Advertisement
data management and governance framework: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
data management and governance framework: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data management and governance framework: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition |
data management and governance framework: Data Governance Neera Bhansali, 2013-06-17 As organizations deploy business intelligence and analytic systems to harness business value from their data assets, data governance programs are quickly gaining prominence. And, although data management issues have traditionally been addressed by IT departments, organizational issues critical to successful data management require the implementatio |
data management and governance framework: MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E Alex Berson, Larry Dubov, 2010-12-06 The latest techniques for building a customer-focused enterprise environment The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works. -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance |
data management and governance framework: The Data Governance Imperative Steve Sarsfield, 2009-04-23 This practical book covers both strategies and tactics around managing a data governance initiative to help make the most of your data. |
data management and governance framework: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness. |
data management and governance framework: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
data management and governance framework: Super Charge Your Data Warehouse Dan Linstedt, 2011-11-11 Do You Know If Your Data Warehouse Flexible, Scalable, Secure and Will It Stand The Test Of Time And Avoid Being Part Of The Dreaded Life Cycle? The Data Vault took the Data Warehouse world by storm when it was released in 2001. Some of the world's largest and most complex data warehouse situations understood the value it gave especially with the capabilities of unlimited scaling, flexibility and security. Here is what industry leaders say about the Data Vault The Data Vault is the optimal choice for modeling the EDW in the DW 2.0 framework - Bill Inmon, The Father of Data Warehousing The Data Vault is foundationally strong and an exceptionally scalable architecture - Stephen Brobst, CTO, Teradata The Data Vault should be considered as a potential standard for RDBMS-based analytic data management by organizations looking to achieve a high degree of flexibility, performance and openness - Doug Laney, Deloitte Analytics Institute I applaud Dan's contribution to the body of Business Intelligence and Data Warehousing knowledge and recommend this book be read by both data professionals and end users - Howard Dresner, From the Foreword - Speaker, Author, Leading Research Analyst and Advisor You have in your hands the work, experience and testing of 2 decades of building data warehouses. The Data Vault model and methodology has proven itself in hundreds (perhaps thousands) of solutions in Insurance, Crime-Fighting, Defense, Retail, Finance, Banking, Power, Energy, Education, High-Tech and many more. Learn the techniques and implement them and learn how to build your Data Warehouse faster than you have ever done before while designing it to grow and scale no matter what you throw at it. Ready to Super Charge Your Data Warehouse? |
data management and governance framework: Data Stewardship David Plotkin, 2013-09-16 Data stewards in business and IT are the backbone of a successful data governance implementation because they do the work to make a company's data trusted, dependable, and high quality. Data Stewardship explains everything you need to know to successfully implement the stewardship portion of data governance, including how to organize, train, and work with data stewards, get high-quality business definitions and other metadata, and perform the day-to-day tasks using a minimum of the steward's time and effort. David Plotkin has loaded this book with practical advice on stewardship so you can get right to work, have early successes, and measure and communicate those successes, gaining more support for this critical effort. - Provides clear and concise practical advice on implementing and running data stewardship, including guidelines on how to organize based on company structure, business functions, and data ownership - Shows how to gain support for your stewardship effort, maintain that support over the long-term, and measure the success of the data stewardship effort and report back to management - Includes detailed lists of responsibilities for each type of data steward and strategies to help the Data Governance Program Office work effectively with the data stewards |
data management and governance framework: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure |
data management and governance framework: Data Governance Simplified Holly Starling, 2015-02-17 What is Information Governance?Information governance is using the business strategy to apply objectivity, economies, and efficiencies of scale to the processes necessary for the management of information in the achievement of business success. The point of Information or Data Governance is to create TRUSTED data for the business. But how is that actually done?This book is for the individual who is looking for a starting place for establishing a path to better information for their business through a data governance program. The book focuses on describing deliverables and techniques necessary to quantify and measure the Trust of information, including creating dashboards to monitor the success of the Information Management and Governance (IMG) Program as well as an overall Trust Dashboard for the enterprise. If you are trying to answer any of the following questions, then this book can help you out:How do we decrease the number of data silos?How much management and governance is needed for the data?Who owns the data?How do we get the business to trust the data?What measurements can I use to prove the data is good?What do I show executives to illustrate the progress of a data governance program?How can trust of business data be quantified?How is the relevance of data to the business determined?What is the appropriate level of management and governance necessary for the data?This book will help you answer these questions and start improving (and measuring the improvement) of data for your business. The book includes chapters that give a high level overview of data governance but focuses most of the attention on the deliverables and methods necessary to quantify and measure the Trust of data, thereby establishing clear measurements for success. |
data management and governance framework: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
data management and governance framework: OECD Health Policy Studies Health Data Governance Privacy, Monitoring and Research OECD, 2015-10-05 This report identifies eight key data governance mechanisms to maximise benefits to patients and to societies from the collection, linkage and analysis of health data, and to minimise risks to both patient privacy and the security of health data. |
data management and governance framework: Data Governance Evren Eryurek, Uri Gilad, Jessi Ashdown, Valliappa Lakshmanan, Anita Kibunguchy, 2021-04-13 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness |
data management and governance framework: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution. |
data management and governance framework: World Class IT Peter A. High, 2009-10-27 World Class IT Technology is all around us. It is so pervasive in our daily lives that we may not even recognize when we interact with it. Despite this fact, many companies have yet to leverage information technology as a strategic weapon. What then is an information technology executive to do in order to raise the prominence of his or her department? In World Class IT, recognized expert in IT strategy Peter High reveals the essential principles IT executives must follow and the order in which they should follow them whether they are at the helm of a high-performing department or one in need of great improvement. Principle 1: Recruit, train, and retain World Class IT people Principle 2: Build and maintain a robust IT infrastructure Principle 3: Manage projects and portfolios effectively Principle 4: Ensure partnerships within the IT department and with the business Principle 5: Develop a collaborative relationship with external partners The principles and associated subprinciples and metrics introduced in World Class IT have been used by IT and business executives alike at many Global 1000 companies to monitor and improve IT's performance. Those principles pertain as much to the leaders of IT as they do to those striving to emulate them. |
data management and governance framework: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives. |
data management and governance framework: Salesforce Data Architecture and Management Ahsan Zafar, 2021-07-30 Learn everything you need to become a successful data architect on the Salesforce platform Key Features Adopt best practices relating to data governance and learn how to implement them Learn how to work with data in Salesforce while maintaining scalability and security of an instance Gain insights into managing large data volumes in Salesforce Book Description As Salesforce orgs mature over time, data management and integrations are becoming more challenging than ever. Salesforce Data Architecture and Management follows a hands-on approach to managing data and tracking the performance of your Salesforce org. You'll start by understanding the role and skills required to become a successful data architect. The book focuses on data modeling concepts, how to apply them in Salesforce, and how they relate to objects and fields in Salesforce. You'll learn the intricacies of managing data in Salesforce, starting from understanding why Salesforce has chosen to optimize for read rather than write operations. After developing a solid foundation, you'll explore examples and best practices for managing your data. You'll understand how to manage your master data and discover what the Golden Record is and why it is important for organizations. Next, you'll learn how to align your MDM and CRM strategy with a discussion on Salesforce's Customer 360 and its key components. You'll also cover data governance, its multiple facets, and how GDPR compliance can be achieved with Salesforce. Finally, you'll discover Large Data Volumes (LDVs) and best practices for migrating data using APIs. By the end of this book, you'll be well-versed with data management, data backup, storage, and archiving in Salesforce. What you will learn Understand the Salesforce data architecture Explore various data backup and archival strategies Understand how the Salesforce platform is designed and how it is different from other relational databases Uncover tools that can help in data management that minimize data trust issues in your Salesforce org Focus on the Salesforce Customer 360 platform, its key components, and how it can help organizations in connecting with customers Discover how Salesforce can be used for GDPR compliance Measure and monitor the performance of your Salesforce org Who this book is for This book is for aspiring architects, Salesforce admins, and developers. You will also find the book useful if you're preparing for the Salesforce Data Architecture and Management exam. A basic understanding of Salesforce is assumed. |
data management and governance framework: Corporate Information Factory W. H. Inmon, Claudia Imhoff, Ryan Sousa, 2002-03-14 The father of data warehousing incorporates the latesttechnologies into his blueprint for integrated decision supportsystems Today's corporate IT and data warehouse managers are required tomake a small army of technologies work together to ensure fast andaccurate information for business managers. Bill Inmon created theCorporate Information Factory to solve the needs ofthese managers. Since the First Edition, the design of the factoryhas grown and changed dramatically. This Second Edition, revisedand expanded by 40% with five new chapters, incorporates thesechanges. This step-by-step guide will enable readers to connecttheir legacy systems with the data warehouse and deal with a hostof new and changing technologies, including Web access mechanisms,e-commerce systems, ERP (Enterprise Resource Planning) systems. Thebook also looks closely at exploration and data mining servers foranalyzing customer behavior and departmental data marts forfinance, sales, and marketing. |
data management and governance framework: Information Governance Principles and Practices for a Big Data Landscape Chuck Ballard, Cindy Compert, Tom Jesionowski, Ivan Milman, Bill Plants, Barry Rosen, Harald Smith, IBM Redbooks, 2014-03-31 This IBM® Redbooks® publication describes how the IBM Big Data Platform provides the integrated capabilities that are required for the adoption of Information Governance in the big data landscape. As organizations embark on new use cases, such as Big Data Exploration, an enhanced 360 view of customers, or Data Warehouse modernization, and absorb ever growing volumes and variety of data with accelerating velocity, the principles and practices of Information Governance become ever more critical to ensure trust in data and help organizations overcome the inherent risks and achieve the wanted value. The introduction of big data changes the information landscape. Data arrives faster than humans can react to it, and issues can quickly escalate into significant events. The variety of data now poses new privacy and security risks. The high volume of information in all places makes it harder to find where these issues, risks, and even useful information to drive new value and revenue are. Information Governance provides an organization with a framework that can align their wanted outcomes with their strategic management principles, the people who can implement those principles, and the architecture and platform that are needed to support the big data use cases. The IBM Big Data Platform, coupled with a framework for Information Governance, provides an approach to build, manage, and gain significant value from the big data landscape. |
data management and governance framework: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
data management and governance framework: Business Process Management Mathias Weske, Marco Montali, Ingo Weber, Jan vom Brocke, 2018-08-31 This book constitutes the proceedings of the 16th International Conference on Business Process Management, BPM 2018, held in Sydney, Australia, in September 2018. The 27 papers presented in this volume were carefully reviewed and selected from 140 submissions. They were organized in topical sections named: reflections on BPM; concepts and methods in business process modeling and analysis; foundations of process discovery; alignments and conformance checking; process model analysis and machine learning; digital process innovation; and method analysis and selection. |
data management and governance framework: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research. |
data management and governance framework: Platform Ecosystems Amrit Tiwana, 2013-11-12 Platform Ecosystems is a hands-on guide that offers a complete roadmap for designing and orchestrating vibrant software platform ecosystems. Unlike software products that are managed, the evolution of ecosystems and their myriad participants must be orchestrated through a thoughtful alignment of architecture and governance. Whether you are an IT professional or a general manager, you will benefit from this book because platform strategy here lies at the intersection of software architecture and business strategy. It offers actionable tools to develop your own platform strategy, backed by original research, tangible metrics, rich data, and cases. You will learn how architectural choices create organically-evolvable, vibrant ecosystems. You will also learn to apply state-of-the-art research in software engineering, strategy, and evolutionary biology to leverage ecosystem dynamics unique to platforms. Read this book to learn how to: Evolve software products and services into vibrant platform ecosystems Orchestrate platform architecture and governance to sustain competitive advantage Govern platform evolution using a powerful 3-dimensional framework If you’re ready to transform platform strategy from newspaper gossip and business school theory to real-world competitive advantage, start right here! Understand how architecture and strategy are inseparably intertwined in platform ecosystems Architect future-proof platforms and apps and amplify these choices through governance Evolve platforms, apps, and entire ecosystems into vibrant successes and spot platform opportunities in almost any—not just IT—industry |
data management and governance framework: Big Data Governance and Perspectives in Knowledge Management Strydom, Sheryl Kruger, Strydom, Moses, 2018-11-16 The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management. |
data management and governance framework: Data Driven Thomas C. Redman, 2008-09-22 Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the Data Doc, shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that. |
data management and governance framework: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. |
data management and governance framework: Data Protection David G. Hill, 2016-04-19 Failure to appreciate the full dimensions of data protection can lead to poor data protection management, costly resource allocation issues, and exposure to unnecessary risks. Data Protection: Governance, Risk Management, and Compliance explains how to gain a handle on the vital aspects of data protection.The author begins by building the foundatio |
data management and governance framework: The Chief Data Officer Management Handbook Martin Treder, 2020-10-03 There is no denying that the 21st century is data driven, with many digital industries relying on careful collection and analysis of mass volumes of information. A Chief Data Officer (CDO) at a company is the leader of this process, making the position an often daunting one. The Chief Data Officer Management Handbook is here to help. With this book, author Martin Treder advises CDOs on how to be better prepared for their swath of responsibilities, how to develop a more sustainable approach, and how to avoid the typical pitfalls. Based on positive and negative experiences shared by current CDOs, The Chief Data Officer Management Handbook guides you in designing the ideal structure of a data office, implementing it, and getting the right people on board. Important topics such as the data supply chain, data strategy, and data governance are thoughtfully covered by Treder. As a CDO it is important to use your position effectively with your entire team. The Chief Data Officer Management Handbook allows all employees to take ownership in data collaboration. Data is the foundation of present and future tech innovations, and you could be the leader that makes the next big impact. What You Will Learn Apply important elements of effective data management Gain a comprehensive overview of all areas of data (which are often managed independently Work with the data supply chain, from data acquisition to its usage, a review of all relevant stakeholders, data strategy, and data governance Who This Book is For CDOs, data executives, data advisors, and all professionals looking to understand about how a data office functions in an organization. |
data management and governance framework: The Case for the Chief Data Officer Peter Aiken, Michael M. Gorman, 2013-04-22 Data are an organization's sole, non-depletable, non-degrading, durable asset. Engineered right, data's value increases over time because the added dimensions of time, geography, and precision. To achieve data's full organizational value, there must be dedicated individual to leverage data as assets - a Chief Data Officer or CDO who's three job pillars are: - Dedication solely to leveraging data assets, - Unconstrained by an IT project mindset, and - Reports directly to the business Once these three pillars are set into place, organizations can leverage their data assets. Data possesses properties worthy of additional investment. Many existing CDOs are fatally crippled, however, because they lack one or more of these three pillars. Often organizations have some or all pillars already in place but are not operating in a coordinated manner. The overall objective of this book is to present these pillars in an understandable way, why each is necessary (but insufficient), and what do to about it. - Uncovers that almost all organizations need sophisticated, comprehensive data management education and strategies. - Delivery of organization-wide data success requires a highly focused, full time Chief Data Officer. - Engineers organization-wide data advantage which enables success in the marketplace |
data management and governance framework: Research Anthology on Privatizing and Securing Data Management Association, Information Resources, 2021-04-23 With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data. |
data management and governance framework: The Data and Analytics Playbook Lowell Fryman, Gregory Lampshire, Dan Meers, 2016-08-12 The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization. - Provides a mature and proven playbook approach (methodology) to enabling data governance that supports agile implementation - Features specific examples of current industry challenges in enterprise risk management, including anti-money laundering and fraud prevention - Describes business benefit measures and funding approaches using exposure based cost models that augment risk models for cost avoidance analysis and accelerated delivery approaches using data integration sprints for application, integration, and information delivery success |
data management and governance framework: Big Data Management Peter Ghavami, 2020-11-09 Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations. |
data management and governance framework: Self-Service Data Analytics and Governance for Managers Nathan E. Myers, Gregory Kogan, 2021-06-02 Project governance, investment governance, and risk governance precepts are woven together in Self-Service Data Analytics and Governance for Managers, equipping managers to structure the inevitable chaos that can result as end-users take matters into their own hands Motivated by the promise of control and efficiency benefits, the widespread adoption of data analytics tools has created a new fast-moving environment of digital transformation in the finance, accounting, and operations world, where entire functions spend their days processing in spreadsheets. With the decentralization of application development as users perform their own analysis on data sets and automate spreadsheet processing without the involvement of IT, governance must be revisited to maintain process control in the new environment. In this book, emergent technologies that have given rise to data analytics and which form the evolving backdrop for digital transformation are introduced and explained, and prominent data analytics tools and capabilities will be demonstrated based on real world scenarios. The authors will provide a much-needed process discovery methodology describing how to survey the processing landscape to identify opportunities to deploy these capabilities. Perhaps most importantly, the authors will digest the mature existing data governance, IT governance, and model governance frameworks, but demonstrate that they do not comprehensively cover the full suite of data analytics builds, leaving a considerable governance gap. This book is meant to fill the gap and provide the reader with a fit-for-purpose and actionable governance framework to protect the value created by analytics deployment at scale. Project governance, investment governance, and risk governance precepts will be woven together to equip managers to structure the inevitable chaos that can result as end-users take matters into their own hands. |
data management and governance framework: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh. |
data management and governance framework: The Path to Becoming a Data-Driven Public Sector Oecd, Organisation for Economic Co-operation and Development, 2019-11-28 Twenty-first century governments must keep pace with the expectations of their citizens and deliver on the promise of the digital age. Data-driven approaches are particularly effective for meeting those expectations and rethinking the way governments and citizens interact. This report highlights the important role data can play in creating conditions that improve public services, increase the effectiveness of public spending and inform ethical and privacy considerations. It presents a data-driven public sector framework that can help countries or organisations assess the elements needed for using data to make better-informed decisions across public sectors. |
data management and governance framework: The IBM Data Governance Unified Process Sunil Soares, 2010-10 Anyone considering a data governance program within their organization will find an invaluable step-by-step methodology using IBM tools and best practices in this structured how-to. While many in the IT industry hold separate definitions in their minds, this authoritative manual defines data governance as the discipline of treating data as an enterprise asset. The intricate process of data governance involves the exercise of decision rights to optimize, secure, and leverage data. Providing a rigorous explanation of the 14 steps and almost 100 substeps to enact unified data governance, this extensive handbook also shows that the core issues to be tackled are not about technology but rather about people and process. |
data management and governance framework: Enterprise Architecture Fundamentals Rémy Fannader, 2021-04 The book has three main objectives:? To put the focus on the specificity of enterprise architecture as adiscipline, whose purpose is to weave together data, information, andknowledge, with platforms, systems, and organization.? To provide actionable descriptions of architectures and engineeringprocesses.? To ensure a comprehensive and formal representation of all relevantaspects of business, organization, and systems.1 BISAC are subject codes from the Book Industry Study Group. Codes can be found here:http://bisg.org/page/BISACSubjectCodesTo achieve these objectives, enterprise architectures can take advantage ofArtificial intelligence and Machine-learning technologies to change and adaptto shifts in business and digital environments. |
data management and governance framework: Universal Meta Data Models David Marco, Michael Jennings, 2004-03-25 * The heart of the book provides the complete set of models that will support most of an organization's core business functions, including universal meta models for enterprise-wide systems, business meta data and data stewardship, portfolio management, business rules, and XML, messaging, and transactions * Developers can directly adapt these models to their own businesses, saving countless hours of development time * Building effective meta data repositories is complicated and time-consuming, and few IT departments have the necessary expertise to do it right-which is why this book is sure to find a ready audience * Begins with a quick overview of the Meta Data Repository Environment and the business uses of meta data, then goes on to describe the technical architecture followed by the detailed models |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their …