Advertisement
data analytics case study interview: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics. |
data analytics case study interview: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
data analytics case study interview: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
data analytics case study interview: Case Interview Secrets Victor Cheng, 2012 Cheng, a former McKinsey management consultant, reveals his proven, insider'smethod for acing the case interview. |
data analytics case study interview: Heard in Data Science Interviews Kal Mishra, 2018-10-03 A collection of over 650 actual Data Scientist/Machine Learning Engineer job interview questions along with their full answers, references, and useful tips |
data analytics case study interview: Case Interview Questions for Tech Companies Lewis Lin, 2016-10-04 Case Interview Questions for Tech Companies provides 155 practice questions and answers to conquer case interviews for the following tech roles: Marketing Operations Finance Strategy Analytics Business Development Supplier or Vendor Management ...and Product Management -- QUESTIONS COVERED IN THE BOOK Here are some of the questions covered in the book: Marketing Create a marketing campaign for Microsoft Office 365. Write a media statement to respond to Uber mischaracterizations voiced in a taxi leader's newspaper op-ed. Operations Describe how Apple's supply chain works. What challenges does Apple face on a day-to-day basis? What's the bottleneck for an Amazon Robot Picker? And what is the capacity of the assembly line, in units per hour? During the holiday season, Amazon customers shipped 200 orders per second. Amazon's data science team discovered that the average number of orders waiting to be shipped was 20,650. How long did the average Amazon order wait to be shipped? Finance What should Apple consider before implementing a shop-in-shop store inside Best Buy? If you projected a $500M expense and the variance came in at $1M, what are some of the explanations for why that is happening? Be prepared to give more than three scenarios. Business Development A car dealer partner wants to stop doing business with Uber. What should you do? How would you identify university faculty to source content for an online university? Strategy If you could open a Google store anywhere, where would it be and why? Give your analysis of several recent acquisitions that Google has made. Analytics What top metrics would you track for the Tinder online dating app? If 1,000 people opened the Uber app during one hour, how many cars do you need? Product Management Let's say we wanted to implement an Amazon Mayday-like feature in Gmail. How would that work? How would you any Microsoft product to a restaurant? AUTHOR BIO Lewis C. Lin, former Google and Microsoft executive, has trained thousands of candidates to get ready for tech interviews, using his proven interview techniques. Lewis' students have received offers from the most coveted firms including Google, Facebook, Uber, Amazon, Microsoft, IBM, Dell and HP. Lewis has a bachelor's in computer science from Stanford University and an MBA from Northwestern University's Kellogg School of Management. He's the author of several bestsellers including Interview Math, Rise Above the Noise as well as Decode and Conquer. HERE'S WHAT PEOPLE SAY ABOUT THE AUTHOR Got the Amazon offer, with an initial package that was $100K more than what I currently make at [a top 5 tech company]. It's a dream job for the role of Principal Product Manager for a [special project]. - Q.K. Just signed the offer for a Google product marketing manager role. Your tips helped me relax and concentrate, so the time went by quickly even though it was really a tough interview. - D.E. I had my in-person interviews down at Facebook last week and got my offer letter the next day! You were definitely a huge help in preparing for the interviews. - L.S. |
data analytics case study interview: Quant Job Interview Questions and Answers Mark Joshi, Nick Denson, Nicholas Denson, Andrew Downes, 2013 The quant job market has never been tougher. Extensive preparation is essential. Expanding on the successful first edition, this second edition has been updated to reflect the latest questions asked. It now provides over 300 interview questions taken from actual interviews in the City and Wall Street. Each question comes with a full detailed solution, discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the interview process and the non-technical interview. All three authors have worked as quants and they have done many interviews from both sides of the desk. Mark Joshi has written many papers and books including the very successful introductory textbook, The Concepts and Practice of Mathematical Finance. |
data analytics case study interview: Thinking with Data Max Shron, 2014-01-20 Many analysts are too concerned with tools and techniques for cleansing, modeling, and visualizing datasets and not concerned enough with asking the right questions. In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills. Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved. Learn a framework for scoping data projects Understand how to pin down the details of an idea, receive feedback, and begin prototyping Use the tools of arguments to ask good questions, build projects in stages, and communicate results Explore data-specific patterns of reasoning and learn how to build more useful arguments Delve into causal reasoning and learn how it permeates data work Put everything together, using extended examples to see the method of full problem thinking in action |
data analytics case study interview: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
data analytics case study interview: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook |
data analytics case study interview: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analytics case study interview: Fighting Churn with Data Carl S. Gold, 2020-12-22 The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. Summary The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. This hands-on guide is packed with techniques for converting raw data into measurable metrics, testing hypotheses, and presenting findings that are easily understandable to non-technical decision makers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Keeping customers active and engaged is essential for any business that relies on recurring revenue and repeat sales. Customer turnover—or “churn”—is costly, frustrating, and preventable. By applying the techniques in this book, you can identify the warning signs of churn and learn to catch customers before they leave. About the book Fighting Churn with Data teaches developers and data scientists proven techniques for stopping churn before it happens. Packed with real-world use cases and examples, this book teaches you to convert raw data into measurable behavior metrics, calculate customer lifetime value, and improve churn forecasting with demographic data. By following Zuora Chief Data Scientist Carl Gold’s methods, you’ll reap the benefits of high customer retention. What's inside Calculating churn metrics Identifying user behavior that predicts churn Using churn reduction tactics with customer segmentation Applying churn analysis techniques to other business areas Using AI for accurate churn forecasting About the reader For readers with basic data analysis skills, including Python and SQL. About the author Carl Gold (PhD) is the Chief Data Scientist at Zuora, Inc., the industry-leading subscription management platform. Table of Contents: PART 1 - BUILDING YOUR ARSENAL 1 The world of churn 2 Measuring churn 3 Measuring customers 4 Observing renewal and churn PART 2 - WAGING THE WAR 5 Understanding churn and behavior with metrics 6 Relationships between customer behaviors 7 Segmenting customers with advanced metrics PART 3 - SPECIAL WEAPONS AND TACTICS 8 Forecasting churn 9 Forecast accuracy and machine learning 10 Churn demographics and firmographics 11 Leading the fight against churn |
data analytics case study interview: Cracking The Machine Learning Interview Nitin Suri, 2018-12-18 A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview. |
data analytics case study interview: Be the Outlier Shrilata Murthy, 2020-07-27 According to LinkedIn's third annual U.S. Emerging Jobs Report, the data scientist role is ranked third among the top-15 emerging jobs in the U.S. Though the field of data science has been exploding, there didn't appear to be a comprehensive resource to help data scientists navigate the interview process... until now. In Be the Outlier: How to Ace Data Science Interviews, data scientist Shrilata Murthy covers all aspects of a data science interview in today's industry. Murthy combines her own experience in the job market with expert insight from data scientists with Google, Facebook, Amazon, NASA, Aetna, MBB & Big 4 consulting firms, and many more. In this book, you'll learn... the foundational knowledge that is key to any data science interview the 100-Word Story framework for writing a stellar resume what to expect from a variety of interview styles (take-home, presentation, case study, etc.), and actionable ways to differentiate yourself from your peers. By using real-world examples, practice questions, and sample interviews, Murthy has created an easy-to-follow guide that will help you crack any data science interview. After reading Be the Outlier, get ready to land your dream job in data science. |
data analytics case study interview: Qualitative Data Analysis with NVivo Patricia Bazeley, 2007-04-12 `In plain language but with very thorough detail, this book guides the researcher who really wants to use the NVivo software (and use it now) into their project. The way is lit with real-project examples, adorned with tricks and tips, but it’s a clear path to a project' - Lyn Richards, Founder and Non-Executive Director, QSR International Doing Qualitative Data Analysis with NVivo is essential reading for anyone thinking of using their computer to help analyze qualitative data. With 15 years experience in computer-assisted analysis of qualitative and mixed-mode data, Patricia Bazeley is one of the leaders in the use and teaching of NVivo software. Through this very practical book, readers are guided on how best to make use of the powerful and flexible tools offered by the latest version of NVivo as they work through each stage of their research projects. Explanations draw on examples from her own and others' projects, and are supported by the methodological literature. Researchers have different requirements and come to their data from different perspectives. This book shows how NVivo software can accommodate and assist analysis across those different perspectives and methodological approaches. It is required reading for both students and experienced researchers alike. |
data analytics case study interview: Crack the Case System David Ohrvall, 2011 Crack the Case System is a complete training program, covering every aspect of the infamous case interview favored by top management consulting firms and a growing number of Fortune 500 companies. David Ohrvall's step-by-step approach combines practical instruction on structuring, analytics and communication, as well as insider tips and insights gained from training thousands of candidates. CTCS includes over 150 bonus videos on mbacase.com, 42 practice cases, homework and drills. About the author: David Ohrvall is the global expert on the topic of case interviews. A dynamic and sought-after speaker, he trains several thousand MBAs and undergraduates each year at premiere business schools around the world, including Wharton, Stanford, Harvard Business School, Chicago Booth, Duke's Fuqua School of Business, INSEAD, Oxford and Cambridge. David also has an extensive private coaching practice that has helped launch hundreds of candidates into consulting, venture capital, and a variety of industries. David is a former management consultant (Bain & Company), and a graduate of the Wharton School (MBA & undergrad). Learn more about David at www.mbacase.com. |
data analytics case study interview: Cracking the PM Interview Gayle Laakmann McDowell, Jackie Bavaro, 2013 How many pizzas are delivered in Manhattan? How do you design an alarm clock for the blind? What is your favorite piece of software and why? How would you launch a video rental service in India? This book will teach you how to answer these questions and more. Cracking the PM Interview is a comprehensive book about landing a product management role in a startup or bigger tech company. Learn how the ambiguously-named PM (product manager / program manager) role varies across companies, what experience you need, how to make your existing experience translate, what a great PM resume and cover letter look like, and finally, how to master the interview: estimation questions, behavioral questions, case questions, product questions, technical questions, and the super important pitch. |
data analytics case study interview: Case in Point Marc Cosentino, 2011 Marc Cosentino demystifies the consulting case interview. He takes you inside a typical interview by exploring the various types of case questions and he shares with you the acclaimed Ivy Case System which will give you the confidence to answer even the most sophisticated cases. The book includes over 40 strategy cases, a number of case starts exercises, several human capital cases, a section on marketing cases and 21 ways to cut costs. |
data analytics case study interview: Case in Point Marc Cosentino, Mukund Jain, 2016 The use of complex graphs in case interviews has exploded. Interviewees have a very short time to look at the graph, analyze it, extract what is important and apply it to their answer. This book was designed to help understand the role of graphs in consulting (both during an interview and on the job). The authors introduce the Ivy Graph Framework to assist the analysis of graphs during interviews. In addition the book provides ten sophisticated cases with numerous graphs per case. |
data analytics case study interview: Lean Analytics Alistair Croll, Benjamin Yoskovitz, 2024-02-23 Whether you're a startup founder trying to disrupt an industry or an entrepreneur trying to provoke change from within, your biggest challenge is creating a product people actually want. Lean Analytics steers you in the right direction. This book shows you how to validate your initial idea, find the right customers, decide what to build, how to monetize your business, and how to spread the word. Packed with more than thirty case studies and insights from over a hundred business experts, Lean Analytics provides you with hard-won, real-world information no entrepreneur can afford to go without. Understand Lean Startup, analytics fundamentals, and the data-driven mindset Look at six sample business models and how they map to new ventures of all sizes Find the One Metric That Matters to you Learn how to draw a line in the sand, so you'll know it's time to move forward Apply Lean Analytics principles to large enterprises and established products |
data analytics case study interview: Decode and Conquer Lewis C. Lin, 2013-11-28 Land that Dream Product Manager Job...TODAYSeeking a product management position?Get Decode and Conquer, the world's first book on preparing you for the product management (PM) interview. Author and professional interview coach, Lewis C. Lin provides you with an industry insider's perspective on how to conquer the most difficult PM interview questions. Decode and Conquer reveals: Frameworks for tackling product design and metrics questions, including the CIRCLES Method(tm), AARM Method(tm), and DIGS Method(tm) Biggest mistakes PM candidates make at the interview and how to avoid them Insider tips on just what interviewers are looking for and how to answer so they can't say NO to hiring you Sample answers for the most important PM interview questions Questions and answers covered in the book include: Design a new iPad app for Google Spreadsheet. Brainstorm as many algorithms as possible for recommending Twitter followers. You're the CEO of the Yellow Cab taxi service. How do you respond to Uber? You're part of the Google Search web spam team. How would you detect duplicate websites? The billboard industry is under monetized. How can Google create a new product or offering to address this? Get the Book that's Recommended by Executives from Google, Amazon, Microsoft, Oracle & VMWare...TODAY |
data analytics case study interview: Cases in Online Interview Research Janet Salmons, 2011-11-08 In an era of constrained research budgets, online interviewing opens up immense possibilities: a researcher can literally conduct a global study without ever leaving home. But more than a decade after these technologies started to become available, there are still few studies on how to utilize online interviews in research. This book provides 10 cases of research conducted using online interviews, with data collected through text-based, videoconferencing, multichannel meetings, and immersive 3-D environments. Each case is followed by two commentaries: one from another expert contributor, the second from Janet Salmons, as editor. |
data analytics case study interview: Hacking the Case Interview Taylor Warfield, 2017 To land a management consulting job at any of the top firms, including McKinsey, BCG, Bain, Deloitte, L.E.K., Oliver Wyman and Accenture, you must get through several rounds of case interviews. Whether your interview is in a few weeks or even tomorrow, this book is written to get you the maximum amount of knowledge in the least amount of time. I cut out all of the filler material that some other consulting books have, and tell you everything that you need to know in a clear and direct way. With this shortcut guide, you will: Understand and become proficient at the nine different parts of a case interview, and know exactly what to say and do in each step Learn the only framework strategy that you need to memorize to craft unique and tailored frameworks for every possible case scenario Gain knowledge of basic business terms and principles so that you can develop an astute business intuition Acquire the skills to solve any market sizing or other quantitative problem Uncover how to differentiate yourself from the thousands of other candidates who are fighting to get the same job you are Practice your case interview skills with included practice cases and sample answers Also visit HackingTheCaseInterview.com for a one-week online crash course to pass your upcoming interview. |
data analytics case study interview: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
data analytics case study interview: Vault Guide to the Case Interview Mark Asher, Eric Chung, Vault (Firm), 2002 Professional career guide from the Vault Career Library providing detailed case-by-case explanations of the consulting interview and strategies for cracking it. |
data analytics case study interview: Interviewing Users Steve Portigal, 2013-05-01 Interviewing is a foundational user research tool that people assume they already possess. Everyone can ask questions, right? Unfortunately, that's not the case. Interviewing Users provides invaluable interviewing techniques and tools that enable you to conduct informative interviews with anyone. You'll move from simply gathering data to uncovering powerful insights about people. |
data analytics case study interview: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
data analytics case study interview: Data Science Projects with Python Stephen Klosterman, 2019-04-30 Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful. |
data analytics case study interview: Fundamentals of Machine Learning for Predictive Data Analytics, second edition John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2020-10-20 The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning. |
data analytics case study interview: The Power of People Nigel Guenole, Jonathan Ferrar, Sheri Feinzig, 2017-05-19 Learn from Today’s Most Successful Workforce Analytics Leaders Transforming the immense potential of workforce analytics into reality isn’t easy. Pioneering practitioners have learned crucial lessons that can help you succeed. The Power of People shares their journeys—and their indispensable insights. Drawing on incisive case studies and vignettes, three experts help you bring purpose and clarity to any workforce analytics project, with robust research design and analysis to get reliable insights. They reveal where to start, where to find stakeholder support, and how to earn “quick wins” to build upon. You’ll learn how to sustain success through best-practice data management, technology usage, partnering, and skill building. Finally, you’ll discover how to earn even more value by establishing an analytical mindset throughout HR, and building two key skills: storytelling and visualization. The Power of People will be invaluable to HR executives establishing or leading analytics functions; HR professionals planning analytics projects; and any business executive who wants more value from HR. |
data analytics case study interview: The SAGE Handbook of Qualitative Data Collection Uwe Flick, 2017-12-14 The SAGE Handbook of Qualitative Data Collection is a timely overview of the methodological developments available to social science researchers, covering key themes including: Concepts, Contexts, Basics Verbal Data Digital and Internet Data Triangulation and Mixed Methods Collecting Data in Specific Populations. |
data analytics case study interview: Algorithms Robert Sedgewick, Kevin Wayne, 2014-02-01 This book is Part I of the fourth edition of Robert Sedgewick and Kevin Wayne’s Algorithms, the leading textbook on algorithms today, widely used in colleges and universities worldwide. Part I contains Chapters 1 through 3 of the book. The fourth edition of Algorithms surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use. The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts. The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the Online Course link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants. Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience. |
data analytics case study interview: Big Data and Analytics Applications in Government Gregory Richards, 2017-09-18 Within this context, big data analytics (BDA) can be an important tool given that many analytic techniques within the big data world have been created specifically to deal with complexity and rapidly changing conditions. The important task for public sector organizations is to liberate analytics from narrow scientific silos and expand it across internally to reap maximum benefit across their portfolios of programs. This book highlights contextual factors important to better situating the use of BDA within government organizations and demonstrates the wide range of applications of different BDA techniques. It emphasizes the importance of leadership and organizational practices that can improve performance. It explains that BDA initiatives should not be bolted on but should be integrated into the organization’s performance management processes. Equally important, the book includes chapters that demonstrate the diversity of factors that need to be managed to launch and sustain BDA initiatives in public sector organizations. |
data analytics case study interview: Using Software in Qualitative Research Ann Lewins, Christina Silver, 2007-05 Using Software in Qualitative Research is an essential introduction to the practice and principles of Computer Assisted Qualitative Data Analysis (CAQDAS), helping the reader choose the most appropriate package for their needs and to get the most out of the software once they are using it. This step-by-step book considers a wide range of tasks and processes, bringing them together to demystify qualitative software and encourage flexible and critical choices and uses of software in supporting analysis. The book can be read as a whole or by chapters, building on one another to provide a holistic sense of the analytic journey without advocating a particular sequential process. Accessible and comprehensive, Using Software in Qualitative Research provides a practical but analytically-grounded guide to thinking about and using software and will be an essential companion for any qualitative researcher. |
data analytics case study interview: 500 Data Science Interview Questions and Answers Vamsee Puligadda, Get that job, you aspire for! Want to switch to that high paying job? Or are you already been preparing hard to give interview the next weekend? Do you know how many people get rejected in interviews by preparing only concepts but not focusing on actually which questions will be asked in the interview? Don't be that person this time. This is the most comprehensive Data Science interview questions book that you can ever find out. It contains: 500 most frequently asked and important Data Science interview questions and answers Wide range of questions which cover not only basics in Data Science but also most advanced and complex questions which will help freshers, experienced professionals, senior developers, testers to crack their interviews. |
data analytics case study interview: Solving Data Science Case Studies with Python Aman Kharwal, 2021-06-28 This book is specially written for those who know the basics of the Python programming language as well as the necessary Python libraries you need for data science like NumPy, Pandas, Matplotlib, Seaborn, Plotly, and Scikit-learn. This book aims to teach you how to think while solving a business problem with your data science skills. To achieve the goal of this book, I started by giving you all the knowledge you need to have before you apply for your first data science job. The technical skills and soft skills you need to become a Data Scientist are also discussed in this book. Next, you'll find some of the best data science case studies that will help you understand what your approach should be while solving a business problem. Ultimately, you will also find some of the most important data science interview questions with their solutions at the end. I hope this book will add a lot of value to your data science skills and that you will feel confident in your entire journey to become Data Scientist. |
data analytics case study interview: GMAT Official Advanced Questions GMAC (Graduate Management Admission Council), 2019-09-24 GMAT Official Advanced Questions Your GMAT Official Prep collection of only hard GMAT questions from past exams. Bring your best on exam day by focusing on the hard GMAT questions to help improve your performance. Get 300 additional hard verbal and quantitative questions to supplement your GMAT Official Guide collection. GMAT Official Advance Questions: Specifically created for those who aspire to earn a top GMAT score and want additional prep. Expand your practice with 300 additional hard verbal and quantitative questions from past GMAT exams to help you perform at your best. Learn strategies to solve hard questions by reviewing answer explanations from subject matter experts. Organize your studying with practice questions grouped by fundamental skills Help increase your test-taking performance and confidence on exam day knowing you studied the hard GMAT questions. PLUS! Your purchase includes online resources to further your practice: Online Question Bank: Create your own practice sets online with the same questions in GMAT Official Advance Questions to focus your studying on specific fundamental skills. Mobile App: Access your Online Question Bank through the mobile app to never miss a moment of practice. Study on-the-go and sync with your other devices. Download the Online Question Bank once on your app and work offline. This product includes: print book with a unique access code and instructions to the Online Question Bank accessible via your computer and Mobile App. |
data analytics case study interview: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today. |
data analytics case study interview: Unstructured Data Analytics Jean Paul Isson, 2018-03-02 Turn unstructured data into valuable business insight Unstructured Data Analytics provides an accessible, non-technical introduction to the analysis of unstructured data. Written by global experts in the analytics space, this book presents unstructured data analysis (UDA) concepts in a practical way, highlighting the broad scope of applications across industries, companies, and business functions. The discussion covers key aspects of UDA implementation, beginning with an explanation of the data and the information it provides, then moving into a holistic framework for implementation. Case studies show how real-world companies are leveraging UDA in security and customer management, and provide clear examples of both traditional business applications and newer, more innovative practices. Roughly 80 percent of today's data is unstructured in the form of emails, chats, social media, audio, and video. These data assets contain a wealth of valuable information that can be used to great advantage, but accessing that data in a meaningful way remains a challenge for many companies. This book provides the baseline knowledge and the practical understanding companies need to put this data to work. Supported by research with several industry leaders and packed with frontline stories from leading organizations such as Google, Amazon, Spotify, LinkedIn, Pfizer Manulife, AXA, Monster Worldwide, Under Armour, the Houston Rockets, DELL, IBM, and SAS Institute, this book provide a framework for building and implementing a successful UDA center of excellence. You will learn: How to increase Customer Acquisition and Customer Retention with UDA The Power of UDA for Fraud Detection and Prevention The Power of UDA in Human Capital Management & Human Resource The Power of UDA in Health Care and Medical Research The Power of UDA in National Security The Power of UDA in Legal Services The Power of UDA for product development The Power of UDA in Sports The future of UDA From small businesses to large multinational organizations, unstructured data provides the opportunity to gain consumer information straight from the source. Data is only as valuable as it is useful, and a robust, effective UDA strategy is the first step toward gaining the full advantage. Unstructured Data Analytics lays this space open for examination, and provides a solid framework for beginning meaningful analysis. |
data analytics case study interview: The Consulting Interview Bible Jenny Rae Le Roux, Kevin Gao, 2014 |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a Transnational ...
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental Change Research
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes …