go-to guide for all your Excel 2016 needs. Whether you use Excel at work or at home, you will be guided through the powerful new features and capabilities by expert author and Excel Guru John Walkenbach to take full advantage of what the updated version offers. Learn to incorporate templates, implement formulas, create pivot tables, analyze data, and much more. Navigate this powerful tool for business, home management, technical work, and much more with the only resource you need, Excel 2016 Bible. Create functional spreadsheets that work Master formulas, formatting, pivot tables, and more Get acquainted with Excel 2016's new features and tools Customize downloadable templates and worksheets Whether you need a walkthrough tutorial or an easy-to-navigate desk reference, the Excel 2016 Bible has you covered with complete coverage and clear expert guidance. |
data analysis using excel and sql: Automated Data Analysis Using Excel Brian D. Bissett, 2020 This new edition includes some key topics relating to the latest version of MS Office, including use of the ribbon, current Excel file types, Dashboard, and basic Sharepoint integration. It shows how to automate operations, such as curve fitting, sorting, filtering, and analyzing data from a variety of sources. The book allows users to analyze data and automate the preparation of custom reports and demonstrates how to assign Excel VBA code to the new Ribbon user interface. |
data analysis using excel and sql: SQL for Data Scientists Renee M. P. Teate, 2021-08-17 Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on how to think about constructing your dataset. Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward! |
data analysis using excel and sql: Data Analysis with Microsoft Excel Kenneth N. Berk, Patrick Carey, 2009 The latest book from Cengage Learning on Data Analysis with Microsoft« ExcelÖ |
data analysis using excel and sql: Data Mining and Statistical Analysis Using SQL John Lovett, Robert P. Trueblood, 2008-01-01 This book is not just another theoretical text on statistics or data mining. Instead, it's designed for database administrators who want to buttress their understanding of statistics to support data mining and customer relationship management analytics and who want to use Structured Query Language (SQL). Each chapter is independent and self-contained with examples tailored to business applications. Each analysis technique is expressed in a mathematical format that lends itself to coding either as a database query or as a Visual Basic procedure using SQL. Each chapter includes: formulas (how to perform the required analysis, numerical example using data from a database, data visualization and presentation options (graphs, charts, tables), SQL procedures for extracting the desired results, and data mining techniques. |
data analysis using excel and sql: SQL for Data Analytics Upom Malik, Matt Goldwasser, Benjamin Johnston, 2019-08-22 Take your first steps to become a fully qualified data analyst by learning how to explore large relational datasets. Key Features Explore a variety of statistical techniques to analyze your data Integrate your SQL pipelines with other analytics technologies Perform advanced analytics such as geospatial and text analysis Book Description Understanding and finding patterns in data has become one of the most important ways to improve business decisions. If you know the basics of SQL, but don't know how to use it to gain business insights from data, this book is for you. SQL for Data Analytics covers everything you need progress from simply knowing basic SQL to telling stories and identifying trends in data. You'll be able to start exploring your data by identifying patterns and unlocking deeper insights. You'll also gain experience working with different types of data in SQL, including time-series, geospatial, and text data. Finally, you'll understand how to become productive with SQL with the help of profiling and automation to gain insights faster. By the end of the book, you'll able to use SQL in everyday business scenarios efficiently and look at data with the critical eye of analytics professional. What you will learn Use SQL to summarize and identify patterns in data Apply special SQL clauses and functions to generate descriptive statistics Use SQL queries and subqueries to prepare data for analysis Perform advanced statistical calculations using the window function Analyze special data types in SQL, including geospatial data and time data Import and export data using a text file and PostgreSQL Debug queries that won't run Optimize queries to improve their performance for faster results Who this book is for If you're a database engineer looking to transition into analytics, or a backend engineer who wants to develop a deeper understanding of production data, you will find this book useful. This book is also ideal for data scientists or business analysts who want to improve their data analytics skills using SQL. Knowledge of basic SQL and database concepts will aid in understanding the concepts covered in this book. |
data analysis using excel and sql: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data analysis using excel and sql: Excel Data Analysis For Dummies Paul McFedries, 2018-11-13 Take Excel to the next level Excel is the world’s leading spreadsheet application. It’s a key module in Microsoft Office—the number-one productivity suite—and it is the number-one business intelligence tool. An Excel dashboard report is a visual presentation of critical data and uses gauges, maps, charts, sliders, and other graphical elements to present complex data in an easy-to-understand format. Excel Data Analysis For Dummies explains in depth how to use Excel as a tool for analyzing big data sets. In no time, you’ll discover how to mine and analyze critical data in order to make more informed business decisions. Work with external databases, PivotTables, and Pivot Charts Use Excel for statistical and financial functions and data sharing Get familiar with Solver Use the Small Business Finance Manager If you’re familiar with Excel but lack a background in the technical aspects of data analysis, this user-friendly book makes it easy to start putting it to use for you. |
data analysis using excel and sql: The Definitive Guide to DAX Alberto Ferrari, Marco Russo, 2015-10-14 This comprehensive and authoritative guide will teach you the DAX language for business intelligence, data modeling, and analytics. Leading Microsoft BI consultants Marco Russo and Alberto Ferrari help you master everything from table functions through advanced code and model optimization. You’ll learn exactly what happens under the hood when you run a DAX expression, how DAX behaves differently from other languages, and how to use this knowledge to write fast, robust code. If you want to leverage all of DAX’s remarkable power and flexibility, this no-compromise “deep dive” is exactly what you need. Perform powerful data analysis with DAX for Microsoft SQL Server Analysis Services, Excel, and Power BI Master core DAX concepts, including calculated columns, measures, and error handling Understand evaluation contexts and the CALCULATE and CALCULATETABLE functions Perform time-based calculations: YTD, MTD, previous year, working days, and more Work with expanded tables, complex functions, and elaborate DAX expressions Perform calculations over hierarchies, including parent/child hierarchies Use DAX to express diverse and unusual relationships Measure DAX query performance with SQL Server Profiler and DAX Studio |
