Data Engineering Process Flow

Advertisement



  data engineering process flow: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle
  data engineering process flow: Data Engineering with Apache Spark, Delta Lake, and Lakehouse Manoj Kukreja, Danil Zburivsky, 2021-10-22 Understand the complexities of modern-day data engineering platforms and explore strategies to deal with them with the help of use case scenarios led by an industry expert in big data Key FeaturesBecome well-versed with the core concepts of Apache Spark and Delta Lake for building data platformsLearn how to ingest, process, and analyze data that can be later used for training machine learning modelsUnderstand how to operationalize data models in production using curated dataBook Description In the world of ever-changing data and schemas, it is important to build data pipelines that can auto-adjust to changes. This book will help you build scalable data platforms that managers, data scientists, and data analysts can rely on. Starting with an introduction to data engineering, along with its key concepts and architectures, this book will show you how to use Microsoft Azure Cloud services effectively for data engineering. You'll cover data lake design patterns and the different stages through which the data needs to flow in a typical data lake. Once you've explored the main features of Delta Lake to build data lakes with fast performance and governance in mind, you'll advance to implementing the lambda architecture using Delta Lake. Packed with practical examples and code snippets, this book takes you through real-world examples based on production scenarios faced by the author in his 10 years of experience working with big data. Finally, you'll cover data lake deployment strategies that play an important role in provisioning the cloud resources and deploying the data pipelines in a repeatable and continuous way. By the end of this data engineering book, you'll know how to effectively deal with ever-changing data and create scalable data pipelines to streamline data science, ML, and artificial intelligence (AI) tasks. What you will learnDiscover the challenges you may face in the data engineering worldAdd ACID transactions to Apache Spark using Delta LakeUnderstand effective design strategies to build enterprise-grade data lakesExplore architectural and design patterns for building efficient data ingestion pipelinesOrchestrate a data pipeline for preprocessing data using Apache Spark and Delta Lake APIsAutomate deployment and monitoring of data pipelines in productionGet to grips with securing, monitoring, and managing data pipelines models efficientlyWho this book is for This book is for aspiring data engineers and data analysts who are new to the world of data engineering and are looking for a practical guide to building scalable data platforms. If you already work with PySpark and want to use Delta Lake for data engineering, you'll find this book useful. Basic knowledge of Python, Spark, and SQL is expected.
  data engineering process flow: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required.
  data engineering process flow: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.
  data engineering process flow: Data Engineering Yupo Chan, John Talburt, Terry M. Talley, 2009-10-15 DATA ENGINEERING: Mining, Information, and Intelligence describes applied research aimed at the task of collecting data and distilling useful information from that data. Most of the work presented emanates from research completed through collaborations between Acxiom Corporation and its academic research partners under the aegis of the Acxiom Laboratory for Applied Research (ALAR). Chapters are roughly ordered to follow the logical sequence of the transformation of data from raw input data streams to refined information. Four discrete sections cover Data Integration and Information Quality; Grid Computing; Data Mining; and Visualization. Additionally, there are exercises at the end of each chapter. The primary audience for this book is the broad base of anyone interested in data engineering, whether from academia, market research firms, or business-intelligence companies. The volume is ideally suited for researchers, practitioners, and postgraduate students alike. With its focus on problems arising from industry rather than a basic research perspective, combined with its intelligent organization, extensive references, and subject and author indices, it can serve the academic, research, and industrial audiences.
  data engineering process flow: Data, Engineering and Applications Sanjeev Sharma, Sheng-Lung Peng, Jitendra Agrawal, Rajesh K. Shukla, Dac-Nhuong Le, 2022-10-11 The book contains select proceedings of the 3rd International Conference on Data, Engineering, and Applications (IDEA 2021). It includes papers from experts in industry and academia that address state-of-the-art research in the areas of big data, data mining, machine learning, data science, and their associated learning systems and applications. This book will be a valuable reference guide for all graduate students, researchers, and scientists interested in exploring the potential of big data applications.
  data engineering process flow: Data Engineering for Smart Systems Priyadarsi Nanda, Vivek Kumar Verma, Sumit Srivastava, Rohit Kumar Gupta, Arka Prokash Mazumdar, 2021-11-13 This book features original papers from the 3rd International Conference on Smart IoT Systems: Innovations and Computing (SSIC 2021), organized by Manipal University, Jaipur, India, during January 22–23, 2021. It discusses scientific works related to data engineering in the context of computational collective intelligence consisted of interaction between smart devices for smart environments and interactions. Thanks to the high-quality content and the broad range of topics covered, the book appeals to researchers pursuing advanced studies.
  data engineering process flow: Data Engineering with Scala and Spark Eric Tome, Rupam Bhattacharjee, David Radford, 2024-01-31 Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate data Key Features Transform data into a clean and trusted source of information for your organization using Scala Build streaming and batch-processing pipelines with step-by-step explanations Implement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD) Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learn Set up your development environment to build pipelines in Scala Get to grips with polymorphic functions, type parameterization, and Scala implicits Use Spark DataFrames, Datasets, and Spark SQL with Scala Read and write data to object stores Profile and clean your data using Deequ Performance tune your data pipelines using Scala Who this book is for This book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies.
  data engineering process flow: Financial Data Engineering Tamer Khraisha, 2024-10-09 Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, formats, technological constraints, identifiers, entities, standards, regulatory requirements, and governance. This book offers a comprehensive, practical, domain-driven approach to financial data engineering, featuring real-world use cases, industry practices, and hands-on projects. You'll learn: The data engineering landscape in the financial sector Specific problems encountered in financial data engineering The structure, players, and particularities of the financial data domain Approaches to designing financial data identification and entity systems Financial data governance frameworks, concepts, and best practices The financial data engineering lifecycle from ingestion to production The varieties and main characteristics of financial data workflows How to build financial data pipelines using open source tools and APIs Tamer Khraisha, PhD, is a senior data engineer and scientific author with more than a decade of experience in the financial sector.
  data engineering process flow: Data Engineering with Alteryx Paul Houghton, 2022-06-30 Build and deploy data pipelines with Alteryx by applying practical DataOps principles Key Features • Learn DataOps principles to build data pipelines with Alteryx • Build robust data pipelines with Alteryx Designer • Use Alteryx Server and Alteryx Connect to share and deploy your data pipelines Book Description Alteryx is a GUI-based development platform for data analytic applications. Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have. This book will teach you the principles of DataOps and how they can be used with the Alteryx software stack. You'll build data pipelines with Alteryx Designer and incorporate the error handling and data validation needed for reliable datasets. Next, you'll take the data pipeline from raw data, transform it into a robust dataset, and publish it to Alteryx Server following a continuous integration process. By the end of this Alteryx book, you'll be able to build systems for validating datasets, monitoring workflow performance, managing access, and promoting the use of your data sources. What you will learn • Build a working pipeline to integrate an external data source • Develop monitoring processes for the pipeline example • Understand and apply DataOps principles to an Alteryx data pipeline • Gain skills for data engineering with the Alteryx software stack • Work with spatial analytics and machine learning techniques in an Alteryx workflow Explore Alteryx workflow deployment strategies using metadata validation and continuous integration • Organize content on Alteryx Server and secure user access Who this book is for If you're a data engineer, data scientist, or data analyst who wants to set up a reliable process for developing data pipelines using Alteryx, this book is for you. You'll also find this book useful if you are trying to make the development and deployment of datasets more robust by following the DataOps principles. Familiarity with Alteryx products will be helpful but is not necessary.
  data engineering process flow: Foundations of data engineering: concepts, principles and practices Dr. RVS Praveen, 2024-09-23 Foundations of Data Engineering: Concepts, Principles and Practices offers a comprehensive introduction to the processes and systems that make data-driven decision-making possible. In today’s data-centric world, companies rely heavily on vast amounts of data to inform strategies, optimize operations, and innovate. This book explains the essential building blocks of data engineering, covering topics like data pipelines, ETL (Extract, Transform, Load) processes, data storage, and distributed computing. The text is structured to guide readers through the end-to-end lifecycle of data, from ingestion to transformation and analysis. It emphasizes best practices in designing robust, scalable data pipelines that ensure high-quality, reliable data is delivered to downstream analytics and machine learning systems. Topics such as batch and real-time data processing are covered, with in-depth discussions on tools and technologies like Apache Kafka, Hadoop, Spark, and cloud-based solutions like Google Cloud and AWS. For those new to the field or looking to expand their knowledge, this book also addresses the importance of data governance, ensuring data integrity, security, and compliance. Readers will gain insights into the challenges of big data and how modern engineering approaches can handle growing data volumes efficiently. With case studies and practical examples throughout, Foundations of Data Engineering: Concepts, Principles and Practices is a valuable resource for aspiring data engineers, analysts, and anyone involved in the data ecosystem looking to build scalable, reliable data solutions.
