data governance business case: Data Governance John Ladley, 2019-11-08 Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition |
data governance business case: Data Goverence for the Executive, Orr James C., 2011-01-01 |
data governance business case: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
data governance business case: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research. |
data governance business case: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness. |
data governance business case: Big Data Governance Sunil Soares, 2012 Written by a leading expert in the field, this guide focuses on the convergence of two major trends in information management--big data and information governance--by taking a strategic approach oriented around business cases and industry imperatives. With the advent of new technologies, enterprises are expanding and handling very large volumes of data; this book, nontechnical in nature and geared toward business audiences, encourages the practice of establishing appropriate governance over big data initiatives and addresses how to manage and govern big data, highlighting the relevant processes, procedures, and policies. It teaches readers to understand how big data fits within an overall information governance program; quantify the business value of big data; apply information governance concepts such as stewardship, metadata, and organization structures to big data; appreciate the wide-ranging business benefits for various industries and job functions; sell the value of big data governance to businesses; and establish step-by-step processes to implement big data governance. |
data governance business case: Big Data Governance and Perspectives in Knowledge Management Strydom, Sheryl Kruger, Strydom, Moses, 2018-11-16 The world is witnessing the growth of a global movement facilitated by technology and social media. Fueled by information, this movement contains enormous potential to create more accountable, efficient, responsive, and effective governments and businesses, as well as spurring economic growth. Big Data Governance and Perspectives in Knowledge Management is a collection of innovative research on the methods and applications of applying robust processes around data, and aligning organizations and skillsets around those processes. Highlighting a range of topics including data analytics, prediction analysis, and software development, this book is ideally designed for academicians, researchers, information science professionals, software developers, computer engineers, graduate-level computer science students, policymakers, and managers seeking current research on the convergence of big data and information governance as two major trends in information management. |
data governance business case: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data governance business case: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
data governance business case: MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E Alex Berson, Larry Dubov, 2010-12-06 The latest techniques for building a customer-focused enterprise environment The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works. -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance |
data governance business case: The IBM Data Governance Unified Process Sunil Soares, 2010-10 Anyone considering a data governance program within their organization will find an invaluable step-by-step methodology using IBM tools and best practices in this structured how-to. While many in the IT industry hold separate definitions in their minds, this authoritative manual defines data governance as the discipline of treating data as an enterprise asset. The intricate process of data governance involves the exercise of decision rights to optimize, secure, and leverage data. Providing a rigorous explanation of the 14 steps and almost 100 substeps to enact unified data governance, this extensive handbook also shows that the core issues to be tackled are not about technology but rather about people and process. |
data governance business case: Super Charge Your Data Warehouse Dan Linstedt, 2011-11-11 Do You Know If Your Data Warehouse Flexible, Scalable, Secure and Will It Stand The Test Of Time And Avoid Being Part Of The Dreaded Life Cycle? The Data Vault took the Data Warehouse world by storm when it was released in 2001. Some of the world's largest and most complex data warehouse situations understood the value it gave especially with the capabilities of unlimited scaling, flexibility and security. Here is what industry leaders say about the Data Vault The Data Vault is the optimal choice for modeling the EDW in the DW 2.0 framework - Bill Inmon, The Father of Data Warehousing The Data Vault is foundationally strong and an exceptionally scalable architecture - Stephen Brobst, CTO, Teradata The Data Vault should be considered as a potential standard for RDBMS-based analytic data management by organizations looking to achieve a high degree of flexibility, performance and openness - Doug Laney, Deloitte Analytics Institute I applaud Dan's contribution to the body of Business Intelligence and Data Warehousing knowledge and recommend this book be read by both data professionals and end users - Howard Dresner, From the Foreword - Speaker, Author, Leading Research Analyst and Advisor You have in your hands the work, experience and testing of 2 decades of building data warehouses. The Data Vault model and methodology has proven itself in hundreds (perhaps thousands) of solutions in Insurance, Crime-Fighting, Defense, Retail, Finance, Banking, Power, Energy, Education, High-Tech and many more. Learn the techniques and implement them and learn how to build your Data Warehouse faster than you have ever done before while designing it to grow and scale no matter what you throw at it. Ready to Super Charge Your Data Warehouse? |
data governance business case: Data Governance Neera Bhansali, 2013-06-17 As organizations deploy business intelligence and analytic systems to harness business value from their data assets, data governance programs are quickly gaining prominence. And, although data management issues have traditionally been addressed by IT departments, organizational issues critical to successful data management require the implementatio |
data governance business case: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
data governance business case: Data Governance Success Rupa Mahanti, 2021-12-13 While good data is an enterprise asset, bad data is an enterprise liability. Data governance enables you to effectively and proactively manage data assets throughout the enterprise by providing guidance in the form of policies, standards, processes and rules and defining roles and responsibilities outlining who will do what, with respect to data. While implementing data governance is not rocket science, it is not a simple exercise. There is a lot confusion around what data governance is, and a lot of challenges in the implementation of data governance. Data governance is not a project or a one-off exercise but a journey that involves a significant amount of effort, time and investment and cultural change and a number of factors to take into consideration to achieve and sustain data governance success. Data Governance Success: Growing and Sustaining Data Governance is the third and final book in the Data Governance series and discusses the following: • Data governance perceptions and challenges • Key considerations when implementing data governance to achieve and sustain success• Strategy and data governance• Different data governance maturity frameworks• Data governance – people and process elements• Data governance metrics This book shares the combined knowledge related to data and data governance that the author has gained over the years of working in different industrial and research programs and projects associated with data, processes, and technologies and unique perspectives of Thought Leaders and Data Experts through Interviews conducted. This book will be highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge to support and succeed in data governance implementations. This book is technology agnostic and contains a balance of concepts and examples and illustrations making it easy for the readers to understand and relate to their own specific data projects. |
data governance business case: The Data Asset Anthony Fisher, 2009 An indispensable guide that shows companies how to treat data as a strategic assetOrganizations set their business strategy and direction based on information that is available to executives. The Data Asset provides guidance for not only building the business case for data quality and data governance, but also for developing methodologies and processes that will enable your organization to better treat its data as a strategic asset. Part of Wiley's SAS Business Series, this book looks at Business Case Building; Maturity Model and Organization Capabilities; 7-Step Programmatic Approach for Succe. |
data governance business case: Research Anthology on Privatizing and Securing Data Management Association, Information Resources, 2021-04-23 With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data. |
data governance business case: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development |
data governance business case: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure |
data governance business case: Selling Information Governance to the Business Sunil Soares, 2011 Tackling one of the major challenges with implementing an information-governance program, this book provides insight into the best ways to convince businesses of the value of the practice. Most information-governance programs deal with problems that are common across every enterprise--poor data quality, inconsistency of business terms, fragmented view of the customer and product, and security and privacy. However, these issues manifest themselves differently across different industries and job functions. The author has spoken to hundreds of clients across multiple industries and geographies about their information-governance programs, and as a result, this book provides cross-industry best practices as well as best applications and case studies for a variety of industries and job functions, such as healthcare, manufacturing, transportation, telecommunications, and media. |
data governance business case: Infonomics Douglas B. Laney, 2017-09-05 Many senior executives talk about information as one of their most important assets, but few behave as if it is. They report to the board on the health of their workforce, their financials, their customers, and their partnerships, but rarely the health of their information assets. Corporations typically exhibit greater discipline in tracking and accounting for their office furniture than their data. Infonomics is the theory, study, and discipline of asserting economic significance to information. It strives to apply both economic and asset management principles and practices to the valuation, handling, and deployment of information assets. This book specifically shows: CEOs and business leaders how to more fully wield information as a corporate asset CIOs how to improve the flow and accessibility of information CFOs how to help their organizations measure the actual and latent value in their information assets. More directly, this book is for the burgeoning force of chief data officers (CDOs) and other information and analytics leaders in their valiant struggle to help their organizations become more infosavvy. Author Douglas Laney has spent years researching and developing Infonomics and advising organizations on the infinite opportunities to monetize, manage, and measure information. This book delivers a set of new ideas, frameworks, evidence, and even approaches adapted from other disciplines on how to administer, wield, and understand the value of information. Infonomics can help organizations not only to better develop, sell, and market their offerings, but to transform their organizations altogether. Doug Laney masterfully weaves together a collection of great examples with a solid framework to guide readers on how to gain competitive advantage through what he labels the unruly asset – data. The framework is comprehensive, the advice practical and the success stories global and across industries and applications. Liz Rowe, Chief Data Officer, State of New Jersey A must read for anybody who wants to survive in a data centric world. Shaun Adams, Head of Data Science, Betterbathrooms.com Phenomenal! An absolute must read for data practitioners, business leaders and technology strategists. Doug's lucid style has a set a new standard in providing intelligible material in the field of information economics. His passion and knowledge on the subject exudes thru his literature and inspires individuals like me. Ruchi Rajasekhar, Principal Data Architect, MISO Energy I highly recommend Infonomics to all aspiring analytics leaders. Doug Laney’s work gives readers a deeper understanding of how and why information should be monetized and managed as an enterprise asset. Laney’s assertion that accounting should recognize information as a capital asset is quite convincing and one I agree with. Infonomics enjoyably echoes that sentiment! Matt Green, independent business analytics consultant, Atlanta area If you care about the digital economy, and you should, read this book. Tanya Shuckhart, Analyst Relations Lead, IRI Worldwide |
data governance business case: The Data and Analytics Playbook Lowell Fryman, Gregory Lampshire, Dan Meers, 2016-08-12 The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization. - Provides a mature and proven playbook approach (methodology) to enabling data governance that supports agile implementation - Features specific examples of current industry challenges in enterprise risk management, including anti-money laundering and fraud prevention - Describes business benefit measures and funding approaches using exposure based cost models that augment risk models for cost avoidance analysis and accelerated delivery approaches using data integration sprints for application, integration, and information delivery success |
data governance business case: Data Governance For Dummies Reichental, 2022-12-08 How to build and maintain strong data organizations—the Dummies way Data Governance For Dummies offers an accessible first step for decision makers into understanding how data governance works and how to apply it to an organization in a way that improves results and doesn't disrupt. Prep your organization to handle the data explosion (if you know, you know) and learn how to manage this valuable asset. Take full control of your organization’s data with all the info and how-tos you need. This book walks you through making accurate data readily available and maintaining it in a secure environment. It serves as your step-by-step guide to extracting every ounce of value from your data. Identify the impact and value of data in your business Design governance programs that fit your organization Discover and adopt tools that measure performance and need Address data needs and build a more data-centric business culture This is the perfect handbook for professionals in the world of data analysis and business intelligence, plus the people who interact with data on a daily basis. And, as always, Dummies explains things in terms anyone can understand, making it easy to learn everything you need to know. |
data governance business case: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. |
data governance business case: Data Quality Jack E. Olson, 2003-01-09 Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality.* Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets. |
data governance business case: Business Metadata: Capturing Enterprise Knowledge W.H. Inmon, Bonnie O'Neil, Lowell Fryman, 2010-07-28 Business Metadata: Capturing Enterprise Knowledge is the first book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management. Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, the book is filled with war stories, examples, and cases from current projects. It includes a complete metadata acquisition methodology and project plan to guide readers every step of the way, and sample unstructured metadata for use in self-testing and developing skills. This book is recommended for IT professionals, including those in consulting, working on systems that will deliver better knowledge management capability. This includes people in these positions: data architects, data analysts, SOA architects, metadata analysts, repository (metadata data warehouse) managers as well as vendors that have a metadata component as part of their systems or tools. - First book that helps businesses capture corporate (human) knowledge and unstructured data, and offer solutions for codifying it for use in IT and management - Written by Bill Inmon, one of the fathers of the data warehouse and well-known author, and filled with war stories, examples, and cases from current projects - Very practical, includes a complete metadata acquisition methodology and project plan to guide readers every step of the way - Includes sample unstructured metadata for use in self-testing and developing skills |
data governance business case: Making Enterprise Information Management (EIM) Work for Business John Ladley, 2010-07-03 Making Enterprise Information Management (EIM) Work for Business: A Guide to Understanding Information as an Asset provides a comprehensive discussion of EIM. It endeavors to explain information asset management and place it into a pragmatic, focused, and relevant light. The book is organized into two parts. Part 1 provides the material required to sell, understand, and validate the EIM program. It explains concepts such as treating Information, Data, and Content as true assets; information management maturity; and how EIM affects organizations. It also reviews the basic process that builds and maintains an EIM program, including two case studies that provide a birds-eye view of the products of the EIM program. Part 2 deals with the methods and artifacts necessary to maintain EIM and have the business manage information. Along with overviews of Information Asset concepts and the EIM process, it discusses how to initiate an EIM program and the necessary building blocks to manage the changes to managed data and content. - Organizes information modularly, so you can delve directly into the topics that you need to understand - Based in reality with practical case studies and a focus on getting the job done, even when confronted with tight budgets, resistant stakeholders, and security and compliance issues - Includes applicatory templates, examples, and advice for executing every step of an EIM program |
data governance business case: Enterprise Governance of Information Technology Steven De Haes, Wim Van Grembergen, 2015-03-04 Featuring numerous case examples from companies around the world, this second edition integrates theoretical advances and empirical data with practical applications, including in-depth discussion on the COBIT 5 framework which can be used to build, measure and audit enterprise governance of IT approaches. At the forefront of the field, the authors of this volume draw from years of research and advising corporate clients to present a comprehensive resource on enterprise governance of IT (EGIT). Information technology (IT) has become a crucial enabler in the support, sustainability and growth of enterprises. Given this pervasive role of IT, a specific focus on EGIT has arisen over the last two decades, as an integral part of corporate governance. Going well beyond the implementation of a superior IT infrastructure, enterprise governance of IT is about defining and embedding processes and structures throughout the organization that enable boards and business and IT people to execute their responsibilities in support of business/IT alignment and value creation from their IT-enabled investments. Featuring a variety of elements, including executive summaries and sidebars, extensive references and questions and activities (with additional materials available on-line), this book will be an essential resource for professionals, researchers and students alike |
data governance business case: Disrupting Data Governance Laura Madsen, 2019-12-06 Data governance is broken. It's time we fix it. Why is data governance so ineffective? The truth is data governance programs aren't designed for the way we run our data teams they aren't even designed for a modern organization at all. They were designed when reports still came through inter-office mail. The flow of data into within and out of today's organizations is a tsunami breaking through rigid data governance methods. Yet our programs still rely on that command and control approach. Have you ever tried to control a tsunami? Every organization that uses data knows that they need a data governance program. Data literacy efforts and legislation like GDPR have become the bellwethers for our governance functions. But we still sit in data governance meetings without enough people and too many questions to move things forward. There's no agility to the program because we imply a degree of frailty to the data that doesn't exist. We continue to insist on archaic methods that bring no value to our organizations. Achieving deep insights from data can't happen without good governance practices. Laura Madsen shows you how to redefine governance for the modern age. With a casual witty style Madsen taps on her decades of experience shares interviews with other best-in-field experts and grounds her perspective in research. Witness where it all fell apart challenge long-held beliefs and commit to a fundamental shift--that governance is not about stopping or preventing usage but about supporting the usage of data. Be able to bring back trust and value to our data governance functions and learn the: People-driven approach to governance Processes that support the tsunami of data Cutting edge technology that's enabling data governance |
data governance business case: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research. |
data governance business case: Data Governance Evren Eryurek, Uri Gilad, Jessi Ashdown, Valliappa Lakshmanan, Anita Kibunguchy, 2021-04-13 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness |
data governance business case: Platform Ecosystems Amrit Tiwana, 2013-11-12 Platform Ecosystems is a hands-on guide that offers a complete roadmap for designing and orchestrating vibrant software platform ecosystems. Unlike software products that are managed, the evolution of ecosystems and their myriad participants must be orchestrated through a thoughtful alignment of architecture and governance. Whether you are an IT professional or a general manager, you will benefit from this book because platform strategy here lies at the intersection of software architecture and business strategy. It offers actionable tools to develop your own platform strategy, backed by original research, tangible metrics, rich data, and cases. You will learn how architectural choices create organically-evolvable, vibrant ecosystems. You will also learn to apply state-of-the-art research in software engineering, strategy, and evolutionary biology to leverage ecosystem dynamics unique to platforms. Read this book to learn how to: Evolve software products and services into vibrant platform ecosystems Orchestrate platform architecture and governance to sustain competitive advantage Govern platform evolution using a powerful 3-dimensional framework If you’re ready to transform platform strategy from newspaper gossip and business school theory to real-world competitive advantage, start right here! Understand how architecture and strategy are inseparably intertwined in platform ecosystems Architect future-proof platforms and apps and amplify these choices through governance Evolve platforms, apps, and entire ecosystems into vibrant successes and spot platform opportunities in almost any—not just IT—industry |
data governance business case: The Case for the Chief Data Officer Peter Aiken, Michael M. Gorman, 2013-04-22 Data are an organization's sole, non-depletable, non-degrading, durable asset. Engineered right, data's value increases over time because the added dimensions of time, geography, and precision. To achieve data's full organizational value, there must be dedicated individual to leverage data as assets - a Chief Data Officer or CDO who's three job pillars are: - Dedication solely to leveraging data assets, - Unconstrained by an IT project mindset, and - Reports directly to the business Once these three pillars are set into place, organizations can leverage their data assets. Data possesses properties worthy of additional investment. Many existing CDOs are fatally crippled, however, because they lack one or more of these three pillars. Often organizations have some or all pillars already in place but are not operating in a coordinated manner. The overall objective of this book is to present these pillars in an understandable way, why each is necessary (but insufficient), and what do to about it. - Uncovers that almost all organizations need sophisticated, comprehensive data management education and strategies. - Delivery of organization-wide data success requires a highly focused, full time Chief Data Officer. - Engineers organization-wide data advantage which enables success in the marketplace |
data governance business case: Data Governance Handbook Wendy S. Batchelder, 2024-05-31 Build an actionable, business value driven case for data governance to obtain executive support and implement with excellence Key Features Develop a solid foundation in data governance and increase your confidence in data solutions Align data governance solutions with measurable business results and apply practical knowledge from real-world projects Learn from a three-time chief data officer who has worked in leading Fortune 500 companies Purchase of the print or Kindle book includes a free PDF eBook Book Description2.5 quintillion bytes! This is the amount of data being generated every single day across the globe. As this number continues to grow, understanding and managing data becomes more complex. Data professionals know that it’s their responsibility to navigate this complexity and ensure effective governance, empowering businesses with the right data, at the right time, and with the right controls. If you are a data professional, this book will equip you with valuable guidance to conquer data governance complexities with ease. Written by a three-time chief data officer in global Fortune 500 companies, the Data Governance Handbook is an exhaustive guide to understanding data governance, its key components, and how to successfully position solutions in a way that translates into tangible business outcomes. By the end, you’ll be able to successfully pitch and gain support for your data governance program, demonstrating tangible outcomes that resonate with key stakeholders. What you will learn Comprehend data governance from ideation to delivery and beyond Position data governance to obtain executive buy-in Launch a governance program at scale with a measurable impact Understand real-world use cases to drive swift and effective action Obtain support for data governance-led digital transformation Launch your data governance program with confidence Who this book is for Chief data officers, data governance leaders, data stewards, and engineers who want to understand the business value of their work, and IT professionals seeking further understanding of data management, will find this book useful. You need a basic understanding of working with data, business needs, and how to meet those needs with data solutions. Prior coding experience or skills in selling data solutions to executives are not required. |
data governance business case: Aligning MDM and BPM for Master Data Governance, Stewardship, and Enterprise Processes Chuck Ballard, Trey Anderson, Dr. Lawrence Dubov, Alex Eastman, Jay Limburn, Umasuthan Ramakrishnan, IBM Redbooks, 2013-03-08 An enterprise can gain differentiating value by aligning its master data management (MDM) and business process management (BPM) projects. This way, organizations can optimize their business performance through agile processes that empower decision makers with the trusted, single version of information. Many companies deploy MDM strategies as assurances that enterprise master data can be trusted and used in the business processes. IBM® InfoSphere® Master Data Management creates trusted views of data assets and elevates the effectiveness of an organization's most important business processes and applications. This IBM Redbooks® publication provides an overview of MDM and BPM. It examines how you can align them to enable trusted and accurate information to be used by business processes to optimize business performance and bring more agility to data stewardship. It also provides beginning guidance on these patterns and where cross-training efforts might focus. This book is written for MDM or BPM architects and MDM and BPM architects. By reading this book, MDM or BPM architects can understand how to scope joint projects or to provide reasonable estimates of the effort. BPM developers (or MDM developers with BPM training) can learn how to design and build MDM creation and consumption use cases by using the MDM Toolkit for BPM. They can also learn how to import data governance samples and extend them to enable collaborative stewardship of master data. |
data governance business case: The Chief Data Officer Management Handbook Martin Treder, 2020-10-03 There is no denying that the 21st century is data driven, with many digital industries relying on careful collection and analysis of mass volumes of information. A Chief Data Officer (CDO) at a company is the leader of this process, making the position an often daunting one. The Chief Data Officer Management Handbook is here to help. With this book, author Martin Treder advises CDOs on how to be better prepared for their swath of responsibilities, how to develop a more sustainable approach, and how to avoid the typical pitfalls. Based on positive and negative experiences shared by current CDOs, The Chief Data Officer Management Handbook guides you in designing the ideal structure of a data office, implementing it, and getting the right people on board. Important topics such as the data supply chain, data strategy, and data governance are thoughtfully covered by Treder. As a CDO it is important to use your position effectively with your entire team. The Chief Data Officer Management Handbook allows all employees to take ownership in data collaboration. Data is the foundation of present and future tech innovations, and you could be the leader that makes the next big impact. What You Will Learn Apply important elements of effective data management Gain a comprehensive overview of all areas of data (which are often managed independently Work with the data supply chain, from data acquisition to its usage, a review of all relevant stakeholders, data strategy, and data governance Who This Book is For CDOs, data executives, data advisors, and all professionals looking to understand about how a data office functions in an organization. |
data governance business case: Big Data Management Peter Ghavami, 2020-11-09 Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations. |
data governance business case: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
data governance business case: Data Governance and Strategies Mr.Desidi Narsimha Reddy, 2024-09-05 Mr.Desidi Narsimha Reddy, Data Consultant (Data Governance, Data Analytics: Enterprise Performance Management, AI & ML), Soniks consulting LLC, 101 E Park Blvd Suite 600, Plano, TX 75074, United States. |
data governance business case: Data Governance Dimitrios Sargiotis, |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Operationalizing Data Governance at Enterprise Scale
governance strategy, priorities, business case, policies, standards, architecture and vision. The define and discover processes iterate as discovery drives definition, and definition drives more …
Data Governance - The Institute of Internal Auditors or The IIA
Data governance best practices. Risks associated with failing to establish proper data governance. Potential reputational and financial damages resulting from failed data …
Data Governance Business Case Examples Full PDF
Data Governance Business Case Examples James M. Barker. Data Governance Business Case Examples: A Practitioner's Guide to Data Governance Uma Gupta,San Cannon,2020-07-08 …
INPRS Journey Towards Master Data Management - IN.gov
1.0 – Data Strategy & Business Case Capabilities to define, prioritize, organize, fund and govern data management. This component is required to define how Data Management is ... INPRS’s …
The Need for Data Governance: A Case Study - ResearchGate
The Need for Data Governance: A Case Study Lai Kuan Cheong, Vanessa Chang School of Information Systems Curtin Business School ... Should IT or business drive the data …
Data Catalog Vs Business Glossary - blog.amf
data catalog vs business glossary: Data Governance Handbook Wendy S. Batchelder, 2024-05-31 Build an actionable, business value driven case for data governance to obtain executive …
Business Technology Getting your data house in order
Define the data strategy: The data strategy crystalizes the business case for transformation—identifying, valuing, and prioritizing the core set of initiatives and use cases ...
Atlan + CSE Insurance Case Study - FINAL
A modern data stack as a competitive advantage 🚀 Early adopter of the modern data stack CSE Insurance was an early adopter of the modern data stack, and leapfrogged legacy competitors …
Data Standards Document - SDAIA
data lifecycle from creation, storage, movement, usage, till retirement (see Figure 1). Figure 1: KSA Data Management and Personal Data Protection Framework 1. Data Governance: Data …
Data Governance in Data Ecosystems â fi Insights from …
derive intra- and inter-organizational characteristics of data governance. Using a case study approach, we examine three firms developing data-driven business models that rely on …
Data Governance Business Case Examples (book)
Data Governance Business Case Examples Ignite the flame of optimism with Crafted by is motivational masterpiece, Find Positivity in Data Governance Business Case Examples . In a …
Cloud Data Governance and Catalog Professional Services
advantage for your business. Our advisory data governance experts conduct an assessment and kickoff workshop, determining the current state and identifying a targeted Data Governance …
Data Management and Strategy: Building a Growth-Driven …
TOPIC 3: Business case study 2: data offense • Business context, company’s challenges, and goals • Data capabilities mapping to solving the business challenge . TOPIC 4: Business case …
Managing the Data Governance Life Cycle - SAS Support
This paper explores the challenges organizations have today in implementing a data governance program via an actual business case. It highlights SAS technology that can help you solve …
Data and AI Governance through IDMC - Informatica
Interconnection between Data Governance and AI Governance Data governance plays a critical role in shaping the development and deployment of AI systems. Effective data governance …
THE EXECUTIVE BRIEF
around data sharing and governance. BUSINESS CASE: REGULATORY BARRIERS TO AI INNOVATION IN EUROPEAN HEALTHCARE An innovative healthcare company from …
Designing data governance that delivers value - McKinsey
Six ways to drive data-governance excellence The organizational foundation alone, however, is not enough. Six critical practices are needed to ensure data governance creates value. 1. …
Data Governance Business Case Examples (PDF)
Data Governance Business Case Examples Delve into the emotional tapestry woven by Emotional Journey with in Dive into the Emotion of Data Governance Business Case Examples …
Data Governance: Unstructured Data - sphereco.com
Data governance is one of the most business-critical disciplines to have emerged within enterprises over the last decade. Through data governance, organizations are looking to …
Conducting In-Depth Analysis of AI, IoT, Web Technology, …
thoroughly examining case studies, current trends, and technical breakthroughs. The ... contemporary business processes[27]. Data governance, however, is a more comprehensive …
Cloud Governance Success - info.microsoft.com
High Sensitive business data that if compromised could negatively affect operations. • Vendor contracts • Employee records Moderate Business data that isn’t meant for a public audience. • …
Data Governance Business Case Examples
Absolutely essential for data governance business case identifies specific permissions including the tools. Lewis college with strong governance case examples, ironside has the employees …
CORPORATE GOVERNANCE CASE STUDIES - Governance …
in editing the case studies and the students of the NUS Business School for their work in researching and producing the cases. We hope this 7th volume of case studies will continue to …
Guide to Getting Started with Data Governance - DATAVERSITY
Align data governance and business strategy A successful data governance program must be aligned with the business strategy to ensure that an organization gets the most value from its …
Data Governance in Health D - documents1.worldbank.org
data governance is part of digital health governance. Data governance is an integral part of data management, which also includes data processing, data storage, and data security4. Data …
Council for Chief Data and Analytics Officers
2:15–3:00 p.m. Session I: Data Governance Business Case Problem Statement As our organization expands, there’s an exponential increase in data volume, emphasizing the need …
The Current State of Data Governance in Higher Education
Weber, Otto, and Österle (2009) explained that data governance includes both business processes and IT to provide organization-wide guidelines to ensure data quality and …
Healthcare Data Governance - AHIMA
If the entire organization is engaged, a data governance culture is formed, leading to the organization's robust program. A healthcare data governance culture may be achieved by …
Data governance: Case studies - Royal Society
prompted the work behind the Data Management and Use: Governance in the 21 st Century report. The case studies were developed using desk research and informal interviews with …
The Data Asset: How Smart Companies Govern Their Data for …
An indispensable guide that shows companies how to treat data as a strategic asset Organizations set their business strategy and direction based on information that is available to …
Ohio Department of Transportation Data Governance
Data Governance . Ohio’s People, Processes, and Technology . SAFETY DATA CASE STUDY . FHWA-SA-20-059 . Federal Highway Administration Office of Safety . ... with the strategic Data …
Data Governance Resource Index - Oklahoma.gov
is a nonprofit, vendor-neutral association of business, information technology and data professionals dedicated to advancing the discipline of data governance. ... integrate and align …
Axon Data Governance & Features Integration - Informatica
Axon Data Governance • Define Business Term, Processes and Policies • Define Critical Data Element. Informatica Data Quality • Data Quality Rule Design • Measure DQ metrics and …
CASE STUDY: Data Governance & Compliance for Financial …
Many business drivers are now requiring organizations to institutionalize data governance. Clearly, strong data governance is integral to delivering reliable and usable business …
GOOD GOVERNANCE IN FAMILY FIRMS FIVE CASE STUDIES …
challenges that every business faces, and a strong governance framework is key to ensuring its long-term survival and success. In research published in 2013 within the report “Family …
Data Governance: How to Design, Deploy and Sustain an …
Contents Foreword.....xiii
The Need for Data Governance: A Case Study - CORE
Data Governance Structure and Framework with the emphasis on collaboration between business and IT to support organisations. Keywords Data Governance, Data Quality, Data Management, …
Data Management for Data & Analytics - KPMG
– Definition of the business case and funding – Choice of the best-of-breed data governance model – Business requirements for data quality and definition of the service level agreement …
DATA GOVERNANCE AND DATA MANAGEMENT WHITE …
“Data governance is a quality control discipline for assessing, managing, using, improving, monitoring, maintaining, and protecting organizational information It is a system of ... No …
DG Program/Organization Resource Model Guide - Informatica
•Monitor delivery of use-case projects and selection process •Approve or amend new domain-wide policies Data Domain Council Existing Structure: [discuss] ... Business Business Data …
084-2013: Best Practices in Enterprise Data Governance
This paper explores the challenges organizations have today in implementing a data governance program via an actual business case. It highlights SAS technology that can help you solve …
The Need for Data Governance: A Case Study
Data Governance Structure and Framework with the emphasis on collaboration between business and IT to support organisations. Keywords Data Governance, Data Quality, Data Management, …
Developing an Automated Governance in Analytics ETL Pipeline
data governance by incorporating automated checks, balances, and validation protocols, ensuring that only high- quality data is fed into the analytics process (Dhayne, Haque,
2023 EDUCAUSE Horizon Action Plan: Data Governance
comfortable with data governance practices. Help stakeholders understand that data are assets on par with financial capital. • Regularly track progress, and communicate with your community …
Data Governance Business Case Examples - cie …
Data Governance Business Case Examples Offers over 60,000 free eBooks, including many classics that are in the public domain. Open Library: Provides access to over 1 million free …
On the Evolution of Data Governance in Firms: The Case of
Fig. 1 Data Governance, data management, and data quality management Considering the above, Data Governance providesa decision-makingframework for data management. The …
Self-Insurance Cost Model - wsiassn.org
Jul 25, 2019 · • Enterprise Data Governance & Strategy • Procurement Strategy • Site Visits (Ohio & Toronto) • Develop robust business case Add portal functionality for ... & Business Case …
IBM Master Data Management: Effective data governance
Data governance defined Data governance is the orchestration of people, process and technology to enable an organization to leverage information as an enterprise asset. Data governance …
FDOT Data Governance Initiative Case Study Brief - FHWA …
The process of organizing internal data is called data governance (see Figure 1). This case study is a review of how the Florida Department of Transportation (FDOT) decided to create and …