data analysis using excel and sql: Microsoft Excel 2013 Alberto Ferrari, Marco Russo, 2013 Transform your skills, data, and business and create your own BI solutions using software you already know and love: Microsoft Excel. Two business intelligence (BI) experts take you inside PowerPivot functionality for Excel® 2013, with a focus on real world scenarios, problem-solving, and data modeling. You'll learn how to quickly turn mass quantities of data into meaningful information and on-the-job results?no programming required! |
data analysis using excel and sql: Statistical Analysis Conrad Carlberg, 2014-04-04 Use Excel 2013’s statistical tools to transform your data into knowledge Conrad Carlberg shows how to use Excel 2013 to perform core statistical tasks every business professional, student, and researcher should master. Using real-world examples, Carlberg helps you choose the right technique for each problem and get the most out of Excel’s statistical features, including recently introduced consistency functions. Along the way, he clarifies confusing statistical terminology and helps you avoid common mistakes. You’ll learn how to use correlation and regression, analyze variance and covariance, and test statistical hypotheses using the normal, binomial, t, and F distributions. To help you make accurate inferences based on samples from a population, this edition adds two more chapters on inferential statistics, covering crucial topics ranging from experimental design to the statistical power of F tests. Becoming an expert with Excel statistics has never been easier! You’ll find crystal-clear instructions, insider insights, and complete step-by-step projects—all complemented by extensive web-based resources. Master Excel’s most useful descriptive and inferential statistical tools Tell the truth with statistics—and recognize when others don’t Accurately summarize sets of values Infer a population’s characteristics from a sample’s frequency distribution Explore correlation and regression to learn how variables move in tandem Use Excel consistency functions such as STDEV.S() and STDEV.P() Test differences between two means using z tests, t tests, and Excel’s Data Analysis Add-in Use ANOVA to test differences between more than two means Explore statistical power by manipulating mean differences, standard errors, directionality, and alpha Take advantage of Recommended PivotTables, Quick Analysis, and other Excel 2013 shortcuts |
data analysis using excel and sql: Excel Data Analysis Hector Guerrero, 2018-12-14 This book offers a comprehensive and readable introduction to modern business and data analytics. It is based on the use of Excel, a tool that virtually all students and professionals have access to. The explanations are focused on understanding the techniques and their proper application, and are supplemented by a wealth of in-chapter and end-of-chapter exercises. In addition to the general statistical methods, the book also includes Monte Carlo simulation and optimization. The second edition has been thoroughly revised: new topics, exercises and examples have been added, and the readability has been further improved. The book is primarily intended for students in business, economics and government, as well as professionals, who need a more rigorous introduction to business and data analytics – yet also need to learn the topic quickly and without overly academic explanations. |
data analysis using excel and sql: Data Analysis with Microsoft Access 2010: From Simple Queries to Business Intelligence Larry Rockoff, 2011-10-28 DATA ANALYSIS WITH MICROSOFT ACCESS 2010 is an introduction to Access with an emphasis on topics relevant to data analysis. The goal is to help the analyst gain a true understanding of data and the information it contains. Access queries are covered in detail, both in terms of the mechanics of their design, and how they can be used for typical data analysis tasks. The book is written in an easy-to-understand tutorial style, with new topics introduced in a logical and intuitive sequence. Numerous screenshots are included, so you won’t need to sit with a computer as you read the book. The author also broadens the concept of data analysis to encompass business intelligence (BI) topics, including valuable material on how to use Access and Excel pivot tables. Additional features include See the SQL sidebars that allow interested readers to learn SQL as they are learning Access, and Focus on Analysis sidebars that provide details on a number of useful quantitative topics. A companion website has a sample database that correlates with the BI material in the book. In short, this is the only book you’ll need to gain a working knowledge of Access, and how it can be used for data analysis. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. |
data analysis using excel and sql: PowerPivot for the Data Analyst Bill Jelen, 2010 Discusses the use of Microsoft's free PowerPivot add-in to analyse data in Excel 2010. Describes how to import and integrate data; analyse multiple tables together; format, sort and filter data; add calculated columns using Data Analysis Expression (DAX) functions; and create and format PowerPivot reports. |
data analysis using excel and sql: Analyzing Data with Power BI and Power Pivot for Excel Alberto Ferrari, Marco Russo, 2017-04-28 Renowned DAX experts Alberto Ferrari and Marco Russo teach you how to design data models for maximum efficiency and effectiveness. How can you use Excel and Power BI to gain real insights into your information? As you examine your data, how do you write a formula that provides the numbers you need? The answers to both of these questions lie with the data model. This book introduces the basic techniques for shaping data models in Excel and Power BI. It’s meant for readers who are new to data modeling as well as for experienced data modelers looking for tips from the experts. If you want to use Power BI or Excel to analyze data, the many real-world examples in this book will help you look at your reports in a different way–like experienced data modelers do. As you’ll soon see, with the right data model, the correct answer is always a simple one! By reading this book, you will: • Gain an understanding of the basics of data modeling, including tables, relationships, and keys • Familiarize yourself with star schemas, snowflakes, and common modeling techniques • Learn the importance of granularity • Discover how to use multiple fact tables, like sales and purchases, in a complex data model • Manage calendar-related calculations by using date tables • Track historical attributes, like previous addresses of customers or manager assignments • Use snapshots to compute quantity on hand • Work with multiple currencies in the most efficient way • Analyze events that have durations, including overlapping durations • Learn what data model you need to answer your specific business questions About This Book • For Excel and Power BI users who want to exploit the full power of their favorite tools • For BI professionals seeking new ideas for modeling data |