  data engineering process flow: Data, Engineering and Applications Rajesh Kumar Shukla, Jitendra Agrawal, Sanjeev Sharma, Geetam Singh Tomer, 2019-04-24 This book presents a compilation of current trends, technologies, and challenges in connection with Big Data. Many fields of science and engineering are data-driven, or generate huge amounts of data that are ripe for the picking. There are now more sources of data than ever before, and more means of capturing data. At the same time, the sheer volume and complexity of the data have sparked new developments, where many Big Data problems require new solutions. Given its scope, the book offers a valuable reference guide for all graduate students, researchers, and scientists interested in exploring the potential of Big Data applications.
  data engineering process flow: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
  data engineering process flow: Model and Data Engineering Yamine Ait Ameur, Ladjel Bellatreche, George A. Papadopoulos, 2014-09-19 This book constitutes the refereed proceedings of the 4th International Conference on Model and Data Engineering, MEDI 2014, held in Larnaca, Cyprus, in September 2014. The 16 long papers and 12 short papers presented together with 2 invited talks were carefully reviewed and selected from 64 submissions. The papers specifically focus on model engineering and data engineering with special emphasis on most recent and relevant topics in the areas of modeling and models engineering; data engineering; modeling for data management; and applications and tooling.
  data engineering process flow: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite.
  data engineering process flow: Google Certification Guide - Google Professional Data Engineer Cybellium Ltd, Google Certification Guide - Google Professional Data Engineer Navigate the Data Landscape with Google Cloud Expertise Embark on a journey to become a Google Professional Data Engineer with this comprehensive guide. Tailored for data professionals seeking to leverage Google Cloud's powerful data solutions, this book provides a deep dive into the core concepts, practices, and tools necessary to excel in the field of data engineering. Inside, You'll Explore: Fundamentals to Advanced Data Concepts: Understand the full spectrum of Google Cloud data services, from BigQuery and Dataflow to AI and machine learning integrations. Practical Data Engineering Scenarios: Learn through hands-on examples and real-life case studies that demonstrate how to effectively implement data solutions on Google Cloud. Focused Exam Strategy: Prepare for the certification exam with detailed insights into the exam format, including key topics, study strategies, and practice questions. Current Trends and Best Practices: Stay abreast of the latest advancements in Google Cloud data technologies, ensuring your skills are up-to-date and industry-relevant. Authored by a Data Engineering Expert Written by an experienced data engineer, this guide bridges practical application with theoretical knowledge, offering a comprehensive and practical learning experience. Your Comprehensive Guide to Data Engineering Certification Whether you're an aspiring data engineer or an experienced professional looking to validate your Google Cloud skills, this book is an invaluable resource, guiding you through the nuances of data engineering on Google Cloud and preparing you for the Professional Data Engineer exam. Elevate Your Data Engineering Skills This guide is more than a certification prep book; it's a deep dive into the art of data engineering in the Google Cloud ecosystem, designed to equip you with advanced skills and knowledge for a successful career in data engineering. Begin Your Data Engineering Journey Step into the world of Google Cloud data engineering with confidence. This guide is your first step towards mastering the concepts and practices of data engineering and achieving certification as a Google Professional Data Engineer. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
  data engineering process flow: Advances in CAD/CAM P.C.C. Wang, 2012-12-06 To understand what we know and be aware of what is to be known has become the central focus in the treatment of CAD/CAM issues. It has been some time since we began treating issues arriving from engineering data handling in a low key fashion because of its housekeeping chores and data maintenance aspects representing nonglamorous issues related to automation. Since the advent of CAD/CAM,large numbers of data bases have been generated through standalone CAD systems. And the rate of this automated means of generating data is rapidly increasing; this is possibly the key factor in changing our way of looking at engineering data related problems. As one deeply involved with engineering data handling and CAD/CAM applications, I know that to succeed, we must do our homework: tracking the trends, keeping abreast of new technologies, new applications, new companies and products that are exploding on the scene every day. In today's fast-paced information handling era, just keeping up is a full-time job. That is why ATI has initiated these publications, in order to bring to the users some of the information regarding their experiences in the important fields of CAD/CAM and engineering data handling. This volume contains some of the paper, including revisions, which were presented at the Fifth Automation Technology Conference held in Monterey, California. A series of publications has been initiated through cooperation between ATI and the Kluwer Academic Publishers. The first volume was Advances in Engineering Data Handling-Case Studies.
