Data Management Team Structure

Advertisement



  data management team structure: Data Teams Jesse Anderson, 2020
  data management team structure: The Informed Company Dave Fowler, Matthew C. David, 2021-10-26 Learn how to manage a modern data stack and get the most out of data in your organization! Thanks to the emergence of new technologies and the explosion of data in recent years, we need new practices for managing and getting value out of data. In the modern, data driven competitive landscape the best guess approach—reading blog posts here and there and patching together data practices without any real visibility—is no longer going to hack it. The Informed Company provides definitive direction on how best to leverage the modern data stack, including cloud computing, columnar storage, cloud ETL tools, and cloud BI tools. You'll learn how to work with Agile methods and set up processes that's right for your company to use your data as a key weapon for your success . . . You'll discover best practices for every stage, from querying production databases at a small startup all the way to setting up data marts for different business lines of an enterprise. In their work at Chartio, authors Fowler and David have learned that most businesspeople are almost completely self-taught when it comes to data. If they are using resources, those resources are outdated, so they're missing out on the latest cloud technologies and advances in data analytics. This book will firm up your understanding of data and bring you into the present with knowledge around what works and what doesn't. Discover the data stack strategies that are working for today's successful small, medium, and enterprise companies Learn the different Agile stages of data organization, and the right one for your team Learn how to maintain Data Lakes and Data Warehouses for effective, accessible data storage Gain the knowledge you need to architect Data Warehouses and Data Marts Understand your business's level of data sophistication and the steps you can take to get to level up your data The Informed Company is the definitive data book for anyone who wants to work faster and more nimbly, armed with actionable decision-making data.
  data management team structure: Data Management at Scale Piethein Strengholt, 2020-07-29 As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata
  data management team structure: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
  data management team structure: Team Topologies Matthew Skelton, Manuel Pais, 2019-09-17 Effective software teams are essential for any organization to deliver value continuously and sustainably. But how do you build the best team organization for your specific goals, culture, and needs? Team Topologies is a practical, step-by-step, adaptive model for organizational design and team interaction based on four fundamental team types and three team interaction patterns. It is a model that treats teams as the fundamental means of delivery, where team structures and communication pathways are able to evolve with technological and organizational maturity. In Team Topologies, IT consultants Matthew Skelton and Manuel Pais share secrets of successful team patterns and interactions to help readers choose and evolve the right team patterns for their organization, making sure to keep the software healthy and optimize value streams. Team Topologies is a major step forward in organizational design for software, presenting a well-defined way for teams to interact and interrelate that helps make the resulting software architecture clearer and more sustainable, turning inter-team problems into valuable signals for the self-steering organization.
  data management team structure: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.
  data management team structure: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.
  data management team structure: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data.
  data management team structure: Practitioner's Guide to Operationalizing Data Governance Mary Anne Hopper, 2023-05-09 Discover what does—and doesn’t—work when designing and building a data governance program In A Practitioner’s Guide to Operationalizing Data Governance, veteran SAS and data management expert Mary Anne Hopper walks readers through the planning, design, operationalization, and maintenance of an effective data governance program. She explores the most common challenges organizations face during and after program development and offers sound, hands-on advice to meet tackle those problems head-on. Ideal for companies trying to resolve a wide variety of issues around data governance, this book: Offers a straightforward starting point for companies just beginning to think about data governance Provides solutions when company employees and leaders don’t—for whatever reason—trust the data the company has Suggests proven strategies for getting a data governance program that’s gone off the rails back on track Complete with visual examples based in real-world case studies, A Practitioner’s Guide to Operationalizing Data Governance will earn a place in the libraries of information technology executives and managers, data professionals, and project managers seeking a one-stop resource to help them deliver practical data governance solutions.
  data management team structure: NoSQL Distilled Pramod J. Sadalage, Martin Fowler, 2013 'NoSQL Distilled' is designed to provide you with enough background on how NoSQL databases work, so that you can choose the right data store without having to trawl the whole web to do it. It won't answer your questions definitively, but it should narrow down the range of options you have to consider.
  data management team structure: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.
  data management team structure: Handbook of Data Quality Shazia Sadiq, 2013-08-13 The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches.
  data management team structure: Data Driven Thomas C. Redman, 2008-09-22 Your company's data has the potential to add enormous value to every facet of the organization -- from marketing and new product development to strategy to financial management. Yet if your company is like most, it's not using its data to create strategic advantage. Data sits around unused -- or incorrect data fouls up operations and decision making. In Data Driven, Thomas Redman, the Data Doc, shows how to leverage and deploy data to sharpen your company's competitive edge and enhance its profitability. The author reveals: · The special properties that make data such a powerful asset · The hidden costs of flawed, outdated, or otherwise poor-quality data · How to improve data quality for competitive advantage · Strategies for exploiting your data to make better business decisions · The many ways to bring data to market · Ideas for dealing with political struggles over data and concerns about privacy rights Your company's data is a key business asset, and you need to manage it aggressively and professionally. Whether you're a top executive, an aspiring leader, or a product-line manager, this eye-opening book provides the tools and thinking you need to do that.
  data management team structure: The Data and Analytics Playbook Lowell Fryman, Gregory Lampshire, Dan Meers, 2016-08-12 The Data and Analytics Playbook: Proven Methods for Governed Data and Analytic Quality explores the way in which data continues to dominate budgets, along with the varying efforts made across a variety of business enablement projects, including applications, web and mobile computing, big data analytics, and traditional data integration. The book teaches readers how to use proven methods and accelerators to break through data obstacles to provide faster, higher quality delivery of mission critical programs. Drawing upon years of practical experience, and using numerous examples and an easy to understand playbook, Lowell Fryman, Gregory Lampshire, and Dan Meers discuss a simple, proven approach to the execution of multiple data oriented activities. In addition, they present a clear set of methods to provide reliable governance, controls, risk, and exposure management for enterprise data and the programs that rely upon it. In addition, they discuss a cost-effective approach to providing sustainable governance and quality outcomes that enhance project delivery, while also ensuring ongoing controls. Example activities, templates, outputs, resources, and roles are explored, along with different organizational models in common use today and the ways they can be mapped to leverage playbook data governance throughout the organization. - Provides a mature and proven playbook approach (methodology) to enabling data governance that supports agile implementation - Features specific examples of current industry challenges in enterprise risk management, including anti-money laundering and fraud prevention - Describes business benefit measures and funding approaches using exposure based cost models that augment risk models for cost avoidance analysis and accelerated delivery approaches using data integration sprints for application, integration, and information delivery success
  data management team structure: Clinical Data Management Richard K. Rondel, Sheila A. Varley, Colin F. Webb, 2000-02-03 Extensively revised and updated, with the addition of new chapters and authors, this long-awaited second edition covers all aspects of clinical data management. Giving details of the efficient clinical data management procedures required to satisfy both corporate objectives and quality audits by regulatory authorities, this text is timely and an important contribution to the literature. The volume: * is written by well-known and experienced authors in this area * provides new approaches to major topics in clinical data management * contains new chapters on systems software validation, database design and performance measures. It will be invaluable to anyone in the field within the pharmaceutical industry, and to all biomedical professionals working in clinical research.
  data management team structure: Clinical Trials Handbook Shayne Cox Gad, 2009-06-17 Best practices for conducting effective and safe clinical trials Clinical trials are arguably the most important steps in proving drug effectiveness and safety for public use. They require intensive planning and organization and involve a wide range of disciplines: data management, biostatistics, pharmacology, toxicology, modeling and simulation, regulatory monitoring, ethics, and particular issues for given disease areas. Clinical Trials Handbook provides a comprehensive and thorough reference on the basics and practices of clinical trials. With contributions from a range of international authors, the book takes the reader through each trial phase, technique, and issue. Chapters cover every key aspect of preparing and conducting clinical trials, including: Interdisciplinary topics that have to be coordinated for a successful clinical trialData management (and adverse event reporting systems) Biostatistics, pharmacology, and toxicology Modeling and simulation Regulatory monitoring and ethics Particular issues for given disease areas-cardiology, oncology, cognitive, dementia, dermatology, neuroscience, and more With unique information on such current issues as adverse event reporting (AER) systems, adaptive trial designs, and crossover trial designs, Clinical Trials Handbook will be a ready reference for pharmaceutical scientists, statisticians, researchers, and the many other professionals involved in drug development.
  data management team structure: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.
  data management team structure: Team of Teams Gen. Stanley McChrystal, Tantum Collins, David Silverman, Chris Fussell, 2015-05-12 From the New York Times bestselling author of My Share of the Task and Leaders, a manual for leaders looking to make their teams more adaptable, agile, and unified in the midst of change. When General Stanley McChrystal took command of the Joint Special Operations Task Force in 2004, he quickly realized that conventional military tactics were failing. Al Qaeda in Iraq was a decentralized network that could move quickly, strike ruthlessly, then seemingly vanish into the local population. The allied forces had a huge advantage in numbers, equipment, and training—but none of that seemed to matter. To defeat Al Qaeda, they would have to combine the power of the world’s mightiest military with the agility of the world’s most fearsome terrorist network. They would have to become a team of teams—faster, flatter, and more flexible than ever. In Team of Teams, McChrystal and his colleagues show how the challenges they faced in Iraq can be rel­evant to countless businesses, nonprofits, and or­ganizations today. In periods of unprecedented crisis, leaders need practical management practices that can scale to thousands of people—and fast. By giving small groups the freedom to experiment and share what they learn across the entire organiza­tion, teams can respond more quickly, communicate more freely, and make better and faster decisions. Drawing on compelling examples—from NASA to hospital emergency rooms—Team of Teams makes the case for merging the power of a large corporation with the agility of a small team to transform any organization.
  data management team structure: Research Data Management Joyce M. Ray, 2014 It has become increasingly accepted that important digital data must be retained and shared in order to preserve and promote knowledge, advance research in and across all disciplines of scholarly endeavor, and maximize the return on investment of public funds. To meet this challenge, colleges and universities are adding data services to existing infrastructures by drawing on the expertise of information professionals who are already involved in the acquisition, management and preservation of data in their daily jobs. Data services include planning and implementing good data management practices, thereby increasing researchers' ability to compete for grant funding and ensuring that data collections with continuing value are preserved for reuse. This volume provides a framework to guide information professionals in academic libraries, presses, and data centers through the process of managing research data from the planning stages through the life of a grant project and beyond. It illustrates principles of good practice with use-case examples and illuminates promising data service models through case studies of innovative, successful projects and collaborations.
  data management team structure: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
  data management team structure: The Ride of a Lifetime Robert Iger, 2019-09-23 #1 NEW YORK TIMES BESTSELLER • A memoir of leadership and success: The executive chairman of Disney, Time’s 2019 businessperson of the year, shares the ideas and values he embraced during his fifteen years as CEO while reinventing one of the world’s most beloved companies and inspiring the people who bring the magic to life. NAMED ONE OF THE BEST BOOKS OF THE YEAR BY NPR Robert Iger became CEO of The Walt Disney Company in 2005, during a difficult time. Competition was more intense than ever and technology was changing faster than at any time in the company’s history. His vision came down to three clear ideas: Recommit to the concept that quality matters, embrace technology instead of fighting it, and think bigger—think global—and turn Disney into a stronger brand in international markets. Today, Disney is the largest, most admired media company in the world, counting Pixar, Marvel, Lucasfilm, and 21st Century Fox among its properties. Its value is nearly five times what it was when Iger took over, and he is recognized as one of the most innovative and successful CEOs of our era. In The Ride of a Lifetime, Robert Iger shares the lessons he learned while running Disney and leading its 220,000-plus employees, and he explores the principles that are necessary for true leadership, including: • Optimism. Even in the face of difficulty, an optimistic leader will find the path toward the best possible outcome and focus on that, rather than give in to pessimism and blaming. • Courage. Leaders have to be willing to take risks and place big bets. Fear of failure destroys creativity. • Decisiveness. All decisions, no matter how difficult, can be made on a timely basis. Indecisiveness is both wasteful and destructive to morale. • Fairness. Treat people decently, with empathy, and be accessible to them. This book is about the relentless curiosity that has driven Iger for forty-five years, since the day he started as the lowliest studio grunt at ABC. It’s also about thoughtfulness and respect, and a decency-over-dollars approach that has become the bedrock of every project and partnership Iger pursues, from a deep friendship with Steve Jobs in his final years to an abiding love of the Star Wars mythology. “The ideas in this book strike me as universal” Iger writes. “Not just to the aspiring CEOs of the world, but to anyone wanting to feel less fearful, more confidently themselves, as they navigate their professional and even personal lives.”
  data management team structure: Data Governance: The Definitive Guide Evren Eryurek, Uri Gilad, Valliappa Lakshmanan, Anita Kibunguchy-Grant, Jessi Ashdown, 2021-03-08 As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness.
  data management team structure: Effective Document and Data Management Bob Wiggins, 2016-04-29 Effective Document and Data Management illustrates the operational and strategic significance of how documents and data are captured, managed and utilized. Without a coherent and consistent approach the efficiency and effectiveness of the organization may be undermined by less poor management and use of its information. The third edition of the book is restructured to take this broader view and to establish an organizational context in which information is management. Along the way Bob Wiggins clarifies the distinction between information management, data management and knowledge management; helps make sense of the concept of an information life cycle to present and describe the processes and techniques of information and data management, storage and retrieval; uses worked examples to illustrate the coordinated application of data and process analysis; and provides guidance on the application of appropriate project management techniques for document and records management projects. The book will benefit a range of organizations and people, from those senior managers who need to develop coherent and consistent business and IT strategies; to information professionals, such as records managers and librarians who will gain an appreciation of the impact of the technology and of how their particular areas of expertise can best be applied; to system designers, developers and implementers and finally to users. The author can be contacted at curabyte@gmail.com for further information.
  data management team structure: X-Teams Deborah Ancona, Henrik Bresman, 2007-05-17 Why do good teams fail? Very often, argue Deborah Ancona and Henrik Bresman, it is because they are looking inward instead of outward. Based on years of research examining teams across many industries, Ancona and Bresman show that traditional team models are falling short, and that what’s needed--and what works--is a new brand of team that emphasizes external outreach to stakeholders, extensive ties, expandable tiers, and flexible membership. The authors highlight that X-teams not only are able to adapt in ways that traditional teams aren’t, but that they actually improve an organization’s ability to produce creative ideas and execute them—increasing the entrepreneurial and innovative capacity within the firm. What’s more, the new environment demands what the authors call “distributed leadership,” and the book highlights how X-teams powerfully embody this idea.
  data management team structure: Data Management in Large-Scale Education Research Crystal Lewis, 2024-07-09 Research data management is becoming more complicated. Researchers are collecting more data, using more complex technologies, all the while increasing the visibility of our work with the push for data sharing and open science practices. Ad hoc data management practices may have worked for us in the past, but now others need to understand our processes as well, requiring researchers to be more thoughtful in planning their data management routines. This book is for anyone involved in a research study involving original data collection. While the book focuses on quantitative data, typically collected from human participants, many of the practices covered can apply to other types of data as well. The book contains foundational context, instructions, and practical examples to help researchers in the field of education begin to understand how to create data management workflows for large-scale, typically federally funded, research studies. The book starts by describing the research life cycle and how data management fits within this larger picture. The remaining chapters are then organized by each phase of the life cycle, with examples of best practices provided for each phase. Finally, considerations on whether the reader should implement, and how to integrate those practices into a workflow, are discussed. Key Features: Provides a holistic approach to the research life cycle, showing how project management and data management processes work in parallel and collaboratively Can be read in its entirety, or referenced as needed throughout the life cycle Includes relatable examples specific to education research Includes a discussion on how to organize and document data in preparation for data sharing requirements Contains links to example documents as well as templates to help readers implement practices
  data management team structure: The Chief Data Officer Management Handbook Martin Treder, 2020-10-03 There is no denying that the 21st century is data driven, with many digital industries relying on careful collection and analysis of mass volumes of information. A Chief Data Officer (CDO) at a company is the leader of this process, making the position an often daunting one. The Chief Data Officer Management Handbook is here to help. With this book, author Martin Treder advises CDOs on how to be better prepared for their swath of responsibilities, how to develop a more sustainable approach, and how to avoid the typical pitfalls. Based on positive and negative experiences shared by current CDOs, The Chief Data Officer Management Handbook guides you in designing the ideal structure of a data office, implementing it, and getting the right people on board. Important topics such as the data supply chain, data strategy, and data governance are thoughtfully covered by Treder. As a CDO it is important to use your position effectively with your entire team. The Chief Data Officer Management Handbook allows all employees to take ownership in data collaboration. Data is the foundation of present and future tech innovations, and you could be the leader that makes the next big impact. What You Will Learn Apply important elements of effective data management Gain a comprehensive overview of all areas of data (which are often managed independently Work with the data supply chain, from data acquisition to its usage, a review of all relevant stakeholders, data strategy, and data governance Who This Book is For CDOs, data executives, data advisors, and all professionals looking to understand about how a data office functions in an organization.
  data management team structure: The DAMA Dictionary of Data Management Dama International, 2011 A glossary of over 2,000 terms which provides a common data management vocabulary for IT and Business professionals, and is a companion to the DAMA Data Management Body of Knowledge (DAMA-DMBOK). Topics include: Analytics & Data Mining Architecture Artificial Intelligence Business Analysis DAMA & Professional Development Databases & Database Design Database Administration Data Governance & Stewardship Data Management Data Modeling Data Movement & Integration Data Quality Management Data Security Management Data Warehousing & Business Intelligence Document, Record & Content Management Finance & Accounting Geospatial Data Knowledge Management Marketing & Customer Relationship Management Meta-Data Management Multi-dimensional & OLAP Normalization Object-Orientation Parallel Database Processing Planning Process Management Project Management Reference & Master Data Management Semantic Modeling Software Development Standards Organizations Structured Query Language (SQL) XML Development
  data management team structure: Statistics and Machine Learning Methods for EHR Data Hulin Wu, Jose Miguel Yamal, Ashraf Yaseen, Vahed Maroufy, 2020-12-10 The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.
  data management team structure: Textbook of Organ Transplantation Set Allan D. Kirk, Stuart J. Knechtle, Christian P. Larsen, Joren C. Madsen, Thomas C. Pearson, Steven A. Webber, 2014-07-21 Brought to you by the world’s leading transplantclinicians, Textbook of Organ Transplantation provides acomplete and comprehensive overview of modern transplantation inall its complexity, from basic science to gold-standard surgicaltechniques to post-operative care, and from likely outcomes toconsiderations for transplant program administration, bioethics andhealth policy. Beautifully produced in full color throughout, and with over 600high-quality illustrations, it successfully: Provides a solid overview of what transplantclinicians/surgeons do, and with topics presented in an order thata clinician will encounter them. Presents a holistic look at transplantation, foregrounding theinterrelationships between transplant team members and non-surgicalclinicians in the subspecialties relevant to pre- andpost-operative patient care, such as gastroenterology, nephrology,and cardiology. Offers a focused look at pediatric transplantation, andidentifies the ways in which it significantly differs fromtransplantation in adults. Includes coverage of essential non-clinical topics such astransplant program management and administration; research designand data collection; transplant policy and bioethical issues. Textbook of Organ Transplantation is the market-leadingand definitive transplantation reference work, and essentialreading for all transplant surgeons, transplant clinicians, programadministrators, basic and clinical investigators and any othermembers of the transplantation team responsible for the clinicalmanagement or scientific study of transplant patients.
  data management team structure: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure
  data management team structure: Agile Data Warehousing for the Enterprise Ralph Hughes, 2015-09-19 Building upon his earlier book that detailed agile data warehousing programming techniques for the Scrum master, Ralph's latest work illustrates the agile interpretations of the remaining software engineering disciplines: - Requirements management benefits from streamlined templates that not only define projects quickly, but ensure nothing essential is overlooked. - Data engineering receives two new hyper modeling techniques, yielding data warehouses that can be easily adapted when requirements change without having to invest in ruinously expensive data-conversion programs. - Quality assurance advances with not only a stereoscopic top-down and bottom-up planning method, but also the incorporation of the latest in automated test engines. Use this step-by-step guide to deepen your own application development skills through self-study, show your teammates the world's fastest and most reliable techniques for creating business intelligence systems, or ensure that the IT department working for you is building your next decision support system the right way. - Learn how to quickly define scope and architecture before programming starts - Includes techniques of process and data engineering that enable iterative and incremental delivery - Demonstrates how to plan and execute quality assurance plans and includes a guide to continuous integration and automated regression testing - Presents program management strategies for coordinating multiple agile data mart projects so that over time an enterprise data warehouse emerges - Use the provided 120-day road map to establish a robust, agile data warehousing program
  data management team structure: Minding the Machines Jeremy Adamson, 2021-06-25 Organize, plan, and build an exceptional data analytics team within your organization In Minding the Machines: Building and Leading Data Science and Analytics Teams, AI and analytics strategy expert Jeremy Adamson delivers an accessible and insightful roadmap to structuring and leading a successful analytics team. The book explores the tasks, strategies, methods, and frameworks necessary for an organization beginning their first foray into the analytics space or one that is rebooting its team for the umpteenth time in search of success. In this book, you’ll discover: A focus on the three pillars of strategy, process, and people and their role in the iterative and ongoing effort of building an analytics team Repeated emphasis on three guiding principles followed by successful analytics teams: start early, go slow, and fully commit The importance of creating clear goals and objectives when creating a new analytics unit in an organization Perfect for executives, managers, team leads, and other business leaders tasked with structuring and leading a successful analytics team, Minding the Machines is also an indispensable resource for data scientists and analysts who seek to better understand how their individual efforts fit into their team’s overall results.
  data management team structure: Principles of Marketology, Volume 2 Hashem Aghazadeh, 2017-04-28 Principles of Marketology, Volume 2 focuses on the practical aspect and demonstrates the applications of marketology referring to market orientation, internal marketing, business, market and competitive analysis concepts and techniques. Then the modern marketology and its developments in the future are discussed. At the of this volume as the appendix, a handbook of marketology is presented in which a practical manual including simple and summarized descriptions of different needed parts and worksheets for executing marketology in an organization is depicted.
  data management team structure: Product Management Ishrat Nadeem Zahid, 2013-07-23 Product management is a demanding but exciting career. The product managers challenges are unending, his responsibilities are rigorous, and what he does, has direct impact on a companys financial performance. Building and launching new products and turning an idea from a piece of paper into a functional product is almost a miracle. In addition, the product manager manages the product throughout its life. In doing so, the product manager deals with pretty much every function in the company. Speaking of the product life, anything done well during the planning phase will pay off during the other phases of the product life cycle. The execution phase is the phase when a product really takes shape. Once the product is complete and ready to be launched, it is an exciting time for the product manager. The product is ready to put under real-world test. Just building and launching a product is not enough. Target customers should be told about how great a product is, which takes good marketing and evangelism. Market routes must be established to sell and promote the product and make business out of it. Additionally, different types of services can be defined to be attached with the product as an overall offering. Defining and implementing a go-to-market plan for the product is complicated but interesting set of activities. If the go-to-market ecosystem is set up well, the product manager can watch his products and associated services revenues multiply. Once the product is out there, it needs to be taken care of. Sustaining a product takes effort. This is the time to turn a good product into a great product to take the product toward completeness and maturity. Eventually, any product will get old and obsolete. Even the greatest of products must be given a farewell, and the end of life must happen to keep the innovation wheel rotating. New products and services enter the picture, and the product management action starts all over again.
  data management team structure: Big Data Management Peter Ghavami, 2020-11-09 Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations.
  data management team structure: Executive MBA in IT - City of London College of Economics - 12 months - 100% online / self-paced City of London College of Economics, Overview An MBA in information technology (or a Master of Business Administration in Information Technology) is a degree that will prepare you to be a leader in the IT industry. Content - Managing Projects and IT - Information Systems and Information Technology - IT Manager's Handbook - Business Process Management - Human Resource Management - Principles of Marketing - The Leadership - Just What Does an IT Manager Do? - The Strategic Value of the IT Department - Developing an IT Strategy - Starting Your New Job - The First 100 Days etc. - Managing Operations - Cut-Over into Operations - Agile-Scrum Project Management - IT Portfolio Management - The IT Organization etc. - Introduction to Project Management - The Project Management and Information Technology Context - The Project Management Process Groups: A Case Study - Project Integration Management - Project Scope Management - Project Time Management - Project Cost Management - Project Quality Management - Project Human Resource Management - Project Communications Management - Project Risk Management - Project Procurement Management - Project Stakeholder Management - 50 Models for Strategic Thinking - English Vocabulary For Computers and Information Technology Duration 12 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link.
  data management team structure: Forest Service Research and Development Peter Stine, 2016
  data management team structure: Writing and Managing SOPs for GCP Susanne Prokscha, 2015-07-29 Writing and Managing SOPs for GCP is the first book to discuss managing Standard Operating Procedures (SOPs) for Good Clinical Practice (GCP) from conception to retirement. It recommends approaches that have a direct impact on improving SOP and regulatory compliance. Throughout the text, the book provides a user's point of view to keep topics focus
  data management team structure: Creating and Managing a CRM Platform for your Organisation Richard Boulton, 2019-01-15 More than ever, organisations are facing a data avalanche from various sources, be they in electronic or hard copy format. How an organisation manages this ever-increasingly important resource – data – can benefit or hinder its ability to achieve its objectives. Creating and Managing a CRM Platform for Your Organisation not only covers how the principles of data management, including data quality and data security, can be applied to an organisation’s customer relationship management (CRM) platform, but also highlights how aspects of data management, marketing and technology are needed to operate, develop and manage a CRM platform in order to carry out tasks such as reporting and analysis, developing data plans, undertaking data audits, data migrations and campaign mailings which will result in an organisation using data effectively in order to achieve its goals and objectives. The issues and topics covered apply to all organisations that use a CRM platform and the data it contains as part of their business activities, regardless of the industry sector or size of the organisation. A comprehensive overview of the practices that can be effectively implemented when managing a CRM platform, this book is essential reading for professionals involved in the administration of the CRM platform within their organisation and data management.
  data management team structure: ICBBEM 2023 Liu Lin, Zhang Kun, Kannimuthu S., 2023-07-24 The 2nd International Conference on Bigdata Blockchain and Economy Management (ICBBEM 2023) was successfully held on 19-21 May 2023 in Hangzhou, China. The conference aims to present the latest research results in the areas related to Big Data, Blockchain and Economic Management, and provide an opportunity for experts and scholars from various fields to meet face-to-face, exchange new ideas and practical experiences, establish business or research relationships, and seek future international cooperation. This volume contains a collection of excellent papers from the conference, presented on topics such as computer software and computer applications, blockchain in data management, e-commerce and digital commerce, and linear regression analysis. We hope that these papers will serve as a reference for young scholars in their future research.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …