Advertisement
data maturity model assessment: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data maturity model assessment: SOA Source Book The Open Group, 2020-06-11 Software services are established as a programming concept, but their impact on the overall architecture of enterprise IT and business operations is not well-understood. This has led to problems in deploying SOA, and some disillusionment. The SOA Source Book adds to this a collection of reference material for SOA. It is an invaluable resource for enterprise architects working with SOA.The SOA Source Book will help enterprise architects to use SOA effectively. It explains: What SOA is How to evaluate SOA features in business terms How to model SOA How to use The Open Group Architecture Framework (TOGAF ) for SOA SOA governance This book explains how TOGAF can help to make an Enterprise Architecture. Enterprise Architecture is an approach that can help management to understand this growing complexity. |
data maturity model assessment: The "Orange" Model of Data Management Irina Steenbeek, 2019-10-21 *This book is a brief overview of the model and has only 24 pages.*Almost every data management professional, at some point in their career, has come across the following crucial questions:1. Which industry reference model should I use for the implementation of data managementfunctions?2. What are the key data management capabilities that are feasible and applicable to my company?3. How do I measure the maturity of the data management functions and compare that withthose of my peers in the industry4. What are the critical, logical steps in the implementation of data management?The Orange (meta)model of data management provides a collection of techniques and templates for the practical set up of data management through the design and implementation of the data and information value chain, enabled by a set of data management capabilities.This book is a toolkit for advanced data management professionals and consultants thatare involved in the data management function implementation.This book works together with the earlier published The Data Management Toolkit. The Orange model assists in specifying the feasible scope of data management capabilities, that fits company's business goals and resources. The Data Management Toolkit is a practical implementation guide of the chosen data management capabilities. |
data maturity model assessment: Non-Invasive Data Governance Robert S. Seiner, 2014-09-01 Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve. |
data maturity model assessment: Diverse Applications and Transferability of Maturity Models Katuu, Shadrack, 2018-10-19 Previously, professionals had to make judgment calls based on subjective criteria, including their own acumen, in their decision making. In order to combat this subjectivity, maturity models can be implemented to allow organizations a means of assessing everyday processes and to offer a path towards advancement using transparent objective criteria. Diverse Applications and Transferability of Maturity Models is a pivotal reference source that provides vital research on the application of maturity models in organizational development in a variety of work environments. While highlighting topics such as open government, archives and records management, enterprise content management, and digital economy, this publication explores methods to help organizations effectively implement plans in any given management system. This book is ideally designed for professionals and researchers seeking current research on a variety of social science and applied science fields including business studies, computer science, digital preservation, information governance, information science, information systems, public administration, records management, and project management. |
data maturity model assessment: Interop John Palfrey, Urs Gasser, 2012-06-05 In Interop, technology experts John Palfrey and Urs Gasser explore the immense importance of interoperability -- the standardization and integration of technology -- and show how this simple principle will hold the key to our success in the coming decades and beyond. The practice of standardization has been facilitating innovation and economic growth for centuries. The standardization of the railroad gauge revolutionized the flow of commodities, the standardization of money revolutionized debt markets and simplified trade, and the standardization of credit networks has allowed for the purchase of goods using money deposited in a bank half a world away. These advancements did not eradicate the different systems they affected; instead, each system has been transformed so that it can interoperate with systems all over the world, while still preserving local diversity. As Palfrey and Gasser show, interoperability is a critical aspect of any successful system -- and now it is more important than ever. Today we are confronted with challenges that affect us on a global scale: the financial crisis, the quest for sustainable energy, and the need to reform health care systems and improve global disaster response systems. The successful flow of information across systems is crucial if we are to solve these problems, but we must also learn to manage the vast degree of interconnection inherent in each system involved. Interoperability offers a number of solutions to these global challenges, but Palfrey and Gasser also consider its potential negative effects, especially with respect to privacy, security, and co-dependence of states; indeed, interoperability has already sparked debates about document data formats, digital music, and how to create successful yet safe cloud computing. Interop demonstrates that, in order to get the most out of interoperability while minimizing its risks, we will need to fundamentally revisit our understanding of how it works, and how it can allow for improvements in each of its constituent parts. In Interop, Palfrey and Gasser argue that there needs to be a nuanced, stable theory of interoperability -- one that still generates efficiencies, but which also ensures a sustainable mode of interconnection. Pointing the way forward for the new information economy, Interop provides valuable insights into how technological integration and innovation can flourish in the twenty-first century. |
data maturity model assessment: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization. |
data maturity model assessment: The Project Risk Maturity Model Mr Martin Hopkinson, 2012-09-28 Top businesses recognise risk management as a core feature of their project management process and approach to the governance of projects. However, a mature risk management process is required in order to realise its benefits; one that takes into account the design and implementation of the process and the skills, experience and culture of the people who use it. To be mature in the way you manage risk you need an accepted framework to assess your risk management maturity, allowing you to benchmark against a recognised standard. A structured pathway for improvement is also needed, not just telling you where you are now, but describing the steps required to reach the next level. The Project Risk Maturity Model detailed here provides such an assessment framework and development pathway. It can be used to benchmark your project risk processes and support the introduction of effective in-house project risk management. Using this model, implementation and improvement of project risk management can be managed effectively to ensure that the expected benefits are achieved in a way that is appropriate to the needs of each organisation. Martin Hopkinson has developed The Project Risk Maturity Model into a robust framework, and this book allows you to access and apply his insights and experience. A key feature is a CD containing a working copy of the QinetiQ Project Risk Maturity Model (RMM). This will enable you to undertake maturity assessments for as many projects as you choose. The RMM has been proven over a period of 10 years, with at least 250 maturity assessments on projects and programmes with a total value exceeding £60 billion. A case study in the book demonstrates how it has been used to deliver significant and measurable benefits to the performance of major projects. |
data maturity model assessment: Business Process Maturity Amy Van Looy, 2014-01-27 Organisations face many challenges, which induce them to perform better, and thus to establish mature (or excellent) business processes. As they now face globalisation, higher competitiveness, demanding customers, growing IT possibilities, compliancy rules etc., business process maturity models (BPMMs) have been introduced to help organisations gradually assess and improve their business processes (e.g. CMMI or OMG-BPMM). In fact, there are now so many BPMMs to choose from that organisations risk selecting one that does not fit their needs or one of substandard quality. This book presents a study that distinguishes process management from process orientation so as to arrive at a common understanding. It also includes a classification study to identify the capability areas and maturity types of 69 existing BPMMs, in order to strengthen the basis of available BPMMs. Lastly it presents a selection study to identify criteria for choosing one BPMM from the broad selection, which produced a free online selection tool, BPMM Smart-Selector. |
data maturity model assessment: The Capability Maturity Model Mark C. Paulk, 1995 Principal Contributors and Editors: Mark C. Paulk, Charles V. Weber, Bill Curtis, Mary Beth Chrissis In every sense, the CMM represents the best thinking in the field today... this book is targeted at anyone involved in improving the software process, including members of assessment or evaluation teams, members of software engineering process groups, software managers, and software practitioners... From the Foreword by Watts Humphrey The Capability Maturity Model for Software (CMM) is a framework that demonstrates the key elements of an effective software process. The CMM describes an evolutionary improvement path for software development from an ad hoc, immature process to a mature, disciplined process, in a path laid out in five levels. When using the CMM, software professionals in government and industry can develop and improve their ability to identify, adopt, and use sound management and technical practices for delivering quality software on schedule and at a reasonable cost. This book provides a description and technical overview of the CMM, along with guidelines for improving software process management overall. It is a sequel to Watts Humphrey's important work, Managing the Software Process, in that it structures the maturity framework presented in that book more formally. Features: Compares the CMM with ISO 9001 Provides an overview of ISO's SPICE project, which is developing international standards for software process improvement and capability determination Presents a case study of IBM Houston's Space Shuttle project, which is frequently referred to as being at Level 5 0201546647B04062001 |