  data engineering process flow: Recent Progress in Data Engineering and Internet Technology Ford Lumban Gaol, 2012-08-13 The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical. Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing. This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies, intelligent information systems, data engineering applications, internet security, internet data management, web search, data grids, cloud computing, web-based application, and other related topics.
  data engineering process flow: Model and Data Engineering Yassine Ouhammou, Mirjana Ivanovic, Alberto Abelló, Ladjel Bellatreche, 2017-09-18 This book constitutes the refereed proceedings of the 7th International Conference on Model and Data Engineering, MEDI 2017, held in Barcelona, Spain, in October 2017. The 20 full papers and 7 short papers presented together with 2 invited talks were carefully reviewed and selected from 69 submissions. The papers are organized in topical sections on domain specific languages; systems and software assessments; modeling and formal methods; data engineering; data exploration and exp loitation; modeling heterogeneity and behavior; model-based applications; and ontology-based applications.
  data engineering process flow: Data Engineering and Intelligent Computing Vikrant Bhateja, Suresh Chandra Satapathy, Carlos M. Travieso-González, V. N. Manjunath Aradhya, 2021-05-04 This book features a collection of high-quality, peer-reviewed papers presented at the Fourth International Conference on Intelligent Computing and Communication (ICICC 2020) organized by the Department of Computer Science and Engineering and the Department of Computer Science and Technology, Dayananda Sagar University, Bengaluru, India, on 18–20 September 2020. The book is organized in two volumes and discusses advanced and multi-disciplinary research regarding the design of smart computing and informatics. It focuses on innovation paradigms in system knowledge, intelligence and sustainability that can be applied to provide practical solutions to a number of problems in society, the environment and industry. Further, the book also addresses the deployment of emerging computational and knowledge transfer approaches, optimizing solutions in various disciplines of science, technology and health care.
  data engineering process flow: Model and Data Engineering Ladjel Bellatreche, Filipe Mota Pinto, 2011-09-15 This book constitutes the refereed proceedings of the First International Conference on Model and Data Engineering, MEDI 2011, held in Óbidos, Portugal, in September 2011. The 18 revised full papers presented together with 8 short papers and three keynotes were carefully reviewed and selected from 67 submissions. The papers are organized in topical sections on ontology engineering; Web services and security; advanced systems; knowledge management; model specification and verification; and models engineering.
  data engineering process flow: Modeling and Simulation-Based Data Engineering Bernard P. Zeigler, Phillip E Hammonds, 2007-08-07 Data Engineering has become a necessary and critical activity for business, engineering, and scientific organizations as the move to service oriented architecture and web services moves into full swing. Notably, the US Department of Defense is mandating that all of its agencies and contractors assume a defining presence on the Net-centric Global Information Grid. This book provides the first practical approach to data engineering and modeling, which supports interoperabililty with consumers of the data in a service- oriented architectures (SOAs). Although XML (eXtensible Modeling Language) is the lingua franca for such interoperability, it is not sufficient on its own. The approach in this book addresses critical objectives such as creating a single representation for multiple applications, designing models capable of supporting dynamic processes, and harmonizing legacy data models for web-based co-existence. The approach is based on the System Entity Structure (SES) which is a well-defined structure, methodology, and practical tool with all of the functionality of UML (Unified Modeling Language) and few of the drawbacks. The SES originated in the formal representation of hierarchical simulation models. So it provides an axiomatic formalism that enables automating the development of XML dtds and schemas, composition and decomposition of large data models, and analysis of commonality among structures. Zeigler and Hammond include a range of features to benefit their readers. Natural language, graphical and XML forms of SES specification are employed to allow mapping of legacy meta-data. Real world examples and case studies provide insight into data engineering and test evaluation in various application domains. Comparative information is provided on concepts of ontologies, modeling and simulation, introductory linguistic background, and support options enable programmers to work with advanced tools in the area. The website of the Arizona Center for Integrative Modeling and Simulation, co-founded by Zeigler in 2001, provides links to downloadable software to accompany the book. - The only practical guide to integrating XML and web services in data engineering - Introduces linguistic levels of interoperability for effective information exchange - Covers the interoperability standards mandated by national and international agencies - Complements Zeigler's classic THEORY OF MODELING AND SIMULATION
  data engineering process flow: Data Engineering Brian Shive, 2013 If you found a rusty old lamp on the beach, and upon touching it a genie appeared and granted you three wishes, what would you wish for? If you were wishing for a successful application development effort, most likely you would wish for accurate and robust data models, comprehensive data flow diagrams, and an acute understanding of human behavior. The wish for well-designed conceptual and logical data models means the requirements are well-understood and that the design has been built with flexibility and extensibility leading to high application agility and low maintenance costs. The wish for detailed data flow diagrams means a concrete understanding of the business' value chain exists and is documented. The wish to understand how we think means excellent team dynamics while analyzing, designing, and building the application. Why search the beaches for genie lamps when instead you can read this book? Learn the skills required for modeling, value chain analysis, and team dynamics by following the journey the author and son go through in establishing a profitable summer lemonade business. This business grew from season to season proportionately with his adoption of important engineering principles. All of the concepts and principles are explained in a novel format, so you will learn the important messages while enjoying the story that unfolds within these pages. The story is about an old man who has spent his life designing data models and databases and his newly adopted son. Father and son have a 54 year age difference that produces a large generation gap. The father attempts to narrow the generation gap by having his nine-year-old son earn his entertainment money. The son must run a summer business that turns a lemon grove into profits so he can buy new computers and games. As the son struggles for profits, it becomes increasingly clear that dad's career in information technology can provide critical leverage in achieving success in business. The failures and successes of the son's business over the summers are a microcosm of the ups and downs of many enterprises as they struggle to manage information technology.
  data engineering process flow: Data Engineering with Google Cloud Platform Adi Wijaya, 2024-04-30 Become a successful data engineer by building and deploying your own data pipelines on Google Cloud, including making key architectural decisions Key Features Get up to speed with data governance on Google Cloud Learn how to use various Google Cloud products like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream Boost your confidence by getting Google Cloud data engineering certification guidance from real exam experiences Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe second edition of Data Engineering with Google Cloud builds upon the success of the first edition by offering enhanced clarity and depth to data professionals navigating the intricate landscape of data engineering. Beyond its foundational lessons, this new edition delves into the essential realm of data governance within Google Cloud, providing you with invaluable insights into managing and optimizing data resources effectively. Written by a Data Strategic Cloud Engineer at Google, this book helps you stay ahead of the curve by guiding you through the latest technological advancements in the Google Cloud ecosystem. You’ll cover essential aspects, from exploring Cloud Composer 2 to the evolution of Airflow 2.5. Additionally, you’ll explore how to work with cutting-edge tools like Dataform, DLP, Dataplex, Dataproc Serverless, and Datastream to perform data governance on datasets. By the end of this book, you'll be equipped to navigate the ever-evolving world of data engineering on Google Cloud, from foundational principles to cutting-edge practices.What you will learn Load data into BigQuery and materialize its output Focus on data pipeline orchestration using Cloud Composer Formulate Airflow jobs to orchestrate and automate a data warehouse Establish a Hadoop data lake, generate ephemeral clusters, and execute jobs on the Dataproc cluster Harness Pub/Sub for messaging and ingestion for event-driven systems Apply Dataflow to conduct ETL on streaming data Implement data governance services on Google Cloud Who this book is for Data analysts, IT practitioners, software engineers, or any data enthusiasts looking to have a successful data engineering career will find this book invaluable. Additionally, experienced data professionals who want to start using Google Cloud to build data platforms will get clear insights on how to navigate the path. Whether you're a beginner who wants to explore the fundamentals or a seasoned professional seeking to learn the latest data engineering concepts, this book is for you.
  data engineering process flow: Data Engineering and Communication Technology K. Ashoka Reddy, B. Rama Devi, Boby George, K. Srujan Raju, 2021-05-23 This book includes selected papers presented at the 4th International Conference on Data Engineering and Communication Technology (ICDECT 2020), held at Kakatiya Institute of Technology & Science, Warangal, India, during 25–26 September 2020. It features advanced, multidisciplinary research towards the design of smart computing, information systems and electronic systems. It also focuses on various innovation paradigms in system knowledge, intelligence and sustainability which can be applied to provide viable solutions to diverse problems related to society, the environment and industry.
  data engineering process flow: Intelligent Data Engineering and Automated Learning - IDEAL 2004 Zhen Rong Yang, Richard Everson, Hujun Yin, 2004-08-13 This book constitutes the refereed proceedings of the 5th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2004, held in Exeter, UK, in August 2004. The 124 revised full papers presented were carefully reviewed and selected from 272 submissions. The papers are organized in topical sections on bioinformatics, data mining and knowledge engineering, learning algorithms and systems, financial engineering, and agent technologies.
  data engineering process flow: Intelligent Data Engineering and Analytics Vikrant Bhateja, Fiona Carroll, João Manuel R. S. Tavares, Sandeep Singh Sengar, Peter Peer, 2023-11-25 The book presents the proceedings of the 11th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2023), held at Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, UK, during April 11–12, 2023. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. This book is divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols, and architectures. This book is a valuable resource for postgraduate students in various engineering disciplines.
  data engineering process flow: Data Engineering for Machine Learning Pipelines Pavan Kumar Narayanan,
  data engineering process flow: Intelligence Science and Big Data Engineering. Big Data and Machine Learning Zhen Cui, Jinshan Pan, Shanshan Zhang, Liang Xiao, Jian Yang, 2019-11-28 The two volumes LNCS 11935 and 11936 constitute the proceedings of the 9th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2019, held in Nanjing, China, in October 2019. The 84 full papers presented were carefully reviewed and selected from 252 submissions.The papers are organized in two parts: visual data engineering; and big data and machine learning. They cover a large range of topics including information theoretic and Bayesian approaches, probabilistic graphical models, big data analysis, neural networks and neuro-informatics, bioinformatics, computational biology and brain-computer interfaces, as well as advances in fundamental pattern recognition techniques relevant to image processing, computer vision and machine learning.
  data engineering process flow: Intelligence Science and Big Data Engineering. Visual Data Engineering Zhen Cui, Jinshan Pan, Shanshan Zhang, Liang Xiao, Jian Yang, 2019-11-28 The two volumes LNCS 11935 and 11936 constitute the proceedings of the 9th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2019, held in Nanjing, China, in October 2019. The 84 full papers presented were carefully reviewed and selected from 252 submissions.The papers are organized in two parts: visual data engineering; and big data and machine learning. They cover a large range of topics including information theoretic and Bayesian approaches, probabilistic graphical models, big data analysis, neural networks and neuro-informatics, bioinformatics, computational biology and brain-computer interfaces, as well as advances in fundamental pattern recognition techniques relevant to image processing, computer vision and machine learning.
  data engineering process flow: Model and Data Engineering Christian Attiogbé, Sadok Ben Yahia, 2021-06-14 This book constitutes the refereed proceedings of the 10th International Conference on Model and Data Engineering, MEDI 2021, held in Tallinn, Estonia, in June 2021. The 16 full papers and 8 short papers presented in this book were carefully reviewed and selected from 47 submissions. Additionally, the volume includes 3 abstracts of invited talks. The papers cover broad research areas on both theoretical, systems and practical aspects. Some papers include mining complex databases, concurrent systems, machine learning, swarm optimization, query processing, semantic web, graph databases, formal methods, model-driven engineering, blockchain, cyber physical systems, IoT applications, and smart systems. Due to the Corona pandemic the conference was held virtually.
  data engineering process flow: Data Engineering and Data Science Kukatlapalli Pradeep Kumar, Aynur Unal, Vinay Jha Pillai, Hari Murthy, M. Niranjanamurthy, 2023-08-29 DATA ENGINEERING and DATA SCIENCE Written and edited by one of the most prolific and well-known experts in the field and his team, this exciting new volume is the “one-stop shop” for the concepts and applications of data science and engineering for data scientists across many industries. The field of data science is incredibly broad, encompassing everything from cleaning data to deploying predictive models. However, it is rare for any single data scientist to be working across the spectrum day to day. Data scientists usually focus on a few areas and are complemented by a team of other scientists and analysts. Data engineering is also a broad field, but any individual data engineer doesn’t need to know the whole spectrum of skills. Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. In this exciting new volume, the team of editors and contributors sketch the broad outlines of data engineering, then walk through more specific descriptions that illustrate specific data engineering roles. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This book brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library.