data analysis using excel and sql: Python for Excel Felix Zumstein, 2021-03-04 While Excel remains ubiquitous in the business world, recent Microsoft feedback forums are full of requests to include Python as an Excel scripting language. In fact, it's the top feature requested. What makes this combination so compelling? In this hands-on guide, Felix Zumstein--creator of xlwings, a popular open source package for automating Excel with Python--shows experienced Excel users how to integrate these two worlds efficiently. Excel has added quite a few new capabilities over the past couple of years, but its automation language, VBA, stopped evolving a long time ago. Many Excel power users have already adopted Python for daily automation tasks. This guide gets you started. Use Python without extensive programming knowledge Get started with modern tools, including Jupyter notebooks and Visual Studio code Use pandas to acquire, clean, and analyze data and replace typical Excel calculations Automate tedious tasks like consolidation of Excel workbooks and production of Excel reports Use xlwings to build interactive Excel tools that use Python as a calculation engine Connect Excel to databases and CSV files and fetch data from the internet using Python code Use Python as a single tool to replace VBA, Power Query, and Power Pivot |
data analysis using excel and sql: Collect, Combine, and Transform Data Using Power Query in Excel and Power BI Gil Raviv, 2018-10-08 Using Power Query, you can import, reshape, and cleanse any data from a simple interface, so you can mine that data for all of its hidden insights. Power Query is embedded in Excel, Power BI, and other Microsoft products, and leading Power Query expert Gil Raviv will help you make the most of it. Discover how to eliminate time-consuming manual data preparation, solve common problems, avoid pitfalls, and more. Then, walk through several complete analytics challenges, and integrate all your skills in a realistic chapter-length final project. By the time you’re finished, you’ll be ready to wrangle any data–and transform it into actionable knowledge. Prepare and analyze your data the easy way, with Power Query · Quickly prepare data for analysis with Power Query in Excel (also known as Get & Transform) and in Power BI · Solve common data preparation problems with a few mouse clicks and simple formula edits · Combine data from multiple sources, multiple queries, and mismatched tables · Master basic and advanced techniques for unpivoting tables · Customize transformations and build flexible data mashups with the M formula language · Address collaboration challenges with Power Query · Gain crucial insights into text feeds · Streamline complex social network analytics so you can do it yourself For all information workers, analysts, and any Excel user who wants to solve their own business intelligence problems. |
data analysis using excel and sql: Microsoft Business Intelligence Tools for Excel Analysts Michael Alexander, Jared Decker, Bernard Wehbe, 2014-05-05 Bridge the big data gap with Microsoft Business Intelligence Tools for Excel Analysts The distinction between departmental reporting done by business analysts with Excel and the enterprise reporting done by IT departments with SQL Server and SharePoint tools is more blurry now than ever before. With the introduction of robust new features like PowerPivot and Power View, it is essential for business analysts to get up to speed with big data tools that in the past have been reserved for IT professionals. Written by a team of Business Intelligence experts, Microsoft Business Intelligence Tools for Excel Analysts introduces business analysts to the rich toolset and reporting capabilities that can be leveraged to more effectively source and incorporate large datasets in their analytics while saving them time and simplifying the reporting process. Walks you step-by-step through important BI tools like PowerPivot, SQL Server, and SharePoint and shows you how to move data back and forth between these tools and Excel Shows you how to leverage relational databases, slice data into various views to gain different visibility perspectives, create eye-catching visualizations and dashboards, automate SQL Server data retrieval and integration, and publish dashboards and reports to the web Details how you can use SQL Server’s built-in functions to analyze large amounts of data, Excel pivot tables to access and report OLAP data, and PowerPivot to create powerful reporting mechanisms You’ll get on top of the Microsoft BI stack and all it can do to enhance Excel data analysis with this one-of-a-kind guide written for Excel analysts just like you. |
data analysis using excel and sql: Applied Microsoft SQL Server 2012 Analysis Services Teo Lachev, 2012-02 A guide to tabular modeling of the Innovative Business Intelligence Semantic Model describes such tasks as integrating data from multiple sources, implementing business calculations and KiIs, and designing cached and real-time data access. |
data analysis using excel and sql: Microsoft Excel 2019 Data Analysis and Business Modeling Wayne Winston, 2019-03-28 Master business modeling and analysis techniques with Microsoft Excel 2019 and Office 365 and transform data into bottom-line results. Written by award-winning educator Wayne Winston, this hands-on, scenario-focused guide helps you use Excel to ask the right questions and get accurate, actionable answers. New coverage ranges from Power Query/Get & Transform to Office 365 Geography and Stock data types. Practice with more than 800 problems, many based on actual challenges faced by working analysts. Solve real business problems with Excel—and build your competitive advantage: Quickly transition from Excel basics to sophisticated analytics Use PowerQuery or Get & Transform to connect, combine, and refine data sources Leverage Office 365’s new Geography and Stock data types and six new functions Illuminate insights from geographic and temporal data with 3D Maps Summarize data with pivot tables, descriptive statistics, histograms, and Pareto charts Use Excel trend curves, multiple regression, and exponential smoothing Delve into key financial, statistical, and time functions Master all of Excel’s great charts Quickly create forecasts from historical time-based data Use Solver to optimize product mix, logistics, work schedules, and investments—and even rate sports teams Run Monte Carlo simulations on stock prices and bidding models Learn about basic probability and Bayes’ Theorem Use the Data Model and Power Pivot to effectively build and use relational data sources inside an Excel workbook Automate repetitive analytics tasks by using macros |
data analysis using excel and sql: Mastering Power Query in Power BI and Excel Reza Rad, Leila Etaati, 2021-08-27 Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in a structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the food you see on the table nicely presented. The quality, the taste, and everything else come from the hard work in the kitchen. The part that you don’t see or the backend in the world of Power BI is Power Query. You may already be familiar with other data preparation and transformation technologies, such as T-SQL, SSIS, Azure Data Factory, Informatica, etc. Power Query is a data transformation engine capable of preparing the data in the format you need. The good news is that to learn Power Query; you don’t need to know programming. Power Query is for citizen data engineers. However, this doesn’t mean that Power Query is not capable of performing advanced transformation. Power Query exists in many Microsoft tools and services such as Power BI, Excel, Dataflows, Power Automate, Azure Data Factory, etc. Through the years, this engine became more powerful. These days, we can say this is essential learning for anyone who wants to do data analysis with Microsoft technology to learn Power Query and master it. We have been working with Power Query since the very early release of that in 2013, named Data Explorer, and wrote blog articles and published videos about it. The number of articles we published under this subject easily exceeds hundreds. Through those articles, some of the fundamentals and key learnings of Power Query are explained. We thought it is good to compile some of them in a book series. A good analytics solution combines a good data model, good data preparation, and good analytics and calculations. Reza has written another book about the Basics of modeling in Power BI and a book on Power BI DAX Simplified. This book is covering the data preparation and transformations aspects of it. This book series is for you if you are building a Power BI solution. Even if you are just visualizing the data, preparation and transformations are an essential part of analytics. You do need to have the cleaned and prepared data ready before visualizing it. This book is compiled into a series of two books, which will be followed by a third book later; Getting started with Power Query in Power BI and Excel (already available to be purchased separately) Mastering Power Query in Power BI and Excel (This book) Power Query dataflows (will be published later) This book deeps dive into real-world challenges of data transformation. It starts with combining data sources and continues with aggregations and fuzzy operations. The book covers advanced usage of Power Query in scenarios such as error handling and exception reports, custom functions and parameters, advanced analytics, and some helpful table and list functions. The book continues with some performance tuning tips and it also explains the Power Query formula language (M) and the structure of it and how to use it in practical solutions. Although this book is written for Power BI and all the examples are presented using the Power BI. However, the examples can be easily applied to Excel, Dataflows, and other tools and services using Power Query. |
data analysis using excel and sql: Introducing Microsoft Power BI Alberto Ferrari, Marco Russo, 2016-07-07 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Introducing Microsoft Power BI enables you to evaluate when and how to use Power BI. Get inspired to improve business processes in your company by leveraging the available analytical and collaborative features of this environment. Be sure to watch for the publication of Alberto Ferrari and Marco Russo's upcoming retail book, Analyzing Data with Power BI and Power Pivot for Excel (ISBN 9781509302765). Go to the book's page at the Microsoft Press Store here for more details:http://aka.ms/analyzingdata/details. Learn more about Power BI at https://powerbi.microsoft.com/. |
data analysis using excel and sql: Data Visualization with Excel Dashboards and Reports Dick Kusleika, 2021-02-05 Large corporations like IBM and Oracle are using Excel dashboards and reports as a Business Intelligence tool, and many other smaller businesses are looking to these tools in order to cut costs for budgetary reasons. An effective analyst not only has to have the technical skills to use Excel in a productive manner but must be able to synthesize data into a story, and then present that story in the most impactful way. Microsoft shows its recognition of this with Excel. In Excel, there is a major focus on business intelligence and visualization. Data Visualization with Excel Dashboards and Reports fills the gap between handling data and synthesizing data into meaningful reports. This title will show readers how to think about their data in ways other than columns and rows. Most Excel books do a nice job discussing the individual functions and tools that can be used to create an Excel Report. Titles on Excel charts, Excel pivot tables, and other books that focus on Tips and Tricks are useful in their own right; however they don't hit the mark for most data analysts. The primary reason these titles miss the mark is they are too focused on the mechanical aspects of building a chart, creating a pivot table, or other functionality. They don't offer these topics in the broader picture by showing how to present and report data in the most effective way. What are the most meaningful ways to show trending? How do you show relationships in data? When is showing variances more valuable than showing actual data values? How do you deal with outliers? How do you bucket data in the most meaningful way? How do you show impossible amounts of data without inundating your audience? In Data Visualization with Excel Reports and Dashboards, readers will get answers to all of these questions. Part technical manual, part analytical guidebook; this title will help Excel users go from reporting data with simple tables full of dull numbers, to creating hi-impact reports and dashboards that will wow management both visually and substantively. This book offers a comprehensive review of a wide array of technical and analytical concepts that will help users create meaningful reports and dashboards. After reading this book, the reader will be able to: Analyze large amounts of data and report their data in a meaningful way Get better visibility into data from different perspectives Quickly slice data into various views on the fly Automate redundant reporting and analyses Create impressive dashboards and What-If analyses Understand the fundamentals of effective visualization Visualize performance comparisons Visualize changes and trends over time |
data analysis using excel and sql: Data Mashup with Microsoft Excel Using Power Query and M Adam Aspin, 2020-08-14 Master the art of loading external data into Excel for use in reporting, charting, dashboarding, and business intelligence. This book provides a complete and thorough explanation of Microsoft Excel’s Get and Transform feature set, showing you how to connect to a range of external databases and other data sources to find data and pull that data into your local spreadsheet for further analysis. Leading databases are covered, including Microsoft Azure data sources and web sources, and you will learn how to access those sources from your Microsoft Excel spreadsheets. Getting data into Excel is a prerequisite for using Excel's analytics capabilities. This book takes you beyond copying and pasting by showing you how to connect to your corporate databases that are hosted in the Azure cloud, and how to pull data from Oracle Database and SQL Server, and other sources. Accessing data is only half the problem, and the other half involves cleansing and rearranging your data to make it useful in spreadsheet form. Author Adam Aspin shows you how to create datasets and transformations. For advanced problems, there is help on the M language that is built into Excel, specifically to support mashing up data in support of business intelligence and analysis. If you are an Excel user, you won't want to be without this book that teaches you to extract and prepare external data ready for use in what is arguably the world’s leading analytics tool. What You Will Learn Connect to a range of external data, from databases to Azure sources Ingest data directly into your spreadsheets, or into PowerPivot data models Cleanse and prepare external data so it can be used inside Excel Refresh data quickly and easily to always have the latest information Transform data into ready-to-use structures that fit the spreadsheet format Execute M language functions for complex data transformations Who This Book Is For Excel users who want to access data from external sources—including the Microsoft Azure platform—in order to create business intelligence reporting, dashboards, and visualizations. For Excel users needing to cleanse and rearrange such data to meet their own, specific needs. |
data analysis using excel and sql: SQL for Data Analysis Cathy Tanimura, 2021-09-09 With the explosion of data, computing power, and cloud data warehouses, SQL has become an even more indispensable tool for the savvy analyst or data scientist. This practical book reveals new and hidden ways to improve your SQL skills, solve problems, and make the most of SQL as part of your workflow. You'll learn how to use both common and exotic SQL functions such as joins, window functions, subqueries, and regular expressions in new, innovative ways--as well as how to combine SQL techniques to accomplish your goals faster, with understandable code. If you work with SQL databases, this is a must-have reference. Learn the key steps for preparing your data for analysis Perform time series analysis using SQL's date and time manipulations Use cohort analysis to investigate how groups change over time Use SQL's powerful functions and operators for text analysis Detect outliers in your data and replace them with alternate values Establish causality using experiment analysis, also known as A/B testing |
data analysis using excel and sql: SQL Practice Problems Sylvia Moestl Vasilik, 2016-11-09 Real-world practice problems to bring your SQL skills to the next level It's easy to find basic SQL syntax and keyword information online. What's hard to find is challenging, well-designed, real-world problems--the type of problems that come up all the time when you're dealing with data. Learning how to solve these problems will give you the skill and confidence to step up in your career. With SQL Practice Problems, you can get that level of experience by solving sets of targeted problems. These aren't just problems designed to give an example of specific syntax, or keyword. These are the common problems you run into all the time when you deal with data. You will get real world practice, with real world data. I'll teach you how to think in SQL, how to analyze data problems, figure out the fundamentals, and work towards a solution that you can be proud of. It contains challenging problems, that hone your ability to write high quality SQL code. What do you get when you buy SQL Practice Problems? You get instructions on how set up MS SQL Server Express Edition 2016 and SQL Server Management Studio 2016, both free downloads. Almost all the SQL presented here works for previous versions of MS SQLServer, and any exceptions are highlighted. You'll also get a customized sample database, with video walk-through instructions on how to set it up on your computer. And of course, you get the actual practice problems - 57 problems that you work through step-by-step. There are targeted hints if you need them that help guide you through the question. For the more complex questions there are multiple levels of hints. Each answer comes with a short, targeted discussion section with alternative answers and tips on usage and good programming practice. What kind of problems are there in SQL Practice Problems? SQL Practice Problems has data analysis and reporting oriented challenges that are designed to step you through introductory, intermediate and advanced SQL Select statements, with a learn-by-doing technique. Most textbooks and courses have some practice problems. But most often, they're used just to illustrate a particular piece of syntax, with no filtering on what's most useful. What you'll get with SQL Practice Problems is the problems that illustrate some the most common challenges you'll run into with data, and the best, most useful techniques to solve them. These practice problems involve only Select statements, used for data analysis and reporting, and not statements to modify data (insert, delete, update), or to create stored procedures. About the author: Hi, my name is Sylvia Moestl Vasilik. I've been a database programmer and engineer for more than 15 years, working at top organizations like Expedia, Microsoft, T-Mobile, and the Gates Foundation. In 2015, I was teaching a SQL Server Certificate course at the University of Washington Continuing Education. It was a 10 week course, and my students paid more than $1000 for it. My students learned the basics of SQL, most of the keywords, and worked through practice problems every week of the course. But because of the emphasis on getting a broad overview of all features of SQL, we didn't spend enough time on the types of SQL that's used 95% of the time--intermediate and advanced Select statements. After the course was over, some of my students emailed me to ask where they could get more practice. That's when I was inspired to start work on this book. |
data analysis using excel and sql: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
data analysis using excel and sql: Exam Ref 70-779 Analyzing and Visualizing Data by Using Microsoft Excel Chris Sorensen, 2018-04-28 Direct from Microsoft, this Exam Ref is the official study guide for the new Microsoft 70-779 Analyzing and Visualizing Data by Using Microsoft Excel certification exam. Exam Ref 70-779 Analyzing and Visualizing Data by Using Microsoft Excel offers professional-level preparation that helps candidates maximize their exam performance and sharpen their skills on the job. It focuses on the specific areas of expertise modern IT professionals need to successfully consume, transform, model, and visualize data with Excel 2016. Coverage includes: Importing data from external data sources Working with Power Query Designing and implementing transformations Applying business rules Cleansing data Creating performance KPIs And much more Microsoft Exam Ref publications stand apart from third-party study guides because they: Provide guidance from Microsoft, the creator of Microsoft certification exams Target IT professional-level exam candidates with content focused on their needs, not one-size-fits-all content Streamline study by organizing material according to the exam's objective domain (OD), covering one functional group and its objectives in each chapter Feature Thought Experiments to guide candidates through a set of what if? scenarios, and prepare them more effectively for Pro-level style exam questions Explore big picture thinking around the planning and design aspects of the IT pro's job role For more information on Exam 70-779 and the MCSA: BI Reporting credential, visit microsoft.com/learning. |
data analysis using excel and sql: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data analysis using excel and sql: Excel Power Pivot & Power Query For Dummies Michael Alexander, 2016-03-18 A guide to PowerPivot and Power Query no data cruncher should be without! Want to familiarize yourself with the rich set of Microsoft Excel tools and reporting capabilities available from PowerPivot and Power Query? Look no further! Excel PowerPivot & Power Query For Dummies shows you how this powerful new set of tools can be leveraged to more effectively source and incorporate 'big data' Business Intelligence and Dashboard reports. You'll discover how PowerPivot and Power Query not only allow you to save time and simplify your processes, but also enable you to substantially enhance your data analysis and reporting capabilities. Gone are the days of relatively small amounts of data—today's data environment demands more from business analysts than ever before. Now, with the help of this friendly, hands-on guide, you'll learn to use PowerPivot and Power Query to expand your skill-set from the one-dimensional spreadsheet to new territories, like relational databases, data integration, and multi-dimensional reporting. Demonstrates how Power Query is used to discover, connect to, and import your data Shows you how to use PowerPivot to model data once it's been imported Offers guidance on using these tools to make analyzing data easier Written by a Microsoft MVP in the lighthearted, fun style you've come to expect from the For Dummies brand If you spend your days analyzing data, Excel PowerPivot & Power Query For Dummies will get you up and running with the rich set of Excel tools and reporting capabilities that will make your life—and work—easier. |
data analysis using excel and sql: Hands-On SQL Server 2019 Analysis Services Steven Hughes, 2020-10-22 Get up to speed with the new features added to Microsoft SQL Server 2019 Analysis Services and create models to support your business Key FeaturesExplore tips and tricks to design, develop, and optimize end-to-end data analytics solutions using Microsoft's technologiesLearn tabular modeling and multi-dimensional cube design development using real-world examplesImplement Analysis Services to help you make productive business decisionsBook Description SQL Server Analysis Services (SSAS) continues to be a leading enterprise-scale toolset, enabling customers to deliver data and analytics across large datasets with great performance. This book will help you understand MS SQL Server 2019’s new features and improvements, especially when it comes to SSAS. First, you’ll cover a quick overview of SQL Server 2019, learn how to choose the right analytical model to use, and understand their key differences. You’ll then explore how to create a multi-dimensional model with SSAS and expand on that model with MDX. Next, you’ll create and deploy a tabular model using Microsoft Visual Studio and Management Studio. You'll learn when and how to use both tabular and multi-dimensional model types, how to deploy and configure your servers to support them, and design principles that are relevant to each model. The book comes packed with tips and tricks to build measures, optimize your design, and interact with models using Excel and Power BI. All this will help you visualize data to gain useful insights and make better decisions. Finally, you’ll discover practices and tools for securing and maintaining your models once they are deployed. By the end of this MS SQL Server book, you’ll be able to choose the right model and build and deploy it to support the analytical needs of your business. What you will learnDetermine the best analytical model using SSASCover the core aspects involved in MDX, including writing your first queryImplement calculated tables and calculation groups (new in version 2019) in DAXCreate and deploy tabular and multi-dimensional models on SQL 2019Connect and create data visualizations using Excel and Power BIImplement row-level and other data security methods with tabular and multi-dimensional modelsExplore essential concepts and techniques to scale, manage, and optimize your SSAS solutionsWho this book is for This Microsoft SQL Server book is for BI professionals and data analysts who are looking for a practical guide to creating and maintaining tabular and multi-dimensional models using SQL Server 2019 Analysis Services. A basic working knowledge of BI solutions such as Power BI and database querying is required. |
data analysis using excel and sql: The Microsoft Data Warehouse Toolkit Joy Mundy, Warren Thornthwaite, 2007-03-22 This groundbreaking book is the first in the Kimball Toolkit series to be product-specific. Microsoft’s BI toolset has undergone significant changes in the SQL Server 2005 development cycle. SQL Server 2005 is the first viable, full-functioned data warehouse and business intelligence platform to be offered at a price that will make data warehousing and business intelligence available to a broad set of organizations. This book is meant to offer practical techniques to guide those organizations through the myriad of challenges to true success as measured by contribution to business value. Building a data warehousing and business intelligence system is a complex business and engineering effort. While there are significant technical challenges to overcome in successfully deploying a data warehouse, the authors find that the most common reason for data warehouse project failure is insufficient focus on the business users and business problems. In an effort to help people gain success, this book takes the proven Business Dimensional Lifecycle approach first described in best selling The Data Warehouse Lifecycle Toolkit and applies it to the Microsoft SQL Server 2005 tool set. Beginning with a thorough description of how to gather business requirements, the book then works through the details of creating the target dimensional model, setting up the data warehouse infrastructure, creating the relational atomic database, creating the analysis services databases, designing and building the standard report set, implementing security, dealing with metadata, managing ongoing maintenance and growing the DW/BI system. All of these steps tie back to the business requirements. Each chapter describes the practical steps in the context of the SQL Server 2005 platform. Intended Audience The target audience for this book is the IT department or service provider (consultant) who is: Planning a small to mid-range data warehouse project; Evaluating or planning to use Microsoft technologies as the primary or exclusive data warehouse server technology; Familiar with the general concepts of data warehousing and business intelligence. The book will be directed primarily at the project leader and the warehouse developers, although everyone involved with a data warehouse project will find the book useful. Some of the book’s content will be more technical than the typical project leader will need; other chapters and sections will focus on business issues that are interesting to a database administrator or programmer as guiding information. The book is focused on the mass market, where the volume of data in a single application or data mart is less than 500 GB of raw data. While the book does discuss issues around handling larger warehouses in the Microsoft environment, it is not exclusively, or even primarily, concerned with the unusual challenges of extremely large datasets. About the Authors JOY MUNDY has focused on data warehousing and business intelligence since the early 1990s, specializing in business requirements analysis, dimensional modeling, and business intelligence systems architecture. Joy co-founded InfoDynamics LLC, a data warehouse consulting firm, then joined Microsoft WebTV to develop closed-loop analytic applications and a packaged data warehouse. Before returning to consulting with the Kimball Group in 2004, Joy worked in Microsoft SQL Server product development, managing a team that developed the best practices for building business intelligence systems on the Microsoft platform. Joy began her career as a business analyst in banking and finance. She graduated from Tufts University with a BA in Economics, and from Stanford with an MS in Engineering Economic Systems. WARREN THORNTHWAITE has been building data warehousing and business intelligence systems since 1980. Warren worked at Metaphor for eight years, where he managed the consulting organization and implemented many major data warehouse systems. After Metaphor, Warren managed the enterprise-wide data warehouse development at Stanford University. He then co-founded InfoDynamics LLC, a data warehouse consulting firm, with his co-author, Joy Mundy. Warren joined up with WebTV to help build a world class, multi-terabyte customer focused data warehouse before returning to consulting with the Kimball Group. In addition to designing data warehouses for a range of industries, Warren speaks at major industry conferences and for leading vendors, and is a long-time instructor for Kimball University. Warren holds an MBA in Decision Sciences from the University of Pennsylvania's Wharton School, and a BA in Communications Studies from the University of Michigan. RALPH KIMBALL, PH.D., has been a leading visionary in the data warehouse industry since 1982 and is one of today's most internationally well-known authors, speakers, consultants, and teachers on data warehousing. He writes the Data Warehouse Architect column for Intelligent Enterprise (formerly DBMS) magazine. |
data analysis using excel and sql: SQL Queries for Mere Mortals John L. Viescas, Michael James Hernandez, 2014 The #1 Easy, Common-Sense Guide to SQL Queries--Updated for Today's Databases, Standards, and Challenges SQL Queries for Mere Mortals ® has earned worldwide praise as the clearest, simplest tutorial on writing effective SQL queries. The authors have updated this hands-on classic to reflect new SQL standards and database applications and teach valuable new techniques. Step by step, John L. Viescas and Michael J. Hernandez guide you through creating reliable queries for virtually any modern SQL-based database. They demystify all aspects of SQL query writing, from simple data selection and filtering to joining multiple tables and modifying sets of data. Three brand-new chapters teach you how to solve a wide range of challenging SQL problems. You'll learn how to write queries that apply multiple complex conditions on one table, perform sophisticated logical evaluations, and think outside the box using unlinked tables. Coverage includes -- Getting started: understanding what relational databases are, and ensuring that your database structures are sound -- SQL basics: using SELECT statements, creating expressions, sorting information with ORDER BY, and filtering data using WHERE -- Summarizing and grouping data with GROUP BY and HAVING clauses -- Drawing data from multiple tables: using INNER JOIN, OUTER JOIN, and UNION operators, and working with subqueries -- Modifying data sets with UPDATE, INSERT, and DELETE statements Advanced queries: complex NOT and AND, conditions, if-then-else using CASE, unlinked tables, driver tables, and more Practice all you want with downloadable sample databases for today's versions of Microsoft Office Access, Microsoft SQL Server, and the open source MySQL database. Whether you're a DBA, developer, user, or student, there's no better way to master SQL. informit.com/aw forMereMortals.com |
data analysis using excel and sql: Using SQLite Jay Kreibich, 2010-08-17 Explains how to build database-backed applications for the Web, desktop, embedded systems, and operating systems using SQLite. |
data analysis using excel and sql: Data Analysis with Microsoft Power BI Brian Larson, 2020-01-03 Explore, create, and manage highly interactive data visualizations using Microsoft Power BI Extract meaningful business insights from your disparate enterprise data using the detailed information contained in this practical guide. Written by a recognized BI expert and bestselling author, Data Analysis with Microsoft Power BI teaches you the skills you need to interact with, author, and maintain robust visualizations and custom data models. Hands-on exercises based on real-life business scenarios clearly demonstrate each technique. Publishing your results to the Power BI Service (PowerBI.com) and Power BI Report Server are also fully covered. Inside, you will discover how to: •Understand Business Intelligence and self-service analytics •Explore the tools and features of Microsoft Power BI •Create and format effective data visualizations •Incorporate advanced interactivity and custom graphics •Build and populate accurate data models •Transform data using the Power BI Query Editor •Work with measures, calculated columns, and tabular models •Write powerful DAX language scripts •Share content on the PowerBI Service (PowerBI.com) •Store your visualizations on the Power BI Report Server |
data analysis using excel and sql: Getting started with Power Query in Power BI and Excel Reza Rad, Leila Etaati, 2021-08-27 Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in the structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the food you see on the table nicely presented. The quality, the taste, and everything else comes from the hard work in the kitchen. The part that you don’t see or the backend in the world of Power BI is Power Query. You may be already familiar with some other data preparation and data transformation technologies, such as T-SQL, SSIS, Azure Data Factory, Informatica, etc. Power Query is a data transformation engine capable of preparing the data in the format you need. The good news is that to learn Power Query; you don’t need to know programming. Power Query is for citizen data engineers. However, this doesn’t mean that Power Query is not capable of performing advanced transformation. Unfortunately, because Power Query and data preparation is the kitchen work of the BI system, many Power BI users skip the learning of it and become aware of it somewhere along their BI project. Once they get familiar with it, they realize there are tons of things they could have implemented easier, faster, and in a much more maintainable way using Power Query. In other words, they learn mastering Power Query is the key skill toward mastering Power BI. We have been working with Power Query since the very early release of that in 2013, named Data Explorer, and wrote blog articles and published videos about it. The number of articles we published under this subject easily exceeds hundreds. Through those articles, some of the fundamentals and key learnings of Power Query are explained. We thought it is good to compile some of them in a book. A good analytics solution combines a good data model, good data preparation, and good analytics and calculations. Reza has written another book about the Basics of modeling in Power BI and a book on Power BI DAX Simplified. This book is covering the data preparation and transformations aspects of it. This book is for you if you are building a Power BI solution. Even if you are just visualizing the data, preparation and transformations are an essential part of analytics. You do need to have the cleaned and prepared data ready before visualizing it. This book is complied into a series of two books, which will be followed by a third book later; Getting started with Power Query in Power BI and Excel (this book) Mastering Power Query in Power BI and Excel (already available to be purchased separately) Power Query dataflows (will be published later) Although this book is written for Power BI and all the examples are presented using the Power BI. However, the examples can be easily applied to Excel, Dataflows, and other tools and services using Power Query. |
data analysis using excel and sql: Learning SQL Alan Beaulieu, 2009-04-11 Updated for the latest database management systems -- including MySQL 6.0, Oracle 11g, and Microsoft's SQL Server 2008 -- this introductory guide will get you up and running with SQL quickly. Whether you need to write database applications, perform administrative tasks, or generate reports, Learning SQL, Second Edition, will help you easily master all the SQL fundamentals. Each chapter presents a self-contained lesson on a key SQL concept or technique, with numerous illustrations and annotated examples. Exercises at the end of each chapter let you practice the skills you learn. With this book, you will: Move quickly through SQL basics and learn several advanced features Use SQL data statements to generate, manipulate, and retrieve data Create database objects, such as tables, indexes, and constraints, using SQL schema statements Learn how data sets interact with queries, and understand the importance of subqueries Convert and manipulate data with SQL's built-in functions, and use conditional logic in data statements Knowledge of SQL is a must for interacting with data. With Learning SQL, you'll quickly learn how to put the power and flexibility of this language to work. |
data analysis using excel and sql: SQL QuickStart Guide Walter Shields, 2019-11-19 THE BEST SQL BOOK FOR BEGINNERS - HANDS DOWN! *INCLUDES FREE ACCESS TO A SAMPLE DATABASE, SQL BROWSER APP, COMPREHENSION QUIZES & SEVERAL OTHER DIGITAL RESOURCES!* Not sure how to prepare for the data-driven future? This book shows you EXACTLY what you need to know to successfully use the SQL programming language to enhance your career! Are you a developer who wants to expand your mastery to database management? Then you NEED this book. Buy now and start reading today! Are you a project manager who needs to better understand your development team’s needs? A decision maker who needs to make deeper data-driven analysis? Everything you need to know is included in these pages! The ubiquity of big data means that now more than ever there is a burning need to warehouse, access, and understand the contents of massive databases quickly and efficiently. That’s where SQL comes in. SQL is the workhorse programming language that forms the backbone of modern data management and interpretation. Any database management professional will tell you that despite trendy data management languages that come and go, SQL remains the most widely used and most reliable to date, with no signs of stopping. In this comprehensive guide, experienced mentor and SQL expert Walter Shields draws on his considerable knowledge to make the topic of relational database management accessible, easy to understand, and highly actionable. SQL QuickStart Guide is ideal for those seeking to increase their job prospects and enhance their careers, for developers looking to expand their programming capabilities, or for anyone who wants to take advantage of our inevitably data-driven future—even with no prior coding experience! SQL QuickStart Guide Is For: - Professionals looking to augment their job skills in preparation for a data-driven future - Job seekers who want to pad their skills and resume for a durable employability edge - Beginners with zero prior experienceManagers, decision makers, and business owners looking to manage data-driven business insights - Developers looking to expand their mastery beyond the full stackAnyone who wants to be better prepared for our data-driven future! In SQL QuickStart Guide You'll Discover: - The basic structure of databases—what they are, how they work, and how to successfully navigate them - How to use SQL to retrieve and understand data no matter the scale of a database (aided by numerous images and examples) - The most important SQL queries, along with how and when to use them for best effect - Professional applications of SQL and how to “sell” your new SQL skills to your employer, along with other career-enhancing considerations *LIFETIME ACCESS TO FREE SQL RESOURCES*: Each book comes with free lifetime access to tons of exclusive online resources to help you master SQL, such as workbooks, cheat sheets and reference guides. *GIVING BACK* QuickStart Guides proudly supports One Tree Planted as a reforestation partner. |
data analysis using excel and sql: Expert Data Modeling with Power BI Soheil Bakhshi, 2021-06-11 Manage and work with business data effectively by learning data modeling techniques and leveraging the latest features of Power BI Key Features Understand data modeling techniques to get the best out of data using Power BI Define the relationships between data to extract valuable insights Solve a wide variety of business challenges by building optimal data models Book DescriptionThis book is a comprehensive guide to understanding the ins and outs of data modeling and how to create data models using Power BI confidently. You'll learn how to connect data from multiple sources, understand data, define and manage relationships between data, and shape data models to gain deep and detailed insights about your organization. In this book, you'll explore how to use data modeling and navigation techniques to define relationships and create a data model before defining new metrics and performing custom calculations using modeling features. As you advance through the chapters, the book will demonstrate how to create full-fledged data models, enabling you to create efficient data models and simpler DAX code with new data modeling features. With the help of examples, you'll discover how you can solve business challenges by building optimal data models and changing your existing data models to meet evolving business requirements. Finally, you'll learn how to use some new and advanced modeling features to enhance your data models to carry out a wide variety of complex tasks. By the end of this Power BI book, you'll have gained the skills you need to structure data coming from multiple sources in different ways to create optimized data models that support reporting and data analytics.What you will learn Implement virtual tables and time intelligence functionalities in DAX to build a powerful model Identify Dimension and Fact tables and implement them in Power Query Editor Deal with advanced data preparation scenarios while building Star Schema Explore best practices for data preparation and modeling Discover different hierarchies and their common pitfalls Understand complex data models and how to decrease the level of model complexity with different approaches Learn advanced data modeling techniques such as aggregations, incremental refresh, and RLS/OLS Who this book is for This MS Power BI book is for BI users, data analysts, and analysis developers who want to become well-versed with data modeling techniques to make the most of Power BI. You’ll need a solid grasp on basic use cases and functionalities of Power BI and Star Schema functionality before you can dive in. |
Data and Digital Outputs Manageme…
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing an…
Jan 10, 2019 · The SEI CRA will closely link research thinking and …
Open Data Policy and Principles - Belmon…
The data policy includes the following principles: Data should be: Discoverable …
Belmont Forum Adopts Open Data …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five …
Belmont Forum Data Accessibilit…
The DAS encourages researchers to plan for the longevity, reusability, …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their …