data engineering with alteryx: Data Engineering with Alteryx Paul Houghton, 2022-06-30 Build and deploy data pipelines with Alteryx by applying practical DataOps principles Key Features • Learn DataOps principles to build data pipelines with Alteryx • Build robust data pipelines with Alteryx Designer • Use Alteryx Server and Alteryx Connect to share and deploy your data pipelines Book Description Alteryx is a GUI-based development platform for data analytic applications. Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have. This book will teach you the principles of DataOps and how they can be used with the Alteryx software stack. You'll build data pipelines with Alteryx Designer and incorporate the error handling and data validation needed for reliable datasets. Next, you'll take the data pipeline from raw data, transform it into a robust dataset, and publish it to Alteryx Server following a continuous integration process. By the end of this Alteryx book, you'll be able to build systems for validating datasets, monitoring workflow performance, managing access, and promoting the use of your data sources. What you will learn • Build a working pipeline to integrate an external data source • Develop monitoring processes for the pipeline example • Understand and apply DataOps principles to an Alteryx data pipeline • Gain skills for data engineering with the Alteryx software stack • Work with spatial analytics and machine learning techniques in an Alteryx workflow Explore Alteryx workflow deployment strategies using metadata validation and continuous integration • Organize content on Alteryx Server and secure user access Who this book is for If you're a data engineer, data scientist, or data analyst who wants to set up a reliable process for developing data pipelines using Alteryx, this book is for you. You'll also find this book useful if you are trying to make the development and deployment of datasets more robust by following the DataOps principles. Familiarity with Alteryx products will be helpful but is not necessary. |
data engineering with alteryx: Learning Alteryx Renato Baruti, 2017-12-26 Implement your Business Intelligence solutions without any coding - by leveraging the power of the Alteryx platform About This Book Experience the power of codeless analytics using Alteryx, a leading Business Intelligence tool Uncover hidden trends and valuable insights from your data across different sources and make accurate predictions Includes real-world examples to put your understanding of the features in Alteryx to practical use Who This Book Is For This book is for aspiring data professionals who want to learn and implement self-service analytics from scratch, without any coding. Those who have some experience with Alteryx and want to gain more proficiency will also find this book to be useful. A basic understanding of the data science concepts is all you need to get started with this book. What You Will Learn Create efficient workflows with Alteryx to answer complex business questions Learn how to speed up the cleansing, data preparing, and shaping process Blend and join data into a single dataset for self-service analysis Write advanced expressions in Alteryx leading to an optimal workflow for efficient processing of huge data Develop high-quality, data-driven reports to improve consistency in reporting and analysis Explore the flexibility of macros by automating analytic processes Apply predictive analytics from spatial, demographic, and behavioral analysis and quickly publish, schedule Share your workflows and insights with relevant stakeholders In Detail Alteryx, as a leading data blending and advanced data analytics platform, has taken self-service data analytics to the next level. Companies worldwide often find themselves struggling to prepare and blend massive datasets that are time-consuming for analysts. Alteryx solves these problems with a repeatable workflow designed to quickly clean, prepare, blend, and join your data in a seamless manner. This book will set you on a self-service data analytics journey that will help you create efficient workflows using Alteryx, without any coding involved. It will empower you and your organization to take well-informed decisions with the help of deeper business insights from the data.Starting with the fundamentals of using Alteryx such as data preparation and blending, you will delve into the more advanced concepts such as performing predictive analytics. You will also learn how to use Alteryx's features to share the insights gained with the relevant decision makers. To ensure consistency, we will be using data from the Healthcare domain throughout this book. The knowledge you gain from this book will guide you to solve real-life problems related to Business Intelligence confidently. Whether you are a novice with Alteryx or an experienced data analyst keen to explore Alteryx's self-service analytics features, this book will be the perfect companion for you. Style and approach Comprehensive, step by step guide filled with real-world examples to step through the complex business questions using one of the leading data analytics platform. |
data engineering with alteryx: Azure Data Engineering Cookbook Nagaraj Venkatesan, Ahmad Osama, 2022-09-26 Nearly 80 recipes to help you collect and transform data from multiple sources into a single data source, making it way easier to perform analytics on the data Key FeaturesBuild data pipelines from scratch and find solutions to common data engineering problemsLearn how to work with Azure Data Factory, Data Lake, Databricks, and Synapse AnalyticsMonitor and maintain your data engineering pipelines using Log Analytics, Azure Monitor, and Azure PurviewBook Description The famous quote 'Data is the new oil' seems more true every day as the key to most organizations' long-term success lies in extracting insights from raw data. One of the major challenges organizations face in leveraging value out of data is building performant data engineering pipelines for data visualization, ingestion, storage, and processing. This second edition of the immensely successful book by Ahmad Osama brings to you several recent enhancements in Azure data engineering and shares approximately 80 useful recipes covering common scenarios in building data engineering pipelines in Microsoft Azure. You'll explore recipes from Azure Synapse Analytics workspaces Gen 2 and get to grips with Synapse Spark pools, SQL Serverless pools, Synapse integration pipelines, and Synapse data flows. You'll also understand Synapse SQL Pool optimization techniques in this second edition. Besides Synapse enhancements, you'll discover helpful tips on managing Azure SQL Database and learn about security, high availability, and performance monitoring. Finally, the book takes you through overall data engineering pipeline management, focusing on monitoring using Log Analytics and tracking data lineage using Azure Purview. By the end of this book, you'll be able to build superior data engineering pipelines along with having an invaluable go-to guide. What you will learnProcess data using Azure Databricks and Azure Synapse AnalyticsPerform data transformation using Azure Synapse data flowsPerform common administrative tasks in Azure SQL DatabaseBuild effective Synapse SQL pools which can be consumed by Power BIMonitor Synapse SQL and Spark pools using Log AnalyticsTrack data lineage using Microsoft Purview integration with pipelinesWho this book is for This book is for data engineers, data architects, database administrators, and data professionals who want to get well versed with the Azure data services for building data pipelines. Basic understanding of cloud and data engineering concepts will help in getting the most out of this book. |
data engineering with alteryx: Alteryx Designer Cookbook Alberto Guisande, 2023-10-31 Streamline your workflow, transform raw data into actionable insights, and use Alteryx Designer to shape, design, and visualize data Key Features Acquire the skills necessary to perform analytics operations like an expert Discover hidden trends and insights in your data from various sources to make accurate predictions Reduce the time and effort required to derive insights from your data Purchase of the print or Kindle book includes a free eBook in the PDF format Book DescriptionAlteryx allows you to create data manipulation and analytic workflows with a simple, easy-to-use, code-free UI, and perform fast-executing workflows, offering multiple ways to achieve the same results. The Alteryx Designer Cookbook is a comprehensive guide to maximizing your Alteryx skills and determining the best ways to perform data operations This book's recipes will guide you through an analyst's complete journey, covering all aspects of the data life cycle. The first set of chapters will teach you how to read data from various sources to obtain reports and pass it through the required adjustment operations for analysis. After an explanation of the Alteryx platform components with a particular focus on Alteryx Designer, you’ll be taken on a tour of what and how you can accomplish by using this tool. Along the way, you’ll learn best practices and design patterns. The book also covers real-world examples to help you apply your understanding of the features in Alteryx to practical scenarios By the end of this book, you’ll have enhanced your proficiency with Alteryx Designer and an improved ability to execute tasks within the tool efficientlyWhat you will learn Speed up the cleansing, data preparing, and shaping process Perform operations and transformations on the data to suit your needs Blend different types of data sources for analysis Pivot and un-pivot the data for easy manipulation Perform aggregations and calculations on the data Encapsulate reusable logic into macros Develop high-quality, data-driven reports to improve consistency Who this book is for This book is for data analysts, data professionals, and business intelligence professionals seeking to harness the full potential of the tool. A basic understanding of Alteryx Designer and Alteryx terminology, including macros, apps, and workflows, is all you need to get started with this book. |
data engineering with alteryx: Alteryx for Accounting, Tax and Finance Professionals Trent Green, 2021-01-19 Dealing with massive amounts of messy data as part of Microsoft Excel(TM) calculations has traditionally been an enormously labor-intensive and time-consuming challenge for accounting, tax and finance professionals. This book explains how Alteryx(TM) can be used to address these challenges in a progressive, fully illustrated manner.- Learn how to import data from Excel and other sources into Alteryx using the Input Data tool.- Develop Alteryx workflows to quickly and systemically organize, format, cleanse and analyze large amounts of data using tools such as Select Records, Dynamic Rename, Select, Filter, Unique, Text to Columns, DateTime and several others.- Cleanly and accurately combine separate datasets using the Join and Union Tools.- Learn advanced techniques for manipulating data presented in rows and columns using the CrossTab and Transpose tools.- Use the Summarize tool to perform calculations and to aggregate data in rows.- Export data that you've cleaned and organized to Excel using the Output Data tool for further computations and analysis.- Review methods and techniques for taking advantage of the speed and power of Alteryx while simultaneously strengthening internal controls.All of the material presented in this book is explained in the context of financial and other examples that matter to accounting, tax and finance professionals. If you've been searching for a better, faster and more accurate way to organize large amounts of data that feed into and support complex Excel calculations, this is the guide you've been looking for! |
data engineering with alteryx: Alteryx Designer: The Definitive Guide Joshua Burkhow, 2023-11-15 Analytics projects are frequently long, drawn-out affairs, requiring multiple teams and skills to clean, join, and eventually turn data into analysis for timely decision-making. Alteryx Designer changes all of that. With this low-code, self-service, drag-and-drop workflow platform, new and experienced data and business analysts can deliver results in hours instead of weeks. This practical book shows you how to master all areas of Alteryx Designer quickly. Author and Alteryx ACE Joshua Burkhow starts with the basics of building a workflow, then introduces more than 200 tools for working with intermediate and advanced analytics functionality. With Alteryx Designer's all-in-one toolkit, you'll migrate from legacy analytics software or Excel with ease. Ready to work with data quickly and efficiently? This guide gets you started. Learn the fundamentals of cleaning, prepping, and analyzing data with Alteryx Designer Install, navigate, and quickly become competent with the Alteryx Designer layout and functionality Construct accurate, performant, reliable, and well-documented workflows that automate business processes Learn intermediate techniques using spatial analytics, reporting, and in-database tools Dive into advanced Alteryx capabilities, including predictive and machine learning tools Get introduced to the entire Alteryx Analytic Process Automation (APA) Platform |
data engineering with alteryx: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines. |
data engineering with alteryx: Data Engineering with dbt Roberto Zagni, 2023-06-30 Use easy-to-apply patterns in SQL and Python to adopt modern analytics engineering to build agile platforms with dbt that are well-tested and simple to extend and run Purchase of the print or Kindle book includes a free PDF eBook Key Features Build a solid dbt base and learn data modeling and the modern data stack to become an analytics engineer Build automated and reliable pipelines to deploy, test, run, and monitor ELTs with dbt Cloud Guided dbt + Snowflake project to build a pattern-based architecture that delivers reliable datasets Book Descriptiondbt Cloud helps professional analytics engineers automate the application of powerful and proven patterns to transform data from ingestion to delivery, enabling real DataOps. This book begins by introducing you to dbt and its role in the data stack, along with how it uses simple SQL to build your data platform, helping you and your team work better together. You’ll find out how to leverage data modeling, data quality, master data management, and more to build a simple-to-understand and future-proof solution. As you advance, you’ll explore the modern data stack, understand how data-related careers are changing, and see how dbt enables this transition into the emerging role of an analytics engineer. The chapters help you build a sample project using the free version of dbt Cloud, Snowflake, and GitHub to create a professional DevOps setup with continuous integration, automated deployment, ELT run, scheduling, and monitoring, solving practical cases you encounter in your daily work. By the end of this dbt book, you’ll be able to build an end-to-end pragmatic data platform by ingesting data exported from your source systems, coding the needed transformations, including master data and the desired business rules, and building well-formed dimensional models or wide tables that’ll enable you to build reports with the BI tool of your choice.What you will learn Create a dbt Cloud account and understand the ELT workflow Combine Snowflake and dbt for building modern data engineering pipelines Use SQL to transform raw data into usable data, and test its accuracy Write dbt macros and use Jinja to apply software engineering principles Test data and transformations to ensure reliability and data quality Build a lightweight pragmatic data platform using proven patterns Write easy-to-maintain idempotent code using dbt materialization Who this book is for This book is for data engineers, analytics engineers, BI professionals, and data analysts who want to learn how to build simple, futureproof, and maintainable data platforms in an agile way. Project managers, data team managers, and decision makers looking to understand the importance of building a data platform and foster a culture of high-performing data teams will also find this book useful. Basic knowledge of SQL and data modeling will help you get the most out of the many layers of this book. The book also includes primers on many data-related subjects to help juniors get started. |
data engineering with alteryx: Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics Patil, Bhushan, Vohra, Manisha, 2020-10-23 Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies. |
data engineering with alteryx: Modern CTO Joel Beasley, 2018-02-28 Everything you need to know to be a Modern CTO. Developers are not CTOs, but developers can learn how to be CTOs. In Modern CTO, Joel Beasely provides readers with an in-depth road map on how to successfully navigate the unexplored and jagged transition between these two roles. Drawing from personal experience, Joel gives a refreshing take on the challenges, lessons, and things to avoid on this journey. Readers will learn how Modern CTOs: Manage deadlines Speak up Know when to abandon ship and build a better one Deal with poor code Avoid getting lost in the product and know what UX mistakes to watch out for Manage people and create momentum ... plus much more Modern CTO is the ultimate guidebook on how to kick start your career and go from developer to CTO. |
data engineering with alteryx: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
data engineering with alteryx: SQL for Data Scientists Renee M. P. Teate, 2021-08-17 Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on how to think about constructing your dataset. Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward! |
data engineering with alteryx: CURRENT ISSUES OF SCIENCE AND INTEGRATED TECHNOLOGIES , 2023-01-10 Proceedings of the II International Scientific and Practical Conference |
data engineering with alteryx: Next-Generation Big Data Butch Quinto, 2018-06-12 Utilize this practical and easy-to-follow guide to modernize traditional enterprise data warehouse and business intelligence environments with next-generation big data technologies. Next-Generation Big Data takes a holistic approach, covering the most important aspects of modern enterprise big data. The book covers not only the main technology stack but also the next-generation tools and applications used for big data warehousing, data warehouse optimization, real-time and batch data ingestion and processing, real-time data visualization, big data governance, data wrangling, big data cloud deployments, and distributed in-memory big data computing. Finally, the book has an extensive and detailed coverage of big data case studies from Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard. What You’ll Learn Install Apache Kudu, Impala, and Spark to modernize enterprise data warehouse and business intelligence environments, complete with real-world, easy-to-follow examples, and practical advice Integrate HBase, Solr, Oracle, SQL Server, MySQL, Flume, Kafka, HDFS, and Amazon S3 with Apache Kudu, Impala, and Spark Use StreamSets, Talend, Pentaho, and CDAP for real-time and batch data ingestion and processing Utilize Trifacta, Alteryx, and Datameer for data wrangling and interactive data processing Turbocharge Spark with Alluxio, a distributed in-memory storage platform Deploy big data in the cloud using Cloudera Director Perform real-time data visualization and time series analysis using Zoomdata, Apache Kudu, Impala, and Spark Understand enterprise big data topics such as big data governance, metadata management, data lineage, impact analysis, and policy enforcement, and how to use Cloudera Navigator to perform common data governance tasks Implement big data use cases such as big data warehousing, data warehouse optimization, Internet of Things, real-time data ingestion and analytics, complex event processing, and scalable predictive modeling Study real-world big data case studies from innovative companies, including Navistar, Cerner, British Telecom, Shopzilla, Thomson Reuters, and Mastercard Who This Book Is For BI and big data warehouse professionals interested in gaining practical and real-world insight into next-generation big data processing and analytics using Apache Kudu, Impala, and Spark; and those who want to learn more about other advanced enterprise topics |
data engineering with alteryx: T-Byte Digital Customer Experience V Gupta, 2019-10-31 This document brings together a set of latest data points and publicly available information relevant for Digital Customer Experience. We are very excited to share this content and believe that readers will benefit immensely from this periodic publication immensely. |
data engineering with alteryx: Practical Data Science with Python Nathan George, 2021-09-30 Learn to effectively manage data and execute data science projects from start to finish using Python Key FeaturesUnderstand and utilize data science tools in Python, such as specialized machine learning algorithms and statistical modelingBuild a strong data science foundation with the best data science tools available in PythonAdd value to yourself, your organization, and society by extracting actionable insights from raw dataBook Description Practical Data Science with Python teaches you core data science concepts, with real-world and realistic examples, and strengthens your grip on the basic as well as advanced principles of data preparation and storage, statistics, probability theory, machine learning, and Python programming, helping you build a solid foundation to gain proficiency in data science. The book starts with an overview of basic Python skills and then introduces foundational data science techniques, followed by a thorough explanation of the Python code needed to execute the techniques. You'll understand the code by working through the examples. The code has been broken down into small chunks (a few lines or a function at a time) to enable thorough discussion. As you progress, you will learn how to perform data analysis while exploring the functionalities of key data science Python packages, including pandas, SciPy, and scikit-learn. Finally, the book covers ethics and privacy concerns in data science and suggests resources for improving data science skills, as well as ways to stay up to date on new data science developments. By the end of the book, you should be able to comfortably use Python for basic data science projects and should have the skills to execute the data science process on any data source. What you will learnUse Python data science packages effectivelyClean and prepare data for data science work, including feature engineering and feature selectionData modeling, including classic statistical models (such as t-tests), and essential machine learning algorithms, such as random forests and boosted modelsEvaluate model performanceCompare and understand different machine learning methodsInteract with Excel spreadsheets through PythonCreate automated data science reports through PythonGet to grips with text analytics techniquesWho this book is for The book is intended for beginners, including students starting or about to start a data science, analytics, or related program (e.g. Bachelor’s, Master’s, bootcamp, online courses), recent college graduates who want to learn new skills to set them apart in the job market, professionals who want to learn hands-on data science techniques in Python, and those who want to shift their career to data science. The book requires basic familiarity with Python. A getting started with Python section has been included to get complete novices up to speed. |
data engineering with alteryx: Predictive Analytics for Mechanical Engineering: A Beginners Guide Parikshit N. Mahalle, Pravin P. Hujare, Gitanjali Rahul Shinde, 2023-08-16 This book focus on key component required for building predictive maintenance model. The current trend of Maintenance 4.0 leans towards the preventive mechanism enabled by predictive approach and condition-based smart maintenance. The intelligent decision support, earlier detection of spare part failure, fatigue detection is the main slices of intelligent and predictive maintenance system (PMS) leading towards Maintenance 4.0 This book presents prominent use cases of mechanical engineering using PMS along with the benefits. Basic understanding of data preparation is required for development of any AI application; in view of this, the types of the data and data preparation processes, and tools are also presented in this book. |
data engineering with alteryx: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
data engineering with alteryx: Advancing Student Employability Through Higher Education Christiansen, Bryan, Even, Angela M., 2024-01-29 The global skills gap and labor market disruptions pose a significant challenge for organizations worldwide. Higher education struggles to bridge the mismatch between skills taught in academia and those demanded by employers, hindering organizations in an era of heightened competition. Advancing Student Employability Through Higher Education offers a comprehensive solution to address this issue. Edited by Bryan Christiansen and Angela Even, this publication brings together innovative research and insights from employers and employees, serving as a valuable resource for academic scholars seeking the latest research on employer requirements in an era of increasing global hyper-competition. Covering topics like industry-academia collaboration, educational innovation, learning analytics, and educational artificial intelligence (AI), the book provides practical strategies and innovative approaches to bridge the gap between academic instruction and real-world organizational needs. It equips students with the skills and qualifications necessary to thrive in today's global economy through case studies, online learning effectiveness, and training evaluation. By leveraging the expertise of renowned scholars and industry practitioners, the book enhances understanding of the intricate dynamics of the workforce. It empowers scholars, graduate students, and higher education professionals to navigate the evolving needs of organizations, fostering success for individuals and organizational growth in an increasingly competitive landscape. |
data engineering with alteryx: Be Data Driven Jordan Morrow, 2022-08-03 Make any team or business data driven with this practical guide to overcoming common challenges and creating a data culture. Businesses are increasingly focusing on their data and analytics strategy, but a data-driven culture grounded in evidence-based decision making can be difficult to achieve. Be Data Driven outlines a step-by-step roadmap to building a data-driven organization or team, beginning with deciding on outcomes and a strategy before moving onto investing in technology and upskilling where necessary. This practical guide explains what it means to be a data-driven organization and explores which technologies are advancing data and analytics. Crucially, it also examines the most common challenges to becoming data driven, from a foundational skills gap to issues with leadership and strategy and the impact of organizational culture. With case studies of businesses who have successfully used data, Be Data Driven shows managers, leaders and data professionals how to address hurdles, encourage a data culture and become truly data driven. |
data engineering with alteryx: Handbook of Research on Essential Information Approaches to Aiding Global Health in the One Health Context Lima de Magalhães, Jorge, Hartz, Zulmira, Jamil, George Leal, Silveira, Henrique, Jamil, Liliane C., 2021-10-22 Post COVID-19 pandemic, researchers have been evaluating the healthcare system for improvements that can be made. Understanding global healthcare systems’ operations is essential to preventative measures to be taken for the next global health crisis. A key part to bettering healthcare is the implementation of information management and One Health. The Handbook of Research on Essential Information Approaches to Aiding Global Health in the One Health Context evaluates the concepts in global health and the application of essential information management in healthcare organizational strategic contexts. This text promotes understanding in how evaluation health and information management are decisive for health planning, management, and implementation of the One Health concept. Covering topics like development partnerships, global health, and the nature of pandemics, this text is essential for health administrators, policymakers, government officials, public health officials, information systems experts, data scientists, analysts, health information science and global health scholars, researchers, practitioners, doctors, students, and academicians. |
data engineering with alteryx: Maximizing Tableau Server Patrick Sarsfield, Brandi Locker, Adam Mico, 2021-10-29 Enhance the way you use Tableau Server's analytical tools by learning how to manage content to drive user engagement Key FeaturesUnderstand how to quickly get connected, start publishing workbooks, and adjust basic settingsNavigate the Tableau Server interface to filter and locate content, customize viewing options, and automate various tasksLearn best practices for improving the efficiency of workbooks and data sourcesBook Description Tableau Server is a business intelligence application that provides a centralized location to store, edit, share, and collaborate on content, such as dashboards and curated data sources. This book gets you up and running with Tableau Server to help you increase end-user engagement for your published work as well as reduce or eliminate redundant tasks. You'll explore Tableau Server's structure and how to get started by connecting, publishing content, and navigating the software interface. Next, you'll learn when and how to update the settings of your content at various levels to best utilize Tableau Server's features. You'll understand how to interact with the Tableau Server interface to locate, sort, filter, manage and customize content. Later, the book shows you how to leverage other valuable features that enable you and your audience to share, download, and interact with content on Tableau Server. As you progress, you'll cover principles to increase the performance of your published content. All along, the book shows you how to navigate, interact with, and use Tableau Server with the help of engaging examples and best practices shared by recognized Tableau professionals. By the end of this Tableau book, you'll have a solid understanding of how to use Tableau Server to manage content, automate tasks, and increase end-user engagement. What you will learnGet well-versed in Tableau Server's interface to quickly and easily access essential contentExplore the different types of content and navigate through the project hierarchy quicklyUnderstand how to connect, publish, manage, and modify content on Tableau ServerDiscover how to share content and collaborate with othersAutomate tedious tasks by creating custom views, alerts, subscriptions, and data refresh schedulesBuild data visualizations using Web EditUnderstand how to monitor disparate metrics on multiple dashboardsWho this book is for This Tableau software book is for BI developers, data analysts, and everyday users who have access to Tableau Server and possess basic web navigation skills. No prior experience with Tableau Server is required. |
data engineering with alteryx: Learning Tableau 2020 Joshua N. Milligan, 2020-08-31 Publisher's note: This edition from 2020 is outdated and does not make use of the most recent Tableau features. A new fifth edition, updated for Tableau 2022, is now available. Key FeaturesExplore the latest Tableau 2020 features and redefine business analytics for your firmUnderstand visualizing data and creating interactive dashboards to gain meaningful insightsLearn implementing effective data storytelling to redefine how your business leverages data and makes decisionsBook Description Learning Tableau strengthens your command on Tableau fundamentals and builds on advanced topics. The book starts by taking you through foundational principles of Tableau. We then demonstrate various types of connections and how to work with metadata. We teach you to use a wide variety of visualizations to analyze and communicate the data, and introduce you to calculations and parameters. We then take an in-depth look at level of detail (LOD) expressions and use them to solve complex data challenges. Up next, we show table calculations, how to extend and alter default visualizations, build an interactive dashboard, and master the art of telling stories with data. This Tableau book will introduce you to visual statistical analytics capabilities, create different types of visualizations and dynamic dashboards for rich user experiences. We then move on to maps and geospatial visualization, and the new Data Model capabilities introduced in Tableau 2020.2. You will further use Tableau Prep's ability to clean and structure data and share the stories contained in your data. By the end of this book, you will be proficient in implementing the powerful features of Tableau 2020 for decision-making. What you will learnDevelop stunning visualizations to explain complex data with clarityExplore exciting new Data Model capabilitiesConnect to various data sources to bring all your data togetherLeverage Tableau Prep Builder's amazing capabilities for data cleaning and structuringCreate and use calculations to solve problems and enrich the analyticsMaster advanced topics such as sets, LOD calculations, and much moreEnable smart decisions with data clustering, distribution, and forecastingShare your data stories to build a culture of trust and actionWho this book is for This Tableau book is for anyone who wants to understand data. If you're new to Tableau, don't worry. This book will simplify Tableau for beginners to build on the foundations to help you understand how Tableau really works and then builds on that knowledge with practical examples before moving on to advanced techniques. Having a bit of background with data will help, but you don't need to know scripting, SQL or database structures. |
data engineering with alteryx: Disruptive Analytics Thomas W. Dinsmore, 2016-08-27 Learn all you need to know about seven key innovations disrupting business analytics today. These innovations—the open source business model, cloud analytics, the Hadoop ecosystem, Spark and in-memory analytics, streaming analytics, Deep Learning, and self-service analytics—are radically changing how businesses use data for competitive advantage. Taken together, they are disrupting the business analytics value chain, creating new opportunities. Enterprises who seize the opportunity will thrive and prosper, while others struggle and decline: disrupt or be disrupted. Disruptive Business Analytics provides strategies to profit from disruption. It shows you how to organize for insight, build and provision an open source stack, how to practice lean data warehousing, and how to assimilate disruptive innovations into an organization. Through a short history of business analytics and a detailed survey of products and services, analytics authority Thomas W. Dinsmore provides a practical explanation of the most compelling innovations available today. What You'll Learn Discover how the open source business model works and how to make it work for you See how cloud computing completely changes the economics of analytics Harness the power of Hadoop and its ecosystem Find out why Apache Spark is everywhere Discover the potential of streaming and real-time analytics Learn what Deep Learning can do and why it matters See how self-service analytics can change the way organizations do business Who This Book Is For Corporate actors at all levels of responsibility for analytics: analysts, CIOs, CTOs, strategic decision makers, managers, systems architects, technical marketers, product developers, IT personnel, and consultants. |
data engineering with alteryx: Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced City of London College of Economics, Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link. |
data engineering with alteryx: Snowflake: The Definitive Guide Joyce Kay Avila, 2022-08-11 Snowflake's ability to eliminate data silos and run workloads from a single platform creates opportunities to democratize data analytics, allowing users at all levels within an organization to make data-driven decisions. Whether you're an IT professional working in data warehousing or data science, a business analyst or technical manager, or an aspiring data professional wanting to get more hands-on experience with the Snowflake platform, this book is for you. You'll learn how Snowflake users can build modern integrated data applications and develop new revenue streams based on data. Using hands-on SQL examples, you'll also discover how the Snowflake Data Cloud helps you accelerate data science by avoiding replatforming or migrating data unnecessarily. You'll be able to: Efficiently capture, store, and process large amounts of data at an amazing speed Ingest and transform real-time data feeds in both structured and semistructured formats and deliver meaningful data insights within minutes Use Snowflake Time Travel and zero-copy cloning to produce a sensible data recovery strategy that balances system resilience with ongoing storage costs Securely share data and reduce or eliminate data integration costs by accessing ready-to-query datasets available in the Snowflake Marketplace |
data engineering with alteryx: Fundamentals of Analytics Engineering Dumky De Wilde, Fanny Kassapian, Jovan Gligorevic, Juan Manuel Perafan, Lasse Benninga, Ricardo Angel Granados Lopez, Taís Laurindo Pereira, 2024-03-29 Gain a holistic understanding of the analytics engineering lifecycle by integrating principles from both data analysis and engineering Key Features Discover how analytics engineering aligns with your organization's data strategy Access insights shared by a team of seven industry experts Tackle common analytics engineering problems faced by modern businesses Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWritten by a team of 7 industry experts, Fundamentals of Analytics Engineering will introduce you to everything from foundational concepts to advanced skills to get started as an analytics engineer. After conquering data ingestion and techniques for data quality and scalability, you’ll learn about techniques such as data cleaning transformation, data modeling, SQL query optimization and reuse, and serving data across different platforms. Armed with this knowledge, you will implement a simple data platform from ingestion to visualization, using tools like Airbyte Cloud, Google BigQuery, dbt, and Tableau. You’ll also get to grips with strategies for data integrity with a focus on data quality and observability, along with collaborative coding practices like version control with Git. You’ll learn about advanced principles like CI/CD, automating workflows, gathering, scoping, and documenting business requirements, as well as data governance. By the end of this book, you’ll be armed with the essential techniques and best practices for developing scalable analytics solutions from end to end.What you will learn Design and implement data pipelines from ingestion to serving data Explore best practices for data modeling and schema design Scale data processing with cloud based analytics platforms and tools Understand the principles of data quality management and data governance Streamline code base with best practices like collaborative coding, version control, reviews and standards Automate and orchestrate data pipelines Drive business adoption with effective scoping and prioritization of analytics use cases Who this book is for This book is for data engineers and data analysts considering pivoting their careers into analytics engineering. Analytics engineers who want to upskill and search for gaps in their knowledge will also find this book helpful, as will other data professionals who want to understand the value of analytics engineering in their organization's journey toward data maturity. To get the most out of this book, you should have a basic understanding of data analysis and engineering concepts such as data cleaning, visualization, ETL and data warehousing. |
data engineering with alteryx: Transformers for Natural Language Processing Denis Rothman, 2021-01-29 Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data. |
data engineering with alteryx: Info We Trust RJ Andrews, 2019-01-03 How do we create new ways of looking at the world? Join award-winning data storyteller RJ Andrews as he pushes beyond the usual how-to, and takes you on an adventure into the rich art of informing. Creating Info We Trust is a craft that puts the world into forms that are strong and true. It begins with maps, diagrams, and charts — but must push further than dry defaults to be truly effective. How do we attract attention? How can we offer audiences valuable experiences worth their time? How can we help people access complexity? Dark and mysterious, but full of potential, data is the raw material from which new understanding can emerge. Become a hero of the information age as you learn how to dip into the chaos of data and emerge with new understanding that can entertain, improve, and inspire. Whether you call the craft data storytelling, data visualization, data journalism, dashboard design, or infographic creation — what matters is that you are courageously confronting the chaos of it all in order to improve how people see the world. Info We Trust is written for everyone who straddles the domains of data and people: data visualization professionals, analysts, and all who are enthusiastic for seeing the world in new ways. This book draws from the entirety of human experience, quantitative and poetic. It teaches advanced techniques, such as visual metaphor and data transformations, in order to create more human presentations of data. It also shows how we can learn from print advertising, engineering, museum curation, and mythology archetypes. This human-centered approach works with machines to design information for people. Advance your understanding beyond by learning from a broad tradition of putting things “in formation” to create new and wonderful ways of opening our eyes to the world. Info We Trust takes a thoroughly original point of attack on the art of informing. It builds on decades of best practices and adds the creative enthusiasm of a world-class data storyteller. Info We Trust is lavishly illustrated with hundreds of original compositions designed to illuminate the craft, delight the reader, and inspire a generation of data storytellers. |
data engineering with alteryx: SQL All-in-One For Dummies Allen G. Taylor, 2011-03-10 The soup-to-nuts guide on all things SQL! SQL, or structured query language, is the international standard language for creating and maintaining relational databases. It is the basis of all major databases in use today and is essential for the storage and retrieval of database information. This fun and friendly guide takes SQL and all its related topics and breaks it down into easily digestible pieces for you to understand. You’ll get the goods on relational database design, development, and maintenance, enabling you to start working with SQL right away! Provides an overview of the SQL language and examines how it is integral for the storage and retrieval of database information Includes updates to SQL standards as well as any new features Explores SQL concepts, relational database development, SQL queries, data security, database tuning, and more Addresses the relationship between SQL and programming as well as SQL and XML If you’re looking for an up-to-date sequel to the bestelling first edition of SQL All-in-One For Dummies, then this is the book for you! |
data engineering with alteryx: Data Curious Carl Allchin, Sarah Nabelsi, 2023-07-14 Data has been a missing part of most academic curriculums for a long time, and we're all being affected. During challenging times, creating a data-informed culture can help you pivot quickly or prevent expensive missteps. Developing a data curious organization will take advantage of the burgeoning data resources available as a result of increasing digitalization. With this book, authors Carl Allchin and Sarah Nabelsi show today's business professionals how to become data empowered. These tech-savvy business professionals will learn data literacy fundamentals—from understanding the possibilities to asking the right questions. You'll discover how to make the right technology choices and avoid pitfalls that could put your career and company at risk. Discover what an agile, empowered, data-driven organization should look like Examine how to use data in new ways to help your business come to life Learn key terms and concepts around data management and analytics Understand the differences between spreadsheet analysis and a data analytics pipeline Get advice for working with data scientists and explore ways to mitigate the IT department's concerns |
data engineering with alteryx: Metaheuristics for Enterprise Data Intelligence Kaustubh Vaman Sakhare, Vibha Vyas, Apoorva S Shastri, 2024-08-07 With the emergence of the data economy, information has become integral to business excellence. Every enterprise, irrespective of its domain of interest, carries and processes a lot of data in their day-to-day activities. Converting massive datasets into insightful information plays an important role in developing better business solutions. Data intelligence and its analysis pose several challenges in data representation, building knowledge systems, issue resolution and predictive systems for trend analysis and decisionmaking. The data available could be of any modality, especially when data is associated with healthcare, biomedical, finance, retail, cybersecurity, networking, supply chain management, manufacturing, etc. The optimization of such systems is therefore crucial to leveraging the best outcomes and conclusions. To this end, AI-based nature-inspired optimization methods or approximation-based optimization methods are becoming very powerful. Notable metaheuristics include genetic algorithms, differential evolution, ant colony optimization, particle swarm optimization, artificial bee colony, grey wolf optimizer, political optimizer, cohort intelligence and league championship algorithm. This book provides a systematic discussion of AI-based metaheuristics application in a wide range of areas, including big data intelligence and predictive analytics, enterprise analytics, graph optimization algorithms, machine learning and ensemble learning, computer vision enterprise practices and data benchmarking. |
data engineering with alteryx: Tableau Strategies Ann Jackson, Luke Stanke, 2021-07-28 If you want to increase Tableau's value to your organization, this practical book has your back. Authors Ann Jackson and Luke Stanke guide data analysts through strategies for solving real-world analytics problems using Tableau. Starting with the basics and building toward advanced topics such as multidimensional analysis and user experience, you'll explore pragmatic and creative examples that you can apply to your own data. Staying competitive today requires the ability to quickly analyze and visualize data and make data-driven decisions. With this guide, data practitioners and leaders alike will learn strategies for building compelling and purposeful visualizations, dashboards, and data products. Every chapter contains the why behind the solution and the technical knowledge you need to make it work. Use this book as a high-value on-the-job reference guide to Tableau Visualize different data types and tackle specific data challenges Create compelling data visualizations, dashboards, and data products Learn how to generate industry-specific analytics Explore categorical and quantitative analysis and comparisons Understand geospatial, dynamic, statistical, and multivariate analysis Communicate the value of the Tableau platform to your team and to stakeholders |
data engineering with alteryx: Practical DataOps Harvinder Atwal, 2019-12-09 Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. What You Will LearnDevelop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products Who This Book Is For Data science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production. |
data engineering with alteryx: Mastering the Modern Data Stack Nick Jewell, PhD, 2023-09-28 In the age of digital transformation, becoming overwhelmed by the sheer volume of potential data management, analytics, and AI solutions is common. Then it's all too easy to become distracted by glossy vendor marketing, and then chase the latest shiny tool, rather than focusing on building resilient, valuable platforms that will outperform the competition. This book aims to fix a glaring gap for data professionals: a comprehensive guide to the full Modern Data Stack that's rooted in real-world capabilities, not vendor hype. It is full of hard-earned advice on how to get maximum value from your investments through tangible insights, actionable strategies, and proven best practices. It comprehensively explains how the Modern Data Stack is truly utilized by today's data-driven companies. Mastering the Modern Data Stack: An Executive Guide to Unified Business Analytics is crafted for a diverse audience. It's for business and technology leaders who understand the importance and potential value of data, analytics, and AI—but don’t quite see how it all fits together in the big picture. It's for enterprise architects and technology professionals looking for a primer on the data analytics domain, including definitions of essential components and their usage patterns. It's also for individuals early in their data analytics careers who wish to have a practical and jargon-free understanding of how all the gears and pulleys move behind the scenes in a Modern Data Stack to turn data into actual business value. Whether you're starting your data journey with modest resources, or implementing digital transformation in the cloud, you'll find that this isn't just another textbook on data tools or a mere overview of outdated systems. It's a powerful guide to efficient, modern data management and analytics, with a firm focus on emerging technologies such as data science, machine learning, and AI. If you want to gain a competitive advantage in today’s fast-paced digital world, this TinyTechGuide™ is for you. Remember, it’s not the tech that’s tiny, just the book!™ |
data engineering with alteryx: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
data engineering with alteryx: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data engineering with alteryx: Tableau For Dummies Molly Monsey, Paul Sochan, 2015-10-14 Make your data work for you! Tableau For Dummies brings order to the chaotic world of data. Understanding your data and organizing it into formats and visualizations that make sense to you are crucial to making a real impact on your business with the information that's already at your fingertips. This easy-to-use reference explores the user interface, and guides you through the process of connecting your data sources to the software. Additionally, this approachable, yet comprehensive text shows you how to use graphs, charts, and other images to bring visual interest to your data, how to create dashboards from multiple data sources, and how to export the visualizations that you have developed into multiple formats that translate into positive change for your business. The mission of Tableau Software is to grant you access to data that, when put into action, will help you build your company. Learning to use the data available to you helps you make informed, grounded business decisions that can spell success for your company. Navigate the user interface to efficiently access the features you need Connect to various spreadsheets, databases, and other data sources to create a multi-dimensional snapshot of your business Develop visualizations with easy to use drag and drop features Start building your data with templates and sample workbooks to spark your creativity and help you organize your information Tableau For Dummies is a step-by-step resource that helps you make sense of the data landscape—and put your data to work in support of your business. |
data engineering with alteryx: Data Wrangling with Python Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury, 2019-02-28 Simplify your ETL processes with these hands-on data hygiene tips, tricks, and best practices. Key FeaturesFocus on the basics of data wranglingStudy various ways to extract the most out of your data in less timeBoost your learning curve with bonus topics like random data generation and data integrity checksBook Description For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You’ll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you’ll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets. By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently. What you will learnUse and manipulate complex and simple data structuresHarness the full potential of DataFrames and numpy.array at run timePerform web scraping with BeautifulSoup4 and html5libExecute advanced string search and manipulation with RegEXHandle outliers and perform data imputation with PandasUse descriptive statistics and plotting techniquesPractice data wrangling and modeling using data generation techniquesWho this book is for Data Wrangling with Python is designed for developers, data analysts, and business analysts who are keen to pursue a career as a full-fledged data scientist or analytics expert. Although, this book is for beginners, prior working knowledge of Python is necessary to easily grasp the concepts covered here. It will also help to have rudimentary knowledge of relational database and SQL. |
data engineering with alteryx: New Perspectives in Software Engineering Jezreel Mejia, Mirna Muñoz, Álvaro Rocha, Víctor Hernández-Nava, 2022-10-29 This book contains the proceedings of the CIMPS Conference held on October 19-21, 2022, Hipócrates University, Acapulco de Juárez, Guerrero, México, that is dedicated to Software Engineering, in particular, software processes improvement, computer security and communication technology, artificial intelligence and data analysis (big data) with a focus on innovation and/or entrepreneurship, bringing together the academic sectors, governmental and industrial that promote the comprehensive development of a culture of research, innovation and competitiveness of organizations dedicated to and/or that make use of Information and Communication Telecommunications. This book presents software engineering with impact in a combination of different fields: Organizational Models, Standards and Methodologies, Knowledge Management, Software Systems, Applications and Tools, Information and Communication Technologies, Information security, Artificial intelligence, Data Analysis. It is used in different domains in which a broad scope of audience is interested in: • Software engineers • Analyst • Project management • Consultant • Professors in academia • Students • Corporate heads of firms • Senior general managers • Managing directors • Board directors • Academics and researchers in the field both in universities and business schools • Information technology directors and managers • Quality managers and directors • Libraries and information centres serving the needs of the above This book contents are also useful for Ph.D. students, master’s and undergraduate students of IT-related degrees such as Computer Science, Information Systems. |
Data Engineering | Alteryx Designer Cloud
Sep 12, 2022 · Building data pipelines, modeling data, transforming data, transporting data between landing zones, maintaining data quality, and ensuring data governance are just some of the …
Data Engineering with Alteryx: Helping data engineers apply ...
Jun 30, 2022 · Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based …
Data Engineering with Alteryx | Data | eBook - packtpub.com
Data Engineering with Alteryx will help you leverage Alteryx’s code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have. …
Data Engineering with Alteryx, published by Packt - GitHub
Alteryx is a GUI-based development platform for data analytic applications. Data Engineering with Alteryx will help you leverage Alteryx’s code-free aspects which increase development speed …
Data Engineering with Alteryx: Helping data engineers apply ...
Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based...
Data Engineering with Alteryx - O'Reilly Media
Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you have. …
Alteryx Tutorial: A Comprehensive Hands-On Guide for Data ...
Jan 16, 2024 · Namely, Alteryx is a powerful data analytics and ETL tool that enables teams to build data processes efficiently in a repeatable, less error-prone, and less risky way. In this tutorial, we …
Data Engineering | Alteryx Designer Cloud
Sep 12, 2022 · Building data pipelines, modeling data, transforming data, transporting data between landing zones, maintaining data quality, and ensuring data governance are just some …
Data Engineering with Alteryx: Helping data engineers apply ...
Jun 30, 2022 · Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code …
Data Engineering with Alteryx | Data | eBook - packtpub.com
Data Engineering with Alteryx will help you leverage Alteryx’s code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you …
Data Engineering with Alteryx, published by Packt - GitHub
Alteryx is a GUI-based development platform for data analytic applications. Data Engineering with Alteryx will help you leverage Alteryx’s code-free aspects which increase development speed …
Data Engineering with Alteryx: Helping data engineers apply ...
Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based...
Data Engineering with Alteryx - O'Reilly Media
Data Engineering with Alteryx will help you leverage Alteryx's code-free aspects which increase development speed while still enabling you to make the most of the code-based skills you …
Alteryx Tutorial: A Comprehensive Hands-On Guide for Data ...
Jan 16, 2024 · Namely, Alteryx is a powerful data analytics and ETL tool that enables teams to build data processes efficiently in a repeatable, less error-prone, and less risky way. In this …