data maturity model assessment: Data Lineage from a Business Perspective Irina Steenbeek, 2021-10 Data lineage has become a daily demand. However, data lineage remains an abstract/ unknown concept for many users. The implementation is complex and resource-consuming. Even if implemented, it is not used as expected. This book uncovers different aspects of data lineage for data management and business professionals. It provides the definition and metamodel of data lineage, demonstrates best practices in data lineage implementation, and discusses the key areas of data lineage usage. Several groups of professionals can use this book in different ways: Data management and business professionals can develop ideas about data lineage and its application areas. Professionals with a technical background may gain a better understanding of business needs and requirements for data lineage. Project management professionals can become familiar with the best practices of data lineage implementation. |
data maturity model assessment: Using the Project Management Maturity Model Harold Kerzner, 2011-11-29 Updated for today's businesses-a proven model FOR assessment and ongoing improvement Using the Project Management Maturity Model, Second Edition is the updated edition of Harold Kerzner's renowned book covering his Project Management Maturity Model (PMMM). In this hands-on book, Kerzner offers a unique, industry-validated tool for helping companies of all sizes assess and improve their progress in integrating project management into every part of their organizations. Conveniently organized into two sections, this Second Edition begins with an examination of strategic planning principles and the ways they relate to project management. In the second section, PMMM is introduced with in-depth coverage of the five different levels of development for achieving maturity. Easily adaptable benchmarking instruments for measuring an organization's progress along the maturity curve make this a practical guide for any type of company. Complete with an associated Web site packed with both teaching and learning tools, Using the Project Management Maturity Model, Second Edition helps managers, engineers, project team members, business consultants, and others build a powerful foundation for company improvement and excellence. |
data maturity model assessment: Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing Hermann Lödding, Ralph Riedel, Klaus-Dieter Thoben, Gregor von Cieminski, Dimitris Kiritsis, 2017-08-28 The two-volume set IFIP AICT 513 and 514 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2017, held in Hamburg, Germany, in September 2017. The 121 revised full papers presented were carefully reviewed and selected from 163 submissions. They are organized in the following topical sections: smart manufacturing system characterization; product and asset life cycle management in smart factories of industry 4.0; cyber-physical (IIoT) technology deployments in smart manufacturing systems; multi-disciplinary collaboration in the development of smart product-service solutions; sustainable human integration in cyber-physical systems: the operator 4.0; intelligent diagnostics and maintenance solutions; operations planning, scheduling and control; supply chain design; production management in food supply chains; factory planning; industrial and other services; operations management in engineer-to-order manufacturing; gamification of complex systems design development; lean and green manufacturing; and eco-efficiency in manufacturing operations. |
data maturity model assessment: The Data Management Cookbook Irina Steenbeek, 2018-03-16 A lot of companies realize that data is an invaluable asset and has to be managed accordingly. They would also like to get value from data. Everyone wants to be 'data-driven' these days. What lies beneath this idea, is the wish to make the decision-making process easier and more effective. It means delivering the required data of acceptable quality to the relevant decision makers when and where they need it. In short: a lot of companies have the necessity to manage their data properly. The main question is: how do you put this in practice? Knowing the potential of your data, and managing it correctly is the key to an effective and successful business. As a result of well-implemented data management, you will be able to reduce risks and costs, increase efficiency, ensure business continuity and successful growth. In this book, we invite you for a five-course dinner. During each course we will explain the steps of our 5-step programme which guarantees successful implementation of data management. |
data maturity model assessment: The Data Management Toolkit: A Step-By-Step Implementation Guide for the Pioneers of Data Management Irina Steenbeek, 2019-03-09 Eight years ago, I joined a new company. My first challenge was to develop an automated management accounting reporting system. A deep analysis of the existing reports showed us the high necessity to implement a singular reporting platform, and we opted to implement a data warehouse. At the time, one of the consultants came to me and said, I heard that we might need data management. I don't know what it is. Check it out. So I started Googling Data management...This book is for professionals who are now in the same position I found myself in eight years ago and for those who want to become a data management pro of a medium sized company.It is a collection of hands-on knowledge, experience and observations on how to implement data management in an effective, feasible and to-the-point way. |
data maturity model assessment: CMMI for Acquisition Brian Gallagher, Mike Phillips, Karen Richter, Sandra Shrum, 2011-03-04 CMMI® for Acquisition (CMMI-ACQ) describes best practices for the successful acquisition of products and services. Providing a practical framework for improving acquisition processes, CMMI-ACQ addresses the growing trend in business and government for organizations to purchase or outsource required products and services as an alternative to in-house development or resource allocation. Changes in CMMI-ACQ Version 1.3 include improvements to high maturity process areas, improvements to the model architecture to simplify use of multiple models, and added guidance about using preferred suppliers. CMMI® for Acquisition, Second Edition, is the definitive reference for CMMI-ACQ Version 1.3. In addition to the entire revised CMMI-ACQ model, the book includes updated tips, hints, cross-references, and other author notes to help you understand, apply, and quickly find information about the content of the acquisition process areas. The book now includes more than a dozen contributed essays to help guide the adoption and use of CMMI-ACQ in industry and government. Whether you are new to CMMI models or are already familiar with one or more of them, you will find this book an essential resource for managing your acquisition processes and improving your overall performance. The book is divided into three parts. Part One introduces CMMI-ACQ in the broad context of CMMI models, including essential concepts and useful background. It then describes and shows the relationships among all the components of the CMMI-ACQ process areas, and explains paths to the adoption and use of the model for process improvement and benchmarking. Several original essays share insights and real experiences with CMMI-ACQ in both industry and government environments. Part Two first describes generic goals and generic practices, and then details the twenty-two CMMI-ACQ process areas, including specific goals, specific practices, and examples. These process areas are organized alphabetically and are tabbed by process area acronym to facilitate quick reference. Part Three provides several useful resources, including sources of further information about CMMI and CMMI-ACQ, acronym definitions, a glossary of terms, and an index. |
data maturity model assessment: Organizational Project Management Maturity Model (OPM3) Project Management Institute, 2008 A second edition provides tools for organizations to measure their maturity against a comprehensive set of best practices, providing updated coverage of current PMI standards, guidelines for promoting smoother transitions and strategies for eliminating redundancy. |
data maturity model assessment: Project Management Maturity Model J. Kent Crawford, 2006-07-24 Assisting organizations in improving their project management processes, the Project Management Maturity Model defines the industry standard for measuring project management maturity.Project Management Maturity Model, Second Edition provides a roadmap showing organizations how to move to higher levels of organizational behavior, improving |
data maturity model assessment: Customer Data Integration Jill Dyché, Evan Levy, 2011-01-31 Customers are the heart of any business. But we can't succeed if we develop only one talk addressed to the 'average customer.' Instead we must know each customer and build our individual engagements with that knowledge. If Customer Relationship Management (CRM) is going to work, it calls for skills in Customer Data Integration (CDI). This is the best book that I have seen on the subject. Jill Dyché is to be complimented for her thoroughness in interviewing executives and presenting CDI. -Philip Kotler, S. C. Johnson Distinguished Professor of International Marketing Kellogg School of Management, Northwestern University In this world of killer competition, hanging on to existing customers is critical to survival. Jill Dyché's new book makes that job a lot easier than it has been. -Jack Trout, author, Differentiate or Die Jill and Evan have not only written the definitive work on Customer Data Integration, they've made the business case for it. This book offers sound advice to business people in search of innovative ways to bring data together about customers-their most important asset-while at the same time giving IT some practical tips for implementing CDI and MDM the right way. -Wayne Eckerson, The Data Warehousing Institute author of Performance Dashboards: Measuring, Monitoring, and Managing Your Business Whatever business you're in, you're ultimately in the customer business. No matter what your product, customers pay the bills. But the strategic importance of customer relationships hasn't brought companies much closer to a single, authoritative view of their customers. Written from both business and technicalperspectives, Customer Data Integration shows companies how to deliver an accurate, holistic, and long-term understanding of their customers through CDI. |
data maturity model assessment: Architecting Modern Data Platforms Jan Kunigk, Ian Buss, Paul Wilkinson, Lars George, 2018-12-05 There’s a lot of information about big data technologies, but splicing these technologies into an end-to-end enterprise data platform is a daunting task not widely covered. With this practical book, you’ll learn how to build big data infrastructure both on-premises and in the cloud and successfully architect a modern data platform. Ideal for enterprise architects, IT managers, application architects, and data engineers, this book shows you how to overcome the many challenges that emerge during Hadoop projects. You’ll explore the vast landscape of tools available in the Hadoop and big data realm in a thorough technical primer before diving into: Infrastructure: Look at all component layers in a modern data platform, from the server to the data center, to establish a solid foundation for data in your enterprise Platform: Understand aspects of deployment, operation, security, high availability, and disaster recovery, along with everything you need to know to integrate your platform with the rest of your enterprise IT Taking Hadoop to the cloud: Learn the important architectural aspects of running a big data platform in the cloud while maintaining enterprise security and high availability |
data maturity model assessment: Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) Mostafa Ezziyyani, 2020-02-05 This book gathers papers presented at the second installment of the International Conference on Advanced Intelligent Systems for Sustainable Development (AI2SD-2019), which was held on July 08–11, 2019 in Marrakech, Morocco. It offers comprehensive coverage of recent advances in big data, data analytics and related paradigms. The book consists of fifty-two chapters, each of which shares the latest research in the fields of big data and data science, and describes use cases and applications of big data technologies in various domains, such as social networks and health care. All parts of the book discuss open research problems and potential opportunities that have arisen from the rapid advances in big data technologies. In addition, the book surveys the state of the art in data science, and provides practical guidance on big data analytics and data science. Expert perspectives are provided by authoritative researchers and practitioners from around the world, who discuss research developments and emerging trends, present case studies on helpful frameworks and innovative methodologies, and suggest best practices for efficient and effective data analytics. Chiefly intended for researchers, IT professionals and graduate students, the book represents a timely contribution to the growing field of big data, which has been recognized as one of the leading emerging technologies that will have a major impact on various fields of science and various aspects of human society over the next several decades. Therefore, the content in this book is an essential tool to help readers understand current developments, and provides them with an extensive overview of the field of big data analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use big data, such as management and finance, medicine and health care, networks, the Internet of Things, big data standards, benchmarking of systems, and others. In addition to a diverse range of applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modeling of high-dimensional data are also covered. The varied collection of topics addressed introduces readers to the richness of the emerging field of big data analytics. |