  data engineering process flow: AI-DRIVEN DATA ENGINEERING TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHT Eswar Prasad Galla, Chandrababu Kuraku, Hemanth Kumar Gollangi, Janardhana Rao Sunkara, Chandrakanth Rao Madhavaram, .....
  data engineering process flow: Intelligent Data Engineering and Automated Learning – IDEAL 2020 Cesar Analide, Paulo Novais, David Camacho, Hujun Yin, 2020-10-29 This two-volume set of LNCS 12489 and 12490 constitutes the thoroughly refereed conference proceedings of the 21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020, held in Guimaraes, Portugal, in November 2020.* The 93 papers presented were carefully reviewed and selected from 134 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2020 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspiredmodels, agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. * The conference was held virtually due to the COVID-19 pandemic.
  data engineering process flow: Intelligent Data Engineering and Automated Learning – IDEAL 2015 Konrad Jackowski, Robert Burduk, Krzysztof Walkowiak, Michal Wozniak, Hujun Yin, 2015-10-13 This book constitutes the refereed proceedings of the 16th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2015, held in Wroclaw, Poland, in October 2015. The 64 revised full papers presented were carefully reviewed and selected from 127 submissions. These papers provided a valuable collection of recent research outcomes in data engineering and automated learning, from methodologies, frameworks, and techniques to applications. In addition to various topics such as evolutionary algorithms, neural networks, probabilistic modeling, swarm intelligent, multi-objective optimization, and practical applications in regression, classification, clustering, biological data processing, text processing, video analysis, IDEAL 2015 also featured a number of special sessions on several emerging topics such as computational intelligence for optimization of communication networks, discovering knowledge from data, simulation-driven DES-like modeling and performance evaluation, and intelligent applications in real-world problems.
  data engineering process flow: Data Engineering with AWS Gareth Eagar, 2023-10-31 Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered. Key Features Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Stay up to date with a comprehensive revised chapter on Data Governance Build modern data platforms with a new section covering transactional data lakes and data mesh Book DescriptionThis book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability. You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You’ll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS. By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!What you will learn Seamlessly ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Load data into a Redshift data warehouse and run queries with ease Visualize and explore data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Build transactional data lakes using Apache Iceberg with Amazon Athena Learn how a data mesh approach can be implemented on AWS Who this book is forThis book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along.
  data engineering process flow: AI-Oriented Competency Framework for Talent Management in the Digital Economy Alex Khang, 2024-05-29 In the digital-driven economy era, an AI-oriented competency framework (AIoCF) is a collection to identify AI-oriented knowledge, attributes, efforts, skills, and experiences (AKASE) that directly and positively affect the success of employees and the organization. The application of skills-based competency analytics and AI-equipped systems is gradually becoming accepted by business and production organizations as an effective tool for automating several managerial activities consistently and efficiently in developing and moving the capacity of a company up to a world-class level. AI-Oriented Competency Framework for Talent Management in the Digital Economy: Models, Technologies, Applications, and Implementation discusses all the points of an AIoCF, which includes predictive analytics, advisory services, predictive maintenance, and automated processes, which help to make the operations of project management, personnel management, or administration more efficient, profitable, and safe. The book includes the functionality of emerging career pathways, hybrid learning models, and learning paths related to the learning and development of employees in the production or delivery fields. It also presents the relationship between skills taxonomy and competency framework with interactive methods using datasets, processing workflow diagrams, and architectural diagrams for easy understanding of the application of intelligent functions in role-based competency systems. By also covering upcoming areas of AI and data science in many government and private organizations, the book not only focuses on managing big data and cloud resources of the talent management system but also provides cybersecurity techniques to ensure that systems and employee competency data are secure. This book targets a mixed audience of students, engineers, scholars, researchers, academics, and professionals who are learning, researching, and working in the field of workforce training, human resources, talent management systems, requirement, headhunting, outsourcing, and manpower consultant services from different cultures and industries in the era of digital economy.
  data engineering process flow: The Self-Service Data Roadmap Sandeep Uttamchandani, 2020-09-10 Data-driven insights are a key competitive advantage for any industry today, but deriving insights from raw data can still take days or weeks. Most organizations can’t scale data science teams fast enough to keep up with the growing amounts of data to transform. What’s the answer? Self-service data. With this practical book, data engineers, data scientists, and team managers will learn how to build a self-service data science platform that helps anyone in your organization extract insights from data. Sandeep Uttamchandani provides a scorecard to track and address bottlenecks that slow down time to insight across data discovery, transformation, processing, and production. This book bridges the gap between data scientists bottlenecked by engineering realities and data engineers unclear about ways to make self-service work. Build a self-service portal to support data discovery, quality, lineage, and governance Select the best approach for each self-service capability using open source cloud technologies Tailor self-service for the people, processes, and technology maturity of your data platform Implement capabilities to democratize data and reduce time to insight Scale your self-service portal to support a large number of users within your organization
  data engineering process flow: Python Automation Mastery Rob Botwright, 101-01-01 🚀 PYTHON AUTOMATION MASTERY: From Novice to Pro Book Bundle 🚀 Are you ready to unlock the full potential of Python for automation? Look no further than the Python Automation Mastery book bundle, a comprehensive collection designed to take you from a beginner to an automation pro! 📘 Book 1 - Python Automation Mastery: A Beginner's Guide · Perfect for newcomers to programming and Python. · Learn Python fundamentals and the art of automation. · Start automating everyday tasks right away! 📗 Book 2 - Python Automation Mastery: Intermediate Techniques · Take your skills to the next level. · Discover web scraping, scripting, error handling, and data manipulation. · Tackle real-world automation challenges with confidence. 📙 Book 3 - Python Automation Mastery: Advanced Strategies · Explore advanced automation concepts. · Master object-oriented programming and external libraries. · Design and implement complex automation projects. 📕 Book 4 - Python Automation Mastery: Expert-Level Solutions · Become an automation architect. · Handle high-level use cases in AI, network security, and data analysis. · Elevate your automation skills to expert status. 🌟 What Makes This Bundle Special? · Comprehensive journey from novice to pro in one bundle. · Easy-to-follow, step-by-step guides in each book. · Real-world examples and hands-on exercises. · Learn ethical automation practices and best strategies. · Access a treasure trove of automation knowledge. 🚀 Why Python? Python is the go-to language for automation due to its simplicity and versatility. Whether you're looking to streamline everyday tasks or tackle complex automation challenges, Python is your ultimate tool. 📈 Invest in Your Future Automation skills are in high demand across industries. By mastering Python automation, you'll enhance your career prospects, supercharge your productivity, and become a sought-after automation expert. 📚 Grab the Complete Bundle Now! Don't miss out on this opportunity to become a Python automation master. Get all four books in one bundle and embark on your journey from novice to pro. Buy now and transform your Python skills into automation mastery!
  data engineering process flow: Intelligent Data Engineering and Automated Learning - IDEAL 2009 Emilio Corchado, Hujun Yin, 2009-09-29 The IDEAL conference boast a vibrant and successful history dating back to 1998, th and this edition marked the 10 anniversary, an important milestone demonstrating the increasing popularity and high quality of the IDEAL conferences. Burgos, the capital of medieval Spain and a lively city today, was a perfect venue to celebrate such an occasion. The conference has become a unique, established and broad int- disciplinary forum for researchers and practitioners in many fields to interact with each other and with leading academics and industries in the areas of machine lea- ing, information processing, data mining, knowledge management, bio-informatics, neuro-informatics, bio-inspired models, agents and distributed systems, and hybrid systems. IDEAL 2009 received over 200 submissions. After a rigorous peer-review process, the International Programme Committee accepted 100 high-quality papers to be - cluded in the conference proceedings. In this 10th edition, a special emphasis was given on the organization of workshops and special sessions. Two workshops were organized under the framework of IDEAL 2009: MIR Day 2009 and Nature-Inspired Models for Industrial Applications. Five special sessions were organized by leading researchers in their fields on various topics such as Soft Computing Techniques in Data Mining, - cent Advances on Swarm-Based Computing, Intelligent Computational Techniques in Medical Image Processing, Advances on Ensemble Learning and Information Fusion, and Financial and Business Engineering (Modelling and Applications).
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …