Advertisement
data analytics in education industry: Big Data on Campus Karen L. Webber, Henry Y. Zheng, 2020-11-03 Webber, Henry Y. Zheng, Ying Zhou |
data analytics in education industry: You Are a Data Person Amelia Parnell, 2023-07-03 Internal and external pressure continues to mount for college professionals to provide evidence of successful activities, programs, and services, which means that, going forward, nearly every campus professional will need to approach their work with a data-informed perspective.But you find yourself thinking “I am not a data person”.Yes, you are. Or can be with the help of Amelia Parnell.You Are a Data Person provides context for the levels at which you are currently comfortable using data, helps you identify both the areas where you should strengthen your knowledge and where you can use this knowledge in your particular university role.For example, the rising cost to deliver high-quality programs and services to students has pushed many institutions to reallocate resources to find efficiencies. Also, more institutions are intentionally connecting classroom and cocurricular learning experiences which, in some instances, requires an increased gathering of evidence that students have acquired certain skills and competencies. In addition to programs, services, and pedagogy, professionals are constantly monitoring the rates at which students are entering, remaining enrolled in, and leaving the institution, as those movements impact the institution’s financial position.From teaching professors to student affairs personnel and beyond, Parnell offers tangible examples of how professionals can make data contributions at their current and future knowledge level, and will even inspire readers to take the initiative to engage in data projects.The book includes a set of self-assessment questions and a companion set of action steps and available resources to help readers accept their identity as a data person. It also includes an annotated list of at least 20 indicators that any higher education professional can examine without sophisticated data analyses. |
data analytics in education industry: Teaching Data Analytics Susan Vowels, Katherine Leaming Goldberg, 2019-06-17 The need for analytics skills is a source of the burgeoning growth in the number of analytics and decision science programs in higher education developed to feed the need for capable employees in this area. The very size and continuing growth of this need means that there is still space for new program development. Schools wishing to pursue business analytics programs intentionally assess the maturity level of their programs and take steps to close the gap. Teaching Data Analytics: Pedagogy and Program Design is a reference for faculty and administrators seeking direction about adding or enhancing analytics offerings at their institutions. It provides guidance by examining best practices from the perspectives of faculty and practitioners. By emphasizing the connection of data analytics to organizational success, it reviews the position of analytics and decision science programs in higher education, and to review the critical connection between this area of study and career opportunities. The book features: A variety of perspectives ranging from the scholarly theoretical to the practitioner applied An in-depth look into a wide breadth of skills from closely technology-focused to robustly soft human connection skills Resources for existing faculty to acquire and maintain additional analytics-relevant skills that can enrich their current course offerings. Acknowledging the dichotomy between data analytics and data science, this book emphasizes data analytics rather than data science, although the book does touch upon the data science realm. Starting with industry perspectives, the book covers the applied world of data analytics, covering necessary skills and applications, as well as developing compelling visualizations. It then dives into pedagogical and program design approaches in data analytics education and concludes with ideas for program design tactics. This reference is a launching point for discussions about how to connect industry’s need for skilled data analysts to higher education’s need to design a rigorous curriculum that promotes student critical thinking, communication, and ethical skills. It also provides insight into adding new elements to existing data analytics courses and for taking the next step in adding data analytics offerings, whether it be incorporating additional analytics assignments into existing courses, offering one course designed for undergraduates, or an integrated program designed for graduate students. |
data analytics in education industry: Big Data in Education Ben Williamson, 2017-07-24 Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment! |
data analytics in education industry: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data analytics in education industry: OECD Digital Education Outlook 2021 Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots OECD, 2021-06-08 How might digital technology and notably smart technologies based on artificial intelligence (AI), learning analytics, robotics, and others transform education? This book explores such question. It focuses on how smart technologies currently change education in the classroom and the management of educational organisations and systems. |
data analytics in education industry: The Datafication of Education Juliane Jarke, Andreas Breiter, 2020-05-21 This book attends to the transformation of processes and practices in education, relating to its increasing digitisation and datafication. The introduction of new means to measure, capture, describe and represent social life in numbers has not only transformed the ways in which teaching and learning are organised, but also the ways in which future generations (will) construct reality with and through data. Contributions consider data practices that span across different countries, educational fields and governance levels, ranging from early childhood education, to schools, universities, educational technology providers, to educational policy making and governance. The book demonstrates how digital data not only support decision making, but also fundamentally change the organisation of learning and teaching, and how these transformation processes can have partly ambivalent consequences, such as new possibilities for participation, but also the monitoring and emergence/manifestation of inequalities. Focusing on how data can drive decision making in education and learning, this book will be of interest to those studying both educational technology and educational policy making. The chapters in this book were originally published in Learning, Media and Technology. Chapter 4 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license. |
data analytics in education industry: Data Mining and Learning Analytics Samira ElAtia, Donald Ipperciel, Osmar R. Zaïane, 2016-09-20 Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research. |
data analytics in education industry: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analytics in education industry: Advancing the Power of Learning Analytics and Big Data in Education Azevedo, Ana, Azevedo, José Manuel, Onohuome Uhomoibhi, James, Ossiannilsson, Ebba, 2021-03-19 The term learning analytics is used in the context of the use of analytics in e-learning environments. Learning analytics is used to improve quality. It uses data about students and their activities to provide better understanding and to improve student learning. The use of learning management systems, where the activity of the students can be easily accessed, potentiated the use of learning analytics to understand their route during the learning process, help students be aware of their progress, and detect situations where students can give up the course before its completion, which is a growing problem in e-learning environments. Advancing the Power of Learning Analytics and Big Data in Education provides insights concerning the use of learning analytics, the role and impact of analytics on education, and how learning analytics are designed, employed, and assessed. The chapters will discuss factors affecting learning analytics such as human factors, geographical factors, technological factors, and ethical and legal factors. This book is ideal for teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in the use of big data and learning analytics for improved student success and educational environments. |
data analytics in education industry: Proceedings of ICETIT 2019 Pradeep Kumar Singh, Bijaya Ketan Panigrahi, Nagender Kumar Suryadevara, Sudhir Kumar Sharma, Amit Prakash Singh, 2019-09-23 This book presents high-quality, original contributions (both theoretical and experimental) on Information Security, Machine Learning, Data Mining and Internet of Things (IoT). It gathers papers presented at ICETIT 2019, the 1st International Conference on Emerging Trends in Information Technology, which was held in Delhi, India, in June 2019. This conference series represents a targeted response to the growing need for research that reports on and assesses the practical implications of IoT and network technologies, AI and machine learning, data analytics and cloud computing, security and privacy, and next generation computing technologies. |
data analytics in education industry: Learning Analytics Johann Ari Larusson, Brandon White, 2014-07-04 In education today, technology alone doesn't always lead to immediate success for students or institutions. In order to gauge the efficacy of educational technology, we need ways to measure the efficacy of educational practices in their own right. Through a better understanding of how learning takes place, we may work toward establishing best practices for students, educators, and institutions. These goals can be accomplished with learning analytics. Learning Analytics: From Research to Practice updates this emerging field with the latest in theories, findings, strategies, and tools from across education and technological disciplines. Guiding readers through preparation, design, and examples of implementation, this pioneering reference clarifies LA methods as not mere data collection but sophisticated, systems-based analysis with practical applicability inside the classroom and in the larger world. Case studies illustrate applications of LA throughout academic settings (e.g., intervention, advisement, technology design), and their resulting impact on pedagogy and learning. The goal is to bring greater efficiency and deeper engagement to individual students, learning communities, and educators, as chapters show diverse uses of learning analytics to: Enhance student and faculty performance. Improve student understanding of course material. Assess and attend to the needs of struggling learners. Improve accuracy in grading. Allow instructors to assess and develop their own strengths. Encourage more efficient use of resources at the institutional level. Researchers and practitioners in educational technology, IT, and the learning sciences will hail the information in Learning Analytics: From Research to Practice as a springboard to new levels of student, instructor, and institutional success. |
data analytics in education industry: The Global Purpose Approach Tarece Johnson Ed.D., 2018-02-15 I created The Global Purpose Approach to help people gain the interest, knowledge, and skills needed for them to become more global-minded individuals. The idea for the book evolved from the need to enhance instruction in multicultural education so that people may be more knowledgeable, respectful, and appreciative of the geographies, languages, and cultures of people across the globe. The principles, content, and strategies that result comprise The Global Purpose Approachan instructional framework to introduce and integrate multiculturalism in schools, classrooms, private corporations, public agencies, and individuals daily lives. The purpose of The Global Purpose Approach is to foster multicultural awareness and education by helping to understand, respect, and appreciate similarities and differences across cultures. It consists of six guiding principlespurpose, environment, observation, perspective, language, and exploration (PEOPLE)together with an outline (NO FEAR) and resources for interactive and immersive learning of the core elements of culture. The intended impact of The Global Purpose Approach is to develop people who have enhanced knowledge and appreciation of diverse cultures and who can, therefore, interact and contribute innovatively in an interconnected, global society. Human resource professionals, organizational leaders, school districts, and teachers may use this book as a guide to integrate multicultural education in their departments, organizations, school systems, and classrooms. It also allows for educators to easily adapt the approach to fit their curriculum requirements and existing teaching plans and to implement it within their daily teaching. In this way, The Global Purpose Approach can be seen as a way to strengthen current teaching practices by adopting a set of philosophies and utilizing activities to foster more globally connected, engaged citizens without the need to fully revise or change. |
data analytics in education industry: Big Data MBA Bill Schmarzo, 2015-12-11 Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions. |
data analytics in education industry: Deep Learning Techniques and Optimization Strategies in Big Data Analytics Thomas, J. Joshua, Karagoz, Pinar, Ahamed, B. Bazeer, Vasant, Pandian, 2019-11-29 Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry. |
data analytics in education industry: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data analytics in education industry: Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics R. Sujatha, S. L. Aarthy, R. Vettriselvan, 2021-09-22 Data science revolves around two giants: Big Data analytics and Deep Learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of Big Data as well as Deep Learning systems. This book discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and decision-making. It also covers numerous applications in healthcare, education, communication, media, and entertainment. Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics offers innovative platforms for integrating Big Data and Deep Learning and presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval. FEATURES Provides insight into the skill set that leverages one’s strength to act as a good data analyst Discusses how Big Data and Deep Learning hold the potential to significantly increase data understanding and help in decision-making Covers numerous potential applications in healthcare, education, communication, media, and entertainment Offers innovative platforms for integrating Big Data and Deep Learning Presents issues related to adequate data storage, semantic indexing, data tagging, and fast information retrieval from Big Data This book is aimed at industry professionals, academics, research scholars, system modelers, and simulation experts. |
data analytics in education industry: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
data analytics in education industry: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students. |
data analytics in education industry: Adoption of Data Analytics in Higher Education Learning and Teaching Dirk Ifenthaler, David Gibson, 2020-08-10 The book aims to advance global knowledge and practice in applying data science to transform higher education learning and teaching to improve personalization, access and effectiveness of education for all. Currently, higher education institutions and involved stakeholders can derive multiple benefits from educational data mining and learning analytics by using different data analytics strategies to produce summative, real-time, and predictive or prescriptive insights and recommendations. Educational data mining refers to the process of extracting useful information out of a large collection of complex educational datasets while learning analytics emphasizes insights and responses to real-time learning processes based on educational information from digital learning environments, administrative systems, and social platforms. This volume provides insight into the emerging paradigms, frameworks, methods and processes of managing change to better facilitate organizational transformation toward implementation of educational data mining and learning analytics. It features current research exploring the (a) theoretical foundation and empirical evidence of the adoption of learning analytics, (b) technological infrastructure and staff capabilities required, as well as (c) case studies that describe current practices and experiences in the use of data analytics in higher education. |
data analytics in education industry: The Elements of Big Data Value Edward Curry, Andreas Metzger, Sonja Zillner, Jean-Christophe Pazzaglia, Ana García Robles, 2021-08-01 This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation. |
data analytics in education industry: Data Science Thinking Longbing Cao, 2018-08-17 This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective. |
data analytics in education industry: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
data analytics in education industry: Learning Analytics John R Mattox II, Mark Van Buren, Jean Martin, 2016-09-03 Faced with organizations that are more dispersed, a workforce that is more diverse and the pressure to reduce costs, CEOs and CFOs are increasingly asking what the return on investment is from training and development programmes. Learning Analytics provides a framework for understanding how to work with learning analytics at an advanced level. It focuses on the questions that training evaluation is intended to answer: is training effective and how can it be improved? It discusses the field of learning analytics, outlining how and why analytics can be useful, and takes the reader through examples of approaches to answering these questions and looks at the valuable role that technology has to play. Even where technological solutions are employed, the HR or learning and development practitioner needs to understand what questions they should be asking of their data to ensure alignment between training and business needs. Learning Analytics enables both senior L&D and HR professionals as well as CEOs and CFOs to see the transformational power that effective analytics has for building a learning organization, and the impacts that this has on performance, talent management, and competitive advantage. It helps learning and development professionals to make the business case for their activities, demonstrating what is truly adding value and where budgets should be spent, and to deliver a credible service to their business by providing metrics based on which sound business decisions can be made. |
data analytics in education industry: Big Data Analytics In Education Midhun Moorthi C, 2023-11-21 Big data analytics refers to the application of sophisticated analytical methods to extremely extensive and heterogeneous datasets encompassing structured, semi-structured, and unstructured information. These datasets originate from various sources and range in size from terabytes to zettabytes. With the purpose of facilitating data-driven decision making, big data analytics entails the identification of correlations, trends, and patterns in vast quantities of unprocessed data. These procedures employ well-known statistical analysis methods, such as regression and clustering, and employ more sophisticated instruments to implement them on larger datasets. Since software and hardware advancements enabled organisations to manage vast quantities of unstructured data in the early 2000s, big data has been a popular term. Subsequently, the proliferation of emerging technologies, such as smartphones and Amazon, has further augmented the considerable volumes of data accessible to organisations. For the storage and processing of big data, early innovation initiatives such as Hadoop, Spark, and NoSQL databases were developed in response to the data deluge. Data engineers are constantly inventing new methods to process and integrate the massive volumes of complicated data generated by many sources, such as the internet, smart devices, transactions, networks, and sensors. Presently, emergent technologies such as machine learning are being integrated with big data analytics methods in order to uncover and escalate the magnitude of more intricate insights. |
data analytics in education industry: Data Analytics in Medicine Information Resources Management Association, 2019-11-18 This book examines practical applications of healthcare analytics for improved patient care, resource allocation, and medical performance, as well as for diagnosing, predicting, and identifying at-risk populations-- |
data analytics in education industry: National Goals for Education , 1990 |
data analytics in education industry: Handbook of Research on Emerging Trends and Applications of Machine Learning Solanki, Arun, Kumar, Sandeep, Nayyar, Anand, 2019-12-13 As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning. |
data analytics in education industry: Grading Teachers, Grading Schools Jason Millman, 1997-08-15 In an extensive review of teacher and school evaluation, one is not likely to find an issue more divisive than the question of how best, in high-stakes contexts, to evaluate how well teachers and schools accomplish their task of educating students. This book explores four contemporary approaches to evaluating the effectiveness of teachers and schools. |
data analytics in education industry: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress. |
data analytics in education industry: Radical Solutions and Open Science Daniel Burgos, 2020-05-14 This open access book presents how Open Science is a powerful tool to boost Higher Education. The book introduces the reader into Open Access, Open Technology, Open Data, Open Research results, Open Licensing, Open Accreditation, Open Certification, Open Policy and, of course, Open Educational Resources. It brings all these key topics from major players in the field; experts that present the current state of the art and the forthcoming steps towards a useful and effective implementation. This book presents radical, transgenic solutions for recurrent and long-standing problems in Higher Education. Every chapter presents a clear view and a related solution to make Higher Education progress and implement tools and strategies to improve the user’s performance and learning experience. This book is part of a trilogy with companion volumes on Radical Solutions & Learning Analytics and Radical Solutions & eLearning. |
data analytics in education industry: Perspectives on ICT4D and Socio-Economic Growth Opportunities in Developing Countries Ndayizigamiye, Patrick, Barlow-Jones, Glenda, Brink, Roelien, Bvuma, Stella, Minty, Rehana, Mhlongo, Siyabonga, 2020-10-09 Technology has been hailed as one of the catalysts toward economic and human development. In the current economic era of the Fourth Industrial Revolution, information acquisition, transformation, and dissemination processes are posed to be the key enablers of development. However, in the context of developing countries, there is a need for more evidence on the impact that ICT has on addressing developmental issues. Such evidence is needed to make a case for investments in ICT-led interventions to improve people’s lives in developing countries. Perspectives on ICT4D and Socio-Economic Growth Opportunities in Developing Countries is a collection of innovative research on current trends that portray the ICT and development nexus (ICT4D) from economic and human development perspectives within developing countries. While highlighting topics including mobile money