Data Analysis Crash Course

Advertisement



  data analysis crash course: Pandas Hands-on Jacky Bai, 2020-08-30 The goal of this hands-on book is to teach you, the reader, the ins and outs of data manipulation and analytics using Pandas. It introduces comprehensive and in-depth data analytics techniques with Pandas, and helps you quickly master data manipulation and analytical skills, whether you are new to Python or an experience data scientist using other languages. Throughout this book, three small, carefully designed data sets are used to explain all of Pandas' functions. At the end, a detailed use case is provided to demonstrate how Pandas works with Python in real-life applications.If you are new to data analytics, you will find that this book explains complex concepts in a simple yet effective way, assisted with visual explanations. As for those who are experienced data engineers or data scientists, this book will be your best friend when working on projects requiring Pandas. In short, this book is for everyone, regardless of skill level.
  data analysis crash course: Python Crash Course for Data Analysis: A Complete Beginner Guide for Python Coding, NumPy, Pandas and Data Visualization Ai Publishing, 2019-09-22 **GET YOUR COPY NOW, the price will be 21.99$ soon**Learn Python coding for Data Analysis from scratch very easilyWelcome to the Python Crash Course for Data Analysis!The book offers you a solid introduction to the world of Python Coding for data analysis. In this book, you'll learn fundamentals that will enable you to go further in Python Coding, launch or advance a career, and join the next generation of Data Analyst talent that will help define a beneficial, new, powered future for our world. You will study important libraries such as NumPy, Pandas and some Data Visualization libraries.Educational Objectives: This introductory book teaches the foundational skills all Python programmers use to analyze data. It is ideal for beginners who want to learn Python coding or Python for Data Analysis, make informed choices about career goals, and set themselves up for success in this path. At the end of this learning, you will become an great Python Programmer for data Analysis, and learn to analyse data using frameworks like NumPy, Pandas and Matplotlib. Prerequisites: No prior experience with programming is required. You will need to be comfortable with basic computer skills, such as managing files, running programs, and using a web browser to navigate the Internet.You will need to be self-driven and genuinely interested in the Python Coding. No matter how well structured the program is, any attempt to learn programming will involve many hours of studying, practice, and experimentation. Success in this book requires devoting at least 10 hours to your work. This requires some tenacity, and it is especially difficult to do if you don't find Python coding interesting or aren't willing to play around and tinker with your code-so drive, curiosity, and an adventurous attitude are highly recommended!You will need to be able to learn English.Contact Info: While going through the book, if you have questions about anything, you can reach us at contact@aispublishing.net.**GET YOUR COPY NOW, the price will be 15.99$ soon**
  data analysis crash course: Executive Data Science Roger Peng, 2016-08-03 In this concise book you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You'll get a crash course in data science so that you'll be conversant in the field and understand your role as a leader. You'll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects.
  data analysis crash course: Python Programming Andrew Park, 2020-08-22 If you want to learn Python in one week (or less) and learn it well, with useful applications to Data Analysis, Machine Learning and Data Science, then keep reading. Python is one of the most beloved programming languages in any circle of programmers. Software engineers, hackers, and Data Scientists alike are in love with the versatility that Python has to offer. Besides, the Object-Oriented feature of Python coupled with its flexibility is also one of the major attractions for this language. That's the reason why Python is a perfect fit with Data Analysis, Machine Learning and Data Science. Data is the future. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. The goal of this 4-in-1 bundle is simple: explaining everything you need to know to Master Python. With a special emphasis on the main steps that are needed to correctly implement Data Analysis and Machine Learning algorithms, In manuscript one, Python for Beginners, you will learn: How to install Python What are the different Python Data Types and Variables Basic Operators of Python Language Data Structures and Functions Conditional and Loops in Python And Much More! In manuscript two, Python Advanced Guide, you will master: Object-Oriented Programming (OOP), Inheritance and Polymorphism Essential Programming Tools Exception Handling Working with Files And Much More! In manuscript three, Python for Data Analysis, you will learn: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis The 7 Python libraries that make Python one of the best choices for Data Analysis Pandas, Jupyter and PyTorch And Much More! In manuscript four, Applications to Data Science, you will understand: How Data Visualization and Matplotlib can help you to understand the data you are working with. Neural Networks Decision Trees What industries are using data to improve their business with 14 real-world applications And So Much More! Where most books about Python programming are theoretical and have few or little practical examples, this book provides lots of simple, step-by-step examples and illustrations that are used to underline key concepts and help improve your understanding. Furthermore, topics are carefully selected to give you broad exposure to Python, while not overwhelming you with too much information. Also, the outputs of ALL the examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Even if you have never coded before, this is the perfect guide because it breaks down complex concepts into simple steps and in a concise and simple way that fits well with beginners. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them, and the most important real-world applications. Would you like to know more?Scroll Up and Click the BUY NOW Button to Get Your Copy!
  data analysis crash course: Python for Data Analysis Guido Van Smit, 2019-11-27 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in PythonPython for Data Analysis represents now one of the most interesting and useful applications among all the possible applications of Machine Learning and Artificial Intelligence. This guidebook is the ultimate guide to learning insights and strategies to help you grow your business, save time, resources, and energy or if you are looking for a new job, but it requires a solid background in terms of processes and technologies involved. It will walk you through the entire program from A to Z and offers a straightforward approach to Python with plenty of opportunities for hands-on learning and improving your skills. Inside, you'll find: What is and how Data Analysis works Essentials Python Libraries: NumPy, Pandas, IPython and Jupyter Data Types in Python Text Analysis in Python 3 Analyze and manipulate regular and irregular time series data Practical applications to put into use today And so much more! Installation and Setup If you're ready to fully grasp Python for Data Analysis, this book is the perfect guide to help you!
  data analysis crash course: Python Data Science Computer Programming Academy, 2020-11-10 Inside this book you will find all the basic notions to start with Python and all the programming concepts to implement predictive analytics. With our proven strategies you will write efficient Python codes in less than a week!
  data analysis crash course: Python for Data Analysis Wes McKinney, 2017-09-25 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
  data analysis crash course: Data Science Crash Course for Beginners with Python: Fundamentals and Practices with Python Ai Publishing, 2020-08-31 Data Science Crash Course for Beginners with Python Data Science is here to stay. The tremendous growth in the volume, velocity, and variety of data has a substantial impact on every aspect of a business. While data continues to grow exponentially, accuracy remains a problem. This is where data scientists play a decisive role. A data scientist analyzes data, discovers new insights, paints a picture, and creates a vision. And a competent data scientist will provide a business with the competitive edge it needs and address pressing business problems. Data Science Crash Course for Beginners with Python presents you with a hands-on approach to learn data science fast. How Is This Book Different? Every book by AI Publishing has been carefully crafted. This book lays equal emphasis on the theoretical sections as well as the practical aspects of data science. Each chapter provides the theoretical background behind the numerous data science techniques, and practical examples explain the working of these techniques. In the Further Reading section of each chapter, you will find the links to informative data science posts. This book presents you with the tools and packages you need to kick-start data science projects to resolve problems of practical nature. Special emphasis is laid on the main stages of a data science pipeline--data acquisition, data preparation, exploratory data analysis, data modeling and evaluation, and interpretation of the results. In the Data Science Resources section, links to data science resources, articles, interviews, and data science newsletters are provided. The author has also put together a list of contests and competitions that you can try on your own. Another added benefit of buying this book is you get instant access to all the learning material presented with this book-- PDFs, Python codes, exercises, and references--on the publisher's website. They will not cost you an extra cent. The datasets used in this book can be downloaded at runtime, or accessed via the Resources/Datasets folder. The author simplifies your learning by holding your hand through everything. The step by step description of the installation of the software you need for implementing the various data science techniques in this book is guaranteed to make your learning easier. So, right from the beginning, you can experiment with the practical aspects of data science. You'll also find the quick course on Python programming in the second and third chapters immensely helpful, especially if you are new to Python. This book gives you access to all the codes and datasets. So, access to a computer with the internet is sufficient to get started. The topics covered include: Introduction to Data Science and Decision Making Python Installation and Libraries for Data Science Review of Python for Data Science Data Acquisition Data Preparation (Preprocessing) Exploratory Data Analysis Data Modeling and Evaluation Using Machine Learning Interpretation and Reporting of Findings Data Science Projects Key Insights and Further Avenues Click the BUY button to start your Data Science journey.
  data analysis crash course: Statistics Crash Course for Beginners Ai Publishing, 2020-11-11 Frequentist and Bayesian Statistics Crash Course for Beginners Data and statistics are the core subjects of Machine Learning (ML). The reality is the average programmer may be tempted to view statistics with disinterest. But if you want to exploit the incredible power of Machine Learning, you need a thorough understanding of statistics. The reason is a Machine Learning professional develops intelligent and fast algorithms that learn from data. Frequentist and Bayesian Statistics Crash Course for Beginners presents you with an easy way of learning statistics fast. Contrary to popular belief, statistics is no longer the exclusive domain of math Ph.D.s. It's true that statistics deals with numbers and percentages. Hence, the subject can be very dry and boring. This book, however, transforms statistics into a fun subject. Frequentist and Bayesian statistics are two statistical techniques that interpret the concept of probability in different ways. Bayesian statistics was first introduced by Thomas Bayes in the 1770s. Bayesian statistics has been instrumental in the design of high-end algorithms that make accurate predictions. So even after 250 years, the interest in Bayesian statistics has not faded. In fact, it has accelerated tremendously. Frequentist Statistics is just as important as Bayesian Statistics. In the statistical universe, Frequentist Statistics is the most popular inferential technique. In fact, it's the first school of thought you come across when you enter the statistics world. How Is This Book Different? AI Publishing is completely sold on the learning by doing methodology. We have gone to great lengths to ensure you find learning statistics easy. The result: you will not get stuck along your learning journey. This is not a book full of complex mathematical concepts and difficult equations. You will find that the coverage of the theoretical aspects of statistics is proportionate to the practical aspects of the subject. The book makes the reading process easier by presenting you with three types of box-tags in different colors. They are: Requirements, Further Readings, and Hands-on Time. The final chapter presents two mini-projects to give you a better understanding of the concepts you studied in the previous eight chapters. The main feature is you get instant access to a treasure trove of all the related learning material when you buy this book. They include PDFs, Python codes, exercises, and references--on the publisher's website. You get access to all this learning material at no extra cost. You can also download the Machine Learning datasets used in this book at runtime. Alternatively, you can access them through the Resources/Datasets folder. The quick course on Python programming in the first chapter will be immensely helpful, especially if you are new to Python. Since you can access all the Python codes and datasets, a computer with the internet is sufficient to get started. The topics covered include: A Quick Introduction to Python for Statistics Starting with Probability Random Variables and Probability Distributions Descriptive Statistics: Measure of Central Tendency and Spread Exploratory Analysis: Data Visualization Statistical Inference Frequentist Inference Bayesian Inference Hands-on Projects Click the BUY NOW button and start your Statistics Learning journey.
  data analysis crash course: All of Statistics Larry Wasserman, 2013-12-11 Taken literally, the title All of Statistics is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
  data analysis crash course: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data analysis crash course: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
  data analysis crash course: Python Programming Jason Test, 2020-08-03 Are you looking for a super-fast computer programming course? Would you like to learn the Python Programming Language in 7 days? Do you want to increase your business thanks to the web applications? If so, keep reading: this bundle book is for you! Finally on launch the most complete Python guide with 3 Manuscripts in 1 book: 1-Python for beginners 2-Python for Data Science 4-Python Crash Course Python will introduce you many selected practices for coding . You will discover as a beginner the world of data science, machine learning and artificial intelligence. The following list is just a tiny fraction of what you will learn in this collection bundle. 1) Python for beginners ✓ The basics of Python programming ✓ Differences among programming languages ✓ Vba, SQL, R, Python ✓ Game creation with Pyhton ✓ Easy-to-follow steps for reading and writing codes. ✓ Control flow statements and Error handling ✓ 4 best strategies with NumPy, Pandas, Matplotlib 2) Python for Data science ◆ 4 reason why Python is fundamental for Data Science ◆ Python design patterns ◆ How to use Python Data Analysis in your business ◆ Data visualization optimal tools and techniques ◆ Analysis of popular Python projects templates ◆ How to set up the Python environment for Data Science ◆ Most important Machine Learning Algorithms ◆ How to leverage Data Science in the Cloud 3) Python Crash Course * A Proven Method to Write your First Program in 7 Days * 5 Common Mistakes to Avoid when You Start Coding * A Simple Strategy to Write Clean, Understandable and Flexible Codes * The One Thing You Need to Debug your Codes in Python * 5 Practical exercises to start programming Even if you have never written a programming code before, you will quickly grasp the basics thanks to visual charts and guidelines for coding. Examples and step-by-step guides will guide you during the code-writing learning process. The description of each topic is crystal-clear and you can easily practice with related exercises. You will also learn all the best tricks of writing codes with point by point descriptions of the code elements. If you really wish to to learn Python and master its language, please click the BUY NOW button.
  data analysis crash course: Sams Teach Yourself UML in 24 Hours Joseph Schmuller, 2004 Learn UML, the Unified Modeling Language, to create diagrams describing the various aspects and uses of your application before you start coding, to ensure that you have everything covered. Millions of programmers in all languages have found UML to be an invaluable asset to their craft. More than 50,000 previous readers have learned UML with Sams Teach Yourself UML in 24 Hours. Expert author Joe Schmuller takes you through 24 step-by-step lessons designed to ensure your understanding of UML diagrams and syntax. This updated edition includes the new features of UML 2.0 designed to make UML an even better modeling tool for modern object-oriented and component-based programming. The CD-ROM includes an electronic version of the book, and Poseidon for UML, Community Edition 2.2, a popular UML modeling tool you can use with the lessons in this book to create UML diagrams immediately.
  data analysis crash course: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  data analysis crash course: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data analysis crash course: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
  data analysis crash course: Frank Kane's Taming Big Data with Apache Spark and Python Frank Kane, 2017-06-30 Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.
  data analysis crash course: Python for Finance Yves J. Hilpisch, 2018-12-05 The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
  data analysis crash course: Fluent Python Luciano Ramalho, 2015-07-30 Python’s simplicity lets you become productive quickly, but this often means you aren’t using everything it has to offer. With this hands-on guide, you’ll learn how to write effective, idiomatic Python code by leveraging its best—and possibly most neglected—features. Author Luciano Ramalho takes you through Python’s core language features and libraries, and shows you how to make your code shorter, faster, and more readable at the same time. Many experienced programmers try to bend Python to fit patterns they learned from other languages, and never discover Python features outside of their experience. With this book, those Python programmers will thoroughly learn how to become proficient in Python 3. This book covers: Python data model: understand how special methods are the key to the consistent behavior of objects Data structures: take full advantage of built-in types, and understand the text vs bytes duality in the Unicode age Functions as objects: view Python functions as first-class objects, and understand how this affects popular design patterns Object-oriented idioms: build classes by learning about references, mutability, interfaces, operator overloading, and multiple inheritance Control flow: leverage context managers, generators, coroutines, and concurrency with the concurrent.futures and asyncio packages Metaprogramming: understand how properties, attribute descriptors, class decorators, and metaclasses work
  data analysis crash course: Excel Crash Course for Engineers Eklas Hossain, 2021-03-31 Excel Crash Course for Engineers is a reader-friendly introductory guide to the features, functions, and applications of Microsoft Excel in engineering. The book provides readers with real-world examples and exercises that are directly related to engineering, and offers highly illustrated, step-by-step demonstrations of techniques to solve and visualize engineering problems and situations. The book includes an introduction to MS Excel, along with in-depth coverage of graphing and charting, functions and formulae, Excel's Visual Basic for Applications (VBA) programming language, and engineering data analysis. This powerful tutorial is a great resource for students, engineers, and other busy technical professionals who need to quickly acquire a solid understanding of Excel.
  data analysis crash course: Data Science on AWS Chris Fregly, Antje Barth, 2021-04-07 With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
  data analysis crash course: Python Crash Course, 2nd Edition Eric Matthes, 2019-05-03 The best-selling Python book in the world, with over 1 million copies sold! A fast-paced, no-nonsense, updated guide to programming in Python. If you've been thinking about learning how to code or picking up Python, this internationally bestselling guide to the most popular programming language is your quickest, easiest way to get started and go! Even if you have no experience whatsoever, Python Crash Course, 2nd Edition, will have you writing programs, solving problems, building computer games, and creating data visualizations in no time. You’ll begin with basic concepts like variables, lists, classes, and loops—with the help of fun skill-strengthening exercises for every topic—then move on to making interactive programs and best practices for testing your code. Later chapters put your new knowledge into play with three cool projects: a 2D Space Invaders-style arcade game, a set of responsive data visualizations you’ll build with Python's handy libraries (Pygame, Matplotlib, Plotly, Django), and a customized web app you can deploy online. Why wait any longer? Start your engine and code!
  data analysis crash course: Forecasting: principles and practice Rob J Hyndman, George Athanasopoulos, 2018-05-08 Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
  data analysis crash course: Head First Data Analysis Michael Milton, 2009-07-24 A guide for data managers and analyzers. It shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others.
  data analysis crash course: Pandas for Everyone Daniel Y. Chen, 2017-12-15 The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
  data analysis crash course: Big Data and Business Analytics Jay Liebowitz, 2016-04-19 The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions todo this, avoid that.'-From the Foreword by Joe LaCugna, Ph.D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growing barrage of big data, it becomes vitally important for organizations to mak
  data analysis crash course: Data Pipelines Pocket Reference James Densmore, 2021-02-10 Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting
  data analysis crash course: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data analysis crash course: Python Crash Course Eric Matthes, 2015-11-01 Python Crash Course is a fast-paced, thorough introduction to Python that will have you writing programs, solving problems, and making things that work in no time. In the first half of the book, you’ll learn about basic programming concepts, such as lists, dictionaries, classes, and loops, and practice writing clean and readable code with exercises for each topic. You’ll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you’ll put your new knowledge into practice with three substantial projects: a Space Invaders–inspired arcade game, data visualizations with Python’s super-handy libraries, and a simple web app you can deploy online. As you work through Python Crash Course you’ll learn how to: –Use powerful Python libraries and tools, including matplotlib, NumPy, and Pygal –Make 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progresses –Work with data to generate interactive visualizations –Create and customize Web apps and deploy them safely online –Deal with mistakes and errors so you can solve your own programming problems If you’ve been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code! Uses Python 2 and 3
  data analysis crash course: Causal Inference in Statistics Judea Pearl, Madelyn Glymour, Nicholas P. Jewell, 2016-01-25 CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as Does this treatment harm or help patients? But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.
  data analysis crash course: Python for Data Science Erick Thompson, 2020-10-30
  data analysis crash course: Crash Course Medical Research, Audit and Teaching: the Essentials for Career Success Amit Kaura, 2019-02-19 Crash Course – your effective every-day study companion PLUS the perfect antidote for exam stress! Save time and be assured you have the essential information you need in one place to excel on your course and achieve exam success. A winning formula now for over 20 years, each series volume has been fine-tuned and fully updated – with an improved full-colour layout tailored to make your life easier. Especially written by senior students or junior doctors – those who understand what is essential for exam success – with all information thoroughly checked and quality assured by expert Faculty Advisers, the result are books which exactly meet your needs and you know you can trust. This volume concisely brings together the wide range of skills needed for interpreting or conducting medical research and audit. It starts with the basics of medical data analysis and interpretation, followed by how to critically review published studies and even extends to advice on career advancement including CV writing, securing academic opportunities and teaching. This book will allow you to build competence and confidence in the world of medical research. - Provides the exam syllabus in one place - saves valuable revision time - Written by senior students and recent graduates - those closest to what is essential for exam success - Quality assured by leading Faculty Advisors - ensures complete accuracy of information - Features the ever popular 'Hints and Tips' boxes and other useful aide-mémoires - distilled wisdom from those in the know - Updated self-assessment section matching the latest exam formats – confirm your understanding and improve exam technique fast
  data analysis crash course: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  data analysis crash course: PYTHON CRASH COURSE Eric Bader, 2021-02-08 55% OFF FOR BOOKSTORES! PYTHON CRASH COURSE
  data analysis crash course: R in Action Robert Kabacoff, 2015-03-03 R is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data. R in Action, Second Edition is a language tutorial focused on practical problems. Written by a research methodologist, it takes a direct and modular approach to quickly give readers the information they need to produce useful results. Focusing on realistic data analyses and a comprehensive integration of graphics, it follows the steps that real data analysts use to acquire their data, get it into shape, analyze it, and produce meaningful results that they can provide to clients. Purchase of the print book comes with an offer of a free PDF eBook from Manning. Also available is all code from the book.
  data analysis crash course: Designing Data-Intensive Applications Martin Kleppmann, 2017-03-16 Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures
  data analysis crash course: Data Analytics for Intelligent Transportation Systems Mashrur Chowdhury, Kakan Dey, Amy Apon, 2024-11-02 Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
  data analysis crash course: The Data Science Handbook Field Cady, 2017-02-28 A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.
  data analysis crash course: Highway Safety Analytics and Modeling Dominique Lord, Xiao Qin, Srinivas R. Geedipally, 2021-02-27 Highway Safety Analytics and Modeling comprehensively covers the key elements needed to make effective transportation engineering and policy decisions based on highway safety data analysis in a single. reference. The book includes all aspects of the decision-making process, from collecting and assembling data to developing models and evaluating analysis results. It discusses the challenges of working with crash and naturalistic data, identifies problems and proposes well-researched methods to solve them. Finally, the book examines the nuances associated with safety data analysis and shows how to best use the information to develop countermeasures, policies, and programs to reduce the frequency and severity of traffic crashes. - Complements the Highway Safety Manual by the American Association of State Highway and Transportation Officials - Provides examples and case studies for most models and methods - Includes learning aids such as online data, examples and solutions to problems
Data Wrangling with R - Cancer
Lesson 2: Getting Started with R R Crash Course: A few things to know before diving into wrangling 14 Learning the Basics 14 ... Console vs. Script 14 R can be used like a calculator …

DATA 301 Introduction to Data Analytics Course Introduction
Provide an introduction to data analytics tools and techniques so that students are able to apply data analysis to their own data sets. Encourage students to continue with other data analytics …

14.310x: Data Analysis for Social Scientists - Amazon Web …
We will proceed to cover techniques in modern data analysis: regression and econometrics, design of experiments, randomized control trials (and A/B testing), machine learning, data …

Excel 2019 Data Analysis
Click on the course name to download the data files. You can choose to open or save the zipped folders content to your computer. The handouts are in PDF format and also available to you …

Data and Analytics Academy Curriculum 2020 - PwC
This course integrates data science, information technology and business applications into three areas: data mining, predictive (forecasting) and prescriptive (optimisation and simulation) …

Introduction to Python for Data Analysis: Crash Course
Introduction to Python for Data Analysis: Crash Course Dear Postgraduate students and Researchers. In this 21st century, you need a much better and faster tool that can give you a …

Crash Course on Basic Statistics
Uses standardized variables to reduce data sets by using principal component analysis (PCA) (data reduction technique). It is based on an orthogonal decomposition of an input matrix to …

Bioinformatics Crash Course
5.1 Welcome Congratulations! After your hard work honing your Unix and Python skills, you’ve been selected for a bioinformatic research project! Soon, you’re going to be trusted with …

Crash course USVI 2023 - University of the Virgin Islands
Automated analysis and reporting – Systems can analyze data and report insights from it in natural sounding, human language, accompanied with infographics which we can easily digest.

14.31x Data Analysis for Social Scientists - GitHub Pages
How do we summarize and describe data, and try to uncover what process may have generated it? How do we uncover pattern between variables? How do we think of causality? How do we …

1 Lecture 12: Crash Course in Statistics - GitHub Pages
Data collection. Collect broad, unbiased, varied data related to the question you want to answer. Descriptive statistics. Generate statistics that summarize the data concisely, and evaluate …

ME 278 (AUG) 3:0 A practical introduction to data analysis for …
A practical introduction to data analysis for engineers Instructors: Balachandra Suri and Navaneetha Krishnan Ravichandran

Crash Course on Data Stream Algorithms - UMass
Basic idea: Apply a linear projection \on the y" that takes high-dimensional data to a smaller dimensional space. Post-process lower dimensional image to estimate the quantities of interest.

Crash Course in Accounting & Financial Statement Analysis
Mar 27, 2020 · Learn how to incorporate and take advantage of the most popular and helpful Excel functions and table features for financial analysis. Identify the mathematical Excel …

Data Analytics Course Syllabus - Besant Technologies
Data Analytics Course Syllabus Business Statistics Introduction to Statistical Analysis Counting, Probability, and Probability Distributions Sampling Distributions

Crash Data Retrieval Analysis & Applications
Among its many topics, this five-day course covers Crash Pulse recording methodologies, crash sensing and critical timelines, delta-v recording variations, and airbag system–deployment …

A Crash Course in Machine Learning Methods for Text Analysis
Classi cation and Regression Trees (CART) are based on the principle of sequentially splitting the data into multi-dimensional `boxes' according to the X features.

Advanced Collision Reconstruction with CDR Application
Enroll in this five-day, on-ground CDR reconstruction course to explore advanced methods for analyzing CDR data in collision reconstructions. and post-impact velocities in various crash …

Crash analysis in India: Data sources and methods - IIT Delhi
Crime records victims/claimants of motor accident. Accuracy of government-reported data? Accidents may include all road crashes, including injury and fatal. Since injury accidents are …

master-data-science-essentials_2016-12-16.pages - Sharp Sight
core areas: data acquisition and data shaping (sometimes called data wrangling, or data munging), data visualization, and machine learning. has excellent packages and toolsets for all …

Data Wrangling with R - Cancer
Lesson 2: Getting Started with R R Crash Course: A few things to know before diving into wrangling 14 Learning the Basics 14 ... Console vs. Script 14 R can be used like a calculator …

DATA 301 Introduction to Data Analytics Course Introduction
Provide an introduction to data analytics tools and techniques so that students are able to apply data analysis to their own data sets. Encourage students to continue with other data analytics …

14.310x: Data Analysis for Social Scientists - Amazon Web …
We will proceed to cover techniques in modern data analysis: regression and econometrics, design of experiments, randomized control trials (and A/B testing), machine learning, data …

Excel 2019 Data Analysis
Click on the course name to download the data files. You can choose to open or save the zipped folders content to your computer. The handouts are in PDF format and also available to you …

Data and Analytics Academy Curriculum 2020 - PwC
This course integrates data science, information technology and business applications into three areas: data mining, predictive (forecasting) and prescriptive (optimisation and simulation) …

Introduction to Python for Data Analysis: Crash Course
Introduction to Python for Data Analysis: Crash Course Dear Postgraduate students and Researchers. In this 21st century, you need a much better and faster tool that can give you a …

Crash Course on Basic Statistics
Uses standardized variables to reduce data sets by using principal component analysis (PCA) (data reduction technique). It is based on an orthogonal decomposition of an input matrix to …

Bioinformatics Crash Course
5.1 Welcome Congratulations! After your hard work honing your Unix and Python skills, you’ve been selected for a bioinformatic research project! Soon, you’re going to be trusted with …

Crash course USVI 2023 - University of the Virgin Islands
Automated analysis and reporting – Systems can analyze data and report insights from it in natural sounding, human language, accompanied with infographics which we can easily digest.

14.31x Data Analysis for Social Scientists - GitHub Pages
How do we summarize and describe data, and try to uncover what process may have generated it? How do we uncover pattern between variables? How do we think of causality? How do we …

1 Lecture 12: Crash Course in Statistics - GitHub Pages
Data collection. Collect broad, unbiased, varied data related to the question you want to answer. Descriptive statistics. Generate statistics that summarize the data concisely, and evaluate …

ME 278 (AUG) 3:0 A practical introduction to data analysis for …
A practical introduction to data analysis for engineers Instructors: Balachandra Suri and Navaneetha Krishnan Ravichandran

Crash Course on Data Stream Algorithms - UMass
Basic idea: Apply a linear projection \on the y" that takes high-dimensional data to a smaller dimensional space. Post-process lower dimensional image to estimate the quantities of interest.

Crash Course in Accounting & Financial Statement Analysis
Mar 27, 2020 · Learn how to incorporate and take advantage of the most popular and helpful Excel functions and table features for financial analysis. Identify the mathematical Excel …

Data Analytics Course Syllabus - Besant Technologies
Data Analytics Course Syllabus Business Statistics Introduction to Statistical Analysis Counting, Probability, and Probability Distributions Sampling Distributions

Crash Data Retrieval Analysis & Applications
Among its many topics, this five-day course covers Crash Pulse recording methodologies, crash sensing and critical timelines, delta-v recording variations, and airbag system–deployment …

A Crash Course in Machine Learning Methods for Text …
Classi cation and Regression Trees (CART) are based on the principle of sequentially splitting the data into multi-dimensional `boxes' according to the X features.

Advanced Collision Reconstruction with CDR Application
Enroll in this five-day, on-ground CDR reconstruction course to explore advanced methods for analyzing CDR data in collision reconstructions. and post-impact velocities in various crash …

Crash analysis in India: Data sources and methods - IIT Delhi
Crime records victims/claimants of motor accident. Accuracy of government-reported data? Accidents may include all road crashes, including injury and fatal. Since injury accidents are …