data maturity model assessment: Stakeholder Relationship Management Lynda Bourne, 2016-04-01 In any activity an organisation undertakes, whether strategic, operational or tactical, the activity can only be successful with the input, commitment and support of its people - stakeholders. Gaining and maintaining the support and commitment of stakeholders requires a continuous process of engaging the right stakeholders at the right time and understanding and managing their expectations. Unfortunately, most organisations have difficulty implementing such culture change, and need assistance and guidance to implement a consistent process for identification and management of stakeholders and their changing expectations. As a continuous improvement process, stakeholder management requires understanding and support from everyone in the organisation from the CEO to the short-term contractor. This requires the concepts and practices of effective stakeholder management to become embedded in the culture of the organisation: 'how we do things around here', this book provides the 'road map' to help organisations achieve these objectives. The text has two specific purposes. Firstly, it is an 'how-to' book providing the fundamental processes and practices for improving stakeholder management in endeavours such as projects, and program management offices (PMO), it also gives guidance on organisational survival during mergers and acquisitions, preparing for the tender bidding, and marketing campaigns. Secondly, Lynda Bourne's book is for organisations that have recognised the importance of stakeholder engagement to their success, it is a guidebook for assessing their current maturity regarding implementation of stakeholder relationship management with a series of guidelines and milestones for achieving the preferred level of maturity. |
data maturity model assessment: Competing on Analytics Thomas H. Davenport, Jeanne G. Harris, 2007-03-06 You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics. |
data maturity model assessment: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research. |
data maturity model assessment: Service-Oriented Perspectives in Design Science Research Hemant Jain, Atish P. Sinha, Padmal Vitharana, 2011-04-21 This book constitutes the refereed proceedings of the 6th International Conference on Service-Oriented Perspectives in Design Science Research, DERIST 2011, held in Milwaukee, WI, USA, in May 2011. The 29 revised full papers presented together with 5 revised short papers were carefully reviewed and selected from 50 submissions. The papers are organized in topical sections on design theory, design science research strategies, design methods and techniques, design evaluation, design guidelines, service-oriented perspectives in design science, process design, neuroscience in design research, and designing for social media. |
data maturity model assessment: Industry 4.0: Managing The Digital Transformation Alp Ustundag, Emre Cevikcan, 2017-09-14 This book provides a comprehensive guide to Industry 4.0 applications, not only introducing implementation aspects but also proposing a conceptual framework with respect to the design principles. In addition, it discusses the effects of Industry 4.0, which are reflected in new business models and workforce transformation. The book then examines the key technological advances that form the pillars of Industry 4.0 and explores their potential technical and economic benefits using examples of real-world applications. The changing dynamics of global production, such as more complex and automated processes, high-level competitiveness and emerging technologies, have paved the way for a new generation of goods, products and services. Moreover, manufacturers are increasingly realizing the value of the data that their processes and products generate. Such trends are transforming manufacturing industry to the next generation, namely Industry 4.0, which is based on the integration of information and communication technologies and industrial technology.The book provides a conceptual framework and roadmap for decision-makers for this transformation |
data maturity model assessment: Analytics at Work Thomas H. Davenport, Jeanne G. Harris, Robert Morison, 2010 As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical. |
data maturity model assessment: Data Mining and Learning Analytics Samira ElAtia, Donald Ipperciel, Osmar R. Zaïane, 2016-09-20 Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research. |
data maturity model assessment: Digital Libraries for Open Knowledge Eva Méndez, Fabio Crestani, Cristina Ribeiro, Gabriel David, João Correia Lopes, 2018-09-04 This book constitutes the proceedings of the 22nd International Conference on Theory and Practice of Digital Libraries, TPDL 2018, held in Porto, Portugal, in September 2018. The 51 full papers, 17 short papers, and 13 poster and tutorial papers presented in this volume were carefully reviewed and selected from 81 submissions. The general theme of TPDL 2018 was Digital Libraries for Open Knowledge. The papers present a wide range of the following topics: Metadata, Entity Disambiguation, Data Management, Scholarly Communication, Digital Humanities, User Interaction, Resources, Information Extraction, Information Retrieval, Recommendation. |
data maturity model assessment: Software Ecosystems Slinger Jansen, Michael A. Cusumano, Sjaak Brinkkemper, 2013-01-01 This book describes the state-of-the-art of software ecosystems. It constitutes a fundamental step towards an empirically based, nuanced understanding of the implications for management, governance, and control of software ecosystems. This is the first book of its kind dedicated to this emerging field and offers guidelines on how to analyze software ecosystems; methods for managing and growing; methods on transitioning from a closed software organization to an open one; and instruments for dealing with open source, licensing issues, product management and app stores. It is unique in bringing together industry experiences, academic views and tackling challenges such as the definition of fundamental concepts of software ecosystems, describing those forces that influence its development and lifecycles, and the provision of methods for the governance of software ecosystems. This book is an essential starting point for software industry researchers, product managers, and entrepreneurs. |
data maturity model assessment: Collaborative Enterprise Architecture Stefan Bente, Uwe Bombosch, Shailendra Langade, 2012-08-29 Why collaborative enterprise architecture? -- What is enterprise architecture -- What enterprise architects do: core activities of EA -- EA frameworks -- EA maturity models -- Foundations of collaborative EA -- Towards pragmatism: lean and agile EA -- Inviting to participation: eam 2.0 -- The next steps: taking collaborative EA forward. |
data maturity model assessment: Handbook of Research on Emerging Technologies for Effective Project Management George Leal Jamil, Fernanda Ribeiro, Armando Malheiro Da Silva, 2019-09-13 This book explore the relationship between project management principles and methods under the phenomena of emerging technologies introduction-- |
data maturity model assessment: CMDB Systems Dennis Drogseth, Rick Sturm, Dan Twing, 2015-03-22 CMDB Systems: Making Change Work in the Age of Cloud and Agile shows you how an integrated database across all areas of an organization's information system can help make organizations more efficient reduce challenges during change management and reduce total cost of ownership (TCO). In addition, this valuable reference provides guidelines that will enable you to avoid the pitfalls that cause CMDB projects to fail and actually shorten the time required to achieve an implementation of a CMDB. Drawing upon extensive experience and using illustrative real world examples, Rick Sturm, Dennis Drogseth and Dan Twing discuss: - Unique insights from extensive industry exposure, research and consulting on the evolution of CMDB/CMS technology and ongoing dialog with the vendor community in terms of current and future CMDB/CMS design and plans - Proven and structured best practices for CMDB deployments - Clear and documented insights into the impacts of cloud computing and other advances on CMDB/CMS futures - Discover unique insights from industry experts who consult on the evolution of CMDB/CMS technology and will show you the steps needed to successfully plan, design and implement CMDB - Covers related use-cases from retail, manufacturing and financial verticals from real-world CMDB deployments - Provides structured best practices for CMDB deployments - Discusses how CMDB adoption can lower total cost of ownership, increase efficiency and optimize the IT enterprise |
data maturity model assessment: CMMI Distilled Dennis M. Ahern, Aaron Clouse, Richard Turner, 2004 This edition is especially appropriate for executives and managers who need to understand why process improvement is valuable, why CMMI is a tool of choice, and how to maximize the return on their efforts and investments. |
data maturity model assessment: Seven Steps to Mastering Business Analysis Barbara A. Carkenord, 2009 This book provides a how to approach to mastering business analysis work. It will help build the skill sets of new analysts and all those currently doing analysis work, from project managers to project team members such as systems analysts, product managers and business development professionals, to the experienced business analyst. It also covers the tasks and knowledge areas for the new 2008 v.2 of The Guide to the Business Analysis Body of Knowledge (BABOK) and will help prepare business analysts for the HBA CBAP certification exam.--BOOK JACKET. |
data maturity model assessment: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research. |
data maturity model assessment: Implementing the Capability Maturity Model James R. Persse, 2001-08-27 Practical guidelines for an effective implementation of software development processes Designed to ensure effective software development processes, the Capability Maturity Model (CMM)--North America's leading standard for software development--requires companies to complete five steps, or levels, in the development process. But while it is widely adopted by Fortune 500 companies, many others get stuck at the initial planning stage. Focusing on Levels 2 and 3 of the CMM, this book helps readers to get over the hurdle of the two most problematic areas in this process--the project management and software development steps. It offers clear, step-by-step guidance on how to establish basic project management processes to track costs, schedules, and functionality; how to document, standardize, and integrate software processes; and how to improve software quality. |
data maturity model assessment: Adolescence and Emerging Adulthood Jeffrey Jensen Arnett, 2013 Helps students understand how culture impacts development in adolescence and emerging adulthood. Grounded in a global cultural perspective (within and outside of the US), this text enriches the discussion with historical context and an interdisciplinary approach, including studies from fields such as anthropology and sociology, in addition to the compelling psychological research on adolescent development. This book also takes into account the period of emerging adulthood (ages 18-25), a term coined by the author, and an area of study for which Arnett is a leading expert. Arnett continues the fifth edition with new and updated studies, both U.S. and international. With Pearson's MyDevelopmentLab Video Series and Powerpoints embedded with video, students can experience a true cross-cultural experience. A better teaching and learning experience This program will provide a better teaching and learning experience-- for you and your students. Here's how: Personalize Learning - The new MyDevelopmentLab delivers proven results in helping students succeed, provides engaging experiences that personalize learning, and comes from a trusted partner with educational expertise and a deep commitment to helping students and instructors achieve their goals. Improve Critical Thinking - Students learn to think critically about the influence of culture on development with pedagogical features such as Culture Focus boxes and Historical Focus boxes. Engage Students - Arnett engages students with cross cultural research and examples throughout. MyVirtualTeen, an interactive simulation, allows students to apply the concepts they are learning to their own virtual teen. Explore Research - Research Focus provides students with a firm grasp of various research methods and helps them see the impact that methods can have on research findings. Support Instructors - This program provides instructors with unbeatable resources, including video embedded PowerPoints and the new MyDevelopmentLab that includes cross-cultural videos and MyVirtualTeen, an interactive simulation that allows you to raise a child from birth to age 18. An easy to use Instructor's Manual, a robust test bank, and an online test generator (MyTest) are also available. All of these materials may be packaged with the text upon request. Note: MyDevelopmentLab does not come automatically packaged with this text. To purchase MyDevelopmentLab, please visit: www.mydevelopmentlab.com or you can purchase a ValuePack of the text + MyDevelopmentlab (at no additional cost): ValuePack ISBN-10: 0205911854/ ValuePack ISBN-13: 9780205911851. Click here for a short walkthrough video on MyVirtualTeen! http://www.youtube.com/playlist'list=PL51B144F17A36FF25&feature=plcp |
data maturity model assessment: Data Governance Dimitrios Sargiotis, |
data maturity model assessment: Data Governance Handbook Wendy S. Batchelder, 2024-05-31 Build an actionable, business value driven case for data governance to obtain executive support and implement with excellence Key Features Develop a solid foundation in data governance and increase your confidence in data solutions Align data governance solutions with measurable business results and apply practical knowledge from real-world projects Learn from a three-time chief data officer who has worked in leading Fortune 500 companies Purchase of the print or Kindle book includes a free PDF eBook Book Description2.5 quintillion bytes! This is the amount of data being generated every single day across the globe. As this number continues to grow, understanding and managing data becomes more complex. Data professionals know that it’s their responsibility to navigate this complexity and ensure effective governance, empowering businesses with the right data, at the right time, and with the right controls. If you are a data professional, this book will equip you with valuable guidance to conquer data governance complexities with ease. Written by a three-time chief data officer in global Fortune 500 companies, the Data Governance Handbook is an exhaustive guide to understanding data governance, its key components, and how to successfully position solutions in a way that translates into tangible business outcomes. By the end, you’ll be able to successfully pitch and gain support for your data governance program, demonstrating tangible outcomes that resonate with key stakeholders. What you will learn Comprehend data governance from ideation to delivery and beyond Position data governance to obtain executive buy-in Launch a governance program at scale with a measurable impact Understand real-world use cases to drive swift and effective action Obtain support for data governance-led digital transformation Launch your data governance program with confidence Who this book is for Chief data officers, data governance leaders, data stewards, and engineers who want to understand the business value of their work, and IT professionals seeking further understanding of data management, will find this book useful. You need a basic understanding of working with data, business needs, and how to meet those needs with data solutions. Prior coding experience or skills in selling data solutions to executives are not required. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a Transnationa…
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and …
Belmont Forum Adopts Open Data Principles for Environmental Chan…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …