Advertisement
data analysis and probability: Probability, Random Processes, and Statistical Analysis Hisashi Kobayashi, Brian L. Mark, William Turin, 2011-12-15 Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals. |
data analysis and probability: Principles and Standards for School Mathematics , 2000 This easy-to-read summary is an excellent tool for introducing others to the messages contained in Principles and Standards. |
data analysis and probability: Spectrum Data Analysis and Probability Spectrum, 2015-02-15 With the help of Spectrum Data Analysis and Probability for grades 6 to 8, children develop problem-solving math skills they can build on. This standards-based workbook focuses on middle school concepts like operations, ratios, probability, graph interpretation, and more. Middle school is known for its challenges—let Spectrum ease some stress. Developed by education experts, the Spectrum Middle School Math series strengthens the important home-to-school connection and prepares children for math success. Filled with easy instructions and rigorous practice, Spectrum Data Analysis and Probability helps children soar in a standards-based classroom! |
data analysis and probability: Probability Guy Lebanon, 2012-10-09 Introduction to probability theory with an emphasis on the multivariate case. Includes random vectors, random processes, Markov chains, limit theorems, and related mathematics such as metric spaces, measure theory, and integration. |
data analysis and probability: DATA ANALYSIS BISHNU, PARTHA SARATHI, BHATTACHERJEE, VANDANA, Data Analysis Using Statistics and Probability with R Language is a complete introduction to data analysis. It provides a sound understanding of the foundations of the data analysis, in addition to covering many important advanced topics. Moreover, all the techniques have been implemented using R language as well as Excel. This book is intended for the undergraduate and postgraduate students of Management and Engineering disciplines. It is also useful for research scholars. KEY FEATURES 1. Covers data analysis topics such as: • Descriptive statistics like mean, median, mode, standard deviation, skewness, kurtosis, correlation and regression • Probability and probability distribution • Inferential statistics like estimation of parameters, hypothesis testing, ANOVA test, chi-square and t-test • Statistical quality control, time series analysis, statistical decision theory • Explorative data analysis like clustering and classification • Advanced techniques like conjoint analysis, panel data analysis, and logistic regression analysis 2. Comprises 12 chapters which include examples, solved problems, review questions and unsolved problems. 3. Requires no programming background and can be used to understand theoretical concepts also by skipping programming. 4. R and Excel implementations, and additional advanced topics are available at https://phindia.com/partha_sarathi_ bishnu_ and_vandana_bhattacherjee 5. Whenever in any branch, data analysis technique is required, this book is the best. TARGET AUDIENCE • Students of MBA, ME/M.Tech, and BE/B.Tech. • M.Sc. (Computer Science), MCA, BCA, and research scholars |
data analysis and probability: An Introduction to Categorical Data Analysis Alan Agresti, 2018-10-11 A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences. |
data analysis and probability: Probability and Statistics for Data Science Norman Matloff, 2019-06-21 Probability and Statistics for Data Science: Math + R + Data covers math stat—distributions, expected value, estimation etc.—but takes the phrase Data Science in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the how and why of statistics, and to see the big picture. * Not theorem/proof-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award. |
data analysis and probability: Soft Methods in Probability, Statistics and Data Analysis Przemyslaw Grzegorzewski, Olgierd Hryniewicz, Maria A. Gil, 2013-12-11 Classical probability theory and mathematical statistics appear sometimes too rigid for real life problems, especially while dealing with vague data or imprecise requirements. These problems have motivated many researchers to soften the classical theory. Some softening approaches utilize concepts and techniques developed in theories such as fuzzy sets theory, rough sets, possibility theory, theory of belief functions and imprecise probabilities, etc. Since interesting mathematical models and methods have been proposed in the frameworks of various theories, this text brings together experts representing different approaches used in soft probability, statistics and data analysis. |
data analysis and probability: Probability, Random Variables, and Data Analytics with Engineering Applications P. Mohana Shankar, 2021-02-08 This book bridges the gap between theory and applications that currently exist in undergraduate engineering probability textbooks. It offers examples and exercises using data (sets) in addition to traditional analytical and conceptual ones. Conceptual topics such as one and two random variables, transformations, etc. are presented with a focus on applications. Data analytics related portions of the book offer detailed coverage of receiver operating characteristics curves, parametric and nonparametric hypothesis testing, bootstrapping, performance analysis of machine vision and clinical diagnostic systems, and so on. With Excel spreadsheets of data provided, the book offers a balanced mix of traditional topics and data analytics expanding the scope, diversity, and applications of engineering probability. This makes the contents of the book relevant to current and future applications students are likely to encounter in their endeavors after completion of their studies. A full suite of classroom material is included. A solutions manual is available for instructors. Bridges the gap between conceptual topics and data analytics through appropriate examples and exercises; Features 100's of exercises comprising of traditional analytical ones and others based on data sets relevant to machine vision, machine learning and medical diagnostics; Intersperses analytical approaches with computational ones, providing two-level verifications of a majority of examples and exercises. |
data analysis and probability: Statistical Analysis with Missing Data Roderick J. A. Little, Donald B. Rubin, 2019-03-21 An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work has been no less than defining and transforming. (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry. |
data analysis and probability: Introduction to Statistics and Data Analysis Christian Heumann, Michael Schomaker, Shalabh, 2023-01-30 Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications. |
data analysis and probability: Data Analysis for Scientists and Engineers Stuart L. Meyer, 1975 Introduction to scientific measurement; Introduction to graphical techniques and curve fitting; Probability; Some probability distributions and applications; Statitical inference. |
data analysis and probability: Data Analysis & Probability - Drill Sheets Gr. PK-2 Tanya Cook, Chris Forest, 2011-02-24 Explore probabilities and start comprehending data that has been collected. Our resource provides warm-up and timed drill activities to practice procedural proficiency skills. Count the number of chickens on a farm using a bar graph. Find how many more roses than tulips are in a garden from a circle graph. Identify the likelihood of choosing a color based on the information given. Count the number of ways you could roll the number seven on two standard dice. Determine whether something is likely or unlikely to happen. Answer questions based on a line plot. The drill sheets provide a leveled approach to learning, starting with prekindergarten and increasing in difficulty to grade 2. Aligned to your State Standards and meeting the concepts addressed by the NCTM standards, reproducible drill sheets, review and answer key are included. |
data analysis and probability: Statistics 101 David Borman, 2018-12-18 A comprehensive guide to statistics—with information on collecting, measuring, analyzing, and presenting statistical data—continuing the popular 101 series. Data is everywhere. In the age of the internet and social media, we’re responsible for consuming, evaluating, and analyzing data on a daily basis. From understanding the percentage probability that it will rain later today, to evaluating your risk of a health problem, or the fluctuations in the stock market, statistics impact our lives in a variety of ways, and are vital to a variety of careers and fields of practice. Unfortunately, most statistics text books just make us want to take a snooze, but with Statistics 101, you’ll learn the basics of statistics in a way that is both easy-to-understand and apply. From learning the theory of probability and different kinds of distribution concepts, to identifying data patterns and graphing and presenting precise findings, this essential guide can help turn statistical math from scary and complicated, to easy and fun. Whether you are a student looking to supplement your learning, a worker hoping to better understand how statistics works for your job, or a lifelong learner looking to improve your grasp of the world, Statistics 101 has you covered. |
data analysis and probability: Probability, Statistics, and Data Darrin Speegle, Bryan Clair, 2021-11-26 This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation. The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations. Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques. Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested. |
data analysis and probability: Mathematical Statistics and Data Analysis John A. Rice, 1995 Re-examines the purpose of the math statistics course. The approach of the text, interweaving traditional topics with data analysis, reflects the use of the computer and is closely tied to the practice of statistics. |
data analysis and probability: Statistical Data Analysis Glen Cowan, 1998 This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding). |
data analysis and probability: Spectrum Data Analysis and Probability Spectrum, 2015-02-15 With the help of Spectrum(R) Data Analysis and Probability for grades 6 to 8, children develop problem-solving math skills they can build on. This standards-based workbook focuses on middle school concepts like operations, ratios, probability, graph interpretation, and more. --Middle school is known for its challengesÑlet Spectrum(R) ease some stress. Developed by education experts, the Spectrum(R) Middle School Math series strengthens the important home-to-school connection and prepares children for math success. Filled with easy instructions and rigorous practice, Spectrum(R) Data Analysis and Probability helps children soar in a standards-based classroom! |
data analysis and probability: The Statistical Analysis of Experimental Data John Mandel, 2012-06-08 First half of book presents fundamental mathematical definitions, concepts, and facts while remaining half deals with statistics primarily as an interpretive tool. Well-written text, numerous worked examples with step-by-step presentation. Includes 116 tables. |
data analysis and probability: Real Analysis and Probability R. M. Dudley, 2002-10-14 This classic text offers a clear exposition of modern probability theory. |
data analysis and probability: Graphical Methods for Data Analysis J. M. Chambers, 2018-01-18 This book present graphical methods for analysing data. Some methods are new and some are old, some require a computer and others only paper and pencil; but they are all powerful data analysis tools. In many situations, a set of data even a large set- can be adequately analysed through graphical methods alone. In most other situations, a few well-chosen graphical displays can significantly enhance numerical statistical analyses. |
data analysis and probability: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
data analysis and probability: High-Dimensional Probability Roman Vershynin, 2018-09-27 An integrated package of powerful probabilistic tools and key applications in modern mathematical data science. |
data analysis and probability: Categorical Data Analysis Alan Agresti, 2013-04-08 Praise for the Second Edition A must-have book for anyone expecting to do research and/or applications in categorical data analysis. —Statistics in Medicine It is a total delight reading this book. —Pharmaceutical Research If you do any analysis of categorical data, this is an essential desktop reference. —Technometrics The use of statistical methods for analyzing categorical data has increased dramatically, particularly in the biomedical, social sciences, and financial industries. Responding to new developments, this book offers a comprehensive treatment of the most important methods for categorical data analysis. Categorical Data Analysis, Third Edition summarizes the latest methods for univariate and correlated multivariate categorical responses. Readers will find a unified generalized linear models approach that connects logistic regression and Poisson and negative binomial loglinear models for discrete data with normal regression for continuous data. This edition also features: An emphasis on logistic and probit regression methods for binary, ordinal, and nominal responses for independent observations and for clustered data with marginal models and random effects models Two new chapters on alternative methods for binary response data, including smoothing and regularization methods, classification methods such as linear discriminant analysis and classification trees, and cluster analysis New sections introducing the Bayesian approach for methods in that chapter More than 100 analyses of data sets and over 600 exercises Notes at the end of each chapter that provide references to recent research and topics not covered in the text, linked to a bibliography of more than 1,200 sources A supplementary website showing how to use R and SAS; for all examples in the text, with information also about SPSS and Stata and with exercise solutions Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and methodologists, such as biostatisticians and researchers in the social and behavioral sciences, medicine and public health, marketing, education, finance, biological and agricultural sciences, and industrial quality control. |
data analysis and probability: Probability and Statistics Michael J. Evans, Jeffrey S. Rosenthal, 2004 Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students. |
data analysis and probability: Analytics & Probability Daniel Covington, 2020-09 2 BOOKS IN 1 - USE THE POWER OF ANALYTICS AND PROBABILITY TO DISCOVER WHAT YOUR TARGET CUSTOMERS ARE THINKING AND HOW TO USE THAT AS AN EDGE IN IDENTIFYING SOLUTIONS AND STRATEGIES TO HELP YOU MOVE FORWARD. Book 1 - Analytics: Data Science, Data Analysis and Predictive Analytics for Business Getting your business up and running or starting on your career path is one thing, but have a sustainable business or career is completely another. Many people make the mistake of making plans but having no follow-through. This is where analytics comes in. Don't you wish to have the power to know what your target consumers are thinking? Won't you want to have a preview of what future trends to expect in the market you are in? Well, this book is just the one you need. This book will teach you, in simple and easy-to-understand terms, how to take advantage of data from your daily operations and make such data a powerful tool that can influence how well your business does over time. The contents of this book are designed to help you use data to your advantage to enhance business outcomes! Here's what this book will teach you: Why data is your single most powerful tool How to conduct data analysis to enhance your business Which steps to take in performing predictive analysis What techniques you need to employ to achieve sustainable success PLUS: Descriptive Analysis Predictive Analysis Regression Techniques Machine Learning Strategies Risk Management Tips And Much, Much, More Book 2 - Probability: Risk Management, Statistics, Combinations, and Permutations for Business Whether you are retail employee or a budding entrepreneur, or really just someone looking to contribute to your place of work, you will surely encounter problems that require planning and analysis to address them. What you may not know is that, most of the time statistics, specifically probability and its concepts, will often give you an edge in identifying solutions and strategies to help you move forward with a great plan. And you're in luck because in this book you will get to know what probability is and more importantly, how it can help you solve the problems you encounter in your business work and day-to-day life. Specifically this book will help you: How to summarize data Measure variability Learn the core concepts of probability Gain knowledge of probability distributions and their functions Realize the importance of probability rules in business Become adept at using probabilities in life and at work Identify the types of risk your business can face How to effectively manage risk using probability Understand how to use probability and statistics in business How to optimize your business and improve brand loyalty Learn how to improve your customer experience and predict customer behavior Understand the components of the business intelligence infrastructure You will never be able to get information this comprehensive anywhere else. Knowing and following the strategies in this book would surely get you on your way to having the best business outcomes! DO NOT DELAY! Grab a copy of this book today! |
data analysis and probability: Analysis and Probability Aurel Spataru, 2013-01-12 Probability theory is a rapidly expanding field and is used in many areas of science and technology. Beginning from a basis of abstract analysis, this mathematics book develops the knowledge needed for advanced students to develop a complex understanding of probability. The first part of the book systematically presents concepts and results from analysis before embarking on the study of probability theory. The initial section will also be useful for those interested in topology, measure theory, real analysis and functional analysis. The second part of the book presents the concepts, methodology and fundamental results of probability theory. Exercises are included throughout the text, not just at the end, to teach each concept fully as it is explained, including presentations of interesting extensions of the theory. The complete and detailed nature of the book makes it ideal as a reference book or for self-study in probability and related fields. - Covers a wide range of subjects including f-expansions, Fuk-Nagaev inequalities and Markov triples. - Provides multiple clearly worked exercises with complete proofs. - Guides readers through examples so they can understand and write research papers independently. |
data analysis and probability: Analysis of Ordinal Categorical Data Alan Agresti, 2012-07-06 Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition. |
data analysis and probability: Models for Probability and Statistical Inference James H. Stapleton, 2007-12-14 This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readers Models for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping. Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses modes of convergence of sequences of random variables, with special attention to convergence in distribution. The second half of the book addresses statistical inference, beginning with a discussion on point estimation and followed by coverage of consistency and confidence intervals. Further areas of exploration include: distributions defined in terms of the multivariate normal, chi-square, t, and F (central and non-central); the one- and two-sample Wilcoxon test, together with methods of estimation based on both; linear models with a linear space-projection approach; and logistic regression. Each section contains a set of problems ranging in difficulty from simple to more complex, and selected answers as well as proofs to almost all statements are provided. An abundant amount of figures in addition to helpful simulations and graphs produced by the statistical package S-Plus(r) are included to help build the intuition of readers. |
data analysis and probability: Probability and Risk Analysis Igor Rychlik, Jesper Rydén, 2006-10-07 This text presents notions and ideas at the foundations of a statistical treatment of risks. The focus is on statistical applications within the field of engineering risk and safety analysis. Coverage includes Bayesian methods. Such knowledge facilitates the understanding of the influence of random phenomena and gives a deeper understanding of the role of probability in risk analysis. The text is written for students who have studied elementary undergraduate courses in engineering mathematics, perhaps including a minor course in statistics. This book differs from typical textbooks in its verbal approach to many explanations and examples. |
data analysis and probability: Data Analysis & Probability - Task & Drill Sheets Gr. 3-5 Tanya Cook, Chris Forest, 2011-02-26 Create graphs using gathered information and accurately read the data to make predictions. Our resource introduces the mathematical concepts taken from real-life experiences, and provides warm-up and timed practice questions to strengthen procedural proficiency skills. Create circle graphs to match the fractions. Survey your class to find out what pizza they like best. Create a bar graph using information provided in a chart. Find the probability of rolling an even number on a standard die. Convert information gathered in a chart to probability statistics. Find the probability of choosing a green marble from a box. Calculate the percentage of students who signed up for the baseball team given the information. The task and drill sheets provide a leveled approach to learning, starting with grade 3 and increasing in difficulty to grade 5. Aligned to your State Standards and meeting the concepts addressed by the NCTM standards, reproducible task sheets, drill sheets, review and answer key are included. |
data analysis and probability: Statistics for Data Scientists Maurits Kaptein, Edwin van den Heuvel, 2022-02-02 This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science. |
data analysis and probability: Mathematical Foundations for Data Analysis Jeff M. Phillips, 2021-03-29 This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques. |
data analysis and probability: Navigating Through Data Analysis and Probability in Grades 3-5 Suzanne H. Chapin, 2002 Discusses the development of data and probability concepts and shows teachers how to engage students in exploring and extending these concepts. |
data analysis and probability: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining. |
data analysis and probability: The Statistical Analysis of Failure Time Data John D. Kalbfleisch, Ross L. Prentice, 2011-01-25 Contains additional discussion and examples on left truncationas well as material on more general censoring and truncationpatterns. Introduces the martingale and counting process formulation swillbe in a new chapter. Develops multivariate failure time data in a separate chapterand extends the material on Markov and semi Markovformulations. Presents new examples and applications of data analysis. |
data analysis and probability: An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems Luis Tenorio, 2017-07-06 Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book. |
data analysis and probability: Statistical Analysis of Categorical Data Chris J. Lloyd, 1999-03-29 Accessible, up-to-date coverage of a broad range of modern and traditional methods. The ability to understand and analyze categorical, or count, data is crucial to the success of statisticians in a wide variety of fields, including biomedicine, ecology, the social sciences, marketing, and many more. Statistical Analysis of Categorical Data provides thorough, clear, up-to-date explanations of all important methods of categorical data analysis at a level accessible to anyone with a solid undergraduate knowledge of statistics. Featuring a liberal use of real-world examples as well as a regression-based approach familiar to most students, this book reviews pertinent statistical theory, including advanced topics such as Score statistics and the transformed central limit theorem. It presents the distribution theory of Poisson as well as multinomial variables, and it points out the connections between them. Complete with numerous illustrations and exercises, this book covers the full range of topics necessary to develop a well-rounded understanding of modern categorical data analysis, including: * Logistic regression and log-linear models. * Exact conditional methods. * Generalized linear and additive models. * Smoothing count data with practical implementations in S-plus software. * Thorough description and analysis of five important computer packages. Supported by an ftp site, which describes the facilities important to a statistician wanting to analyze and report on categorical data, Statistical Analysis of Categorical Data is an excellent resource for students, practicing statisticians, and researchers with a special interest in count data. |
data analysis and probability: Statistical Shape Analysis Ian L. Dryden, Kanti V. Mardia, 2016-07-08 A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Statistical Shape Analysis: with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis . |
data analysis and probability: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators Tailen Hsing, Randall Eubank, 2015-05-06 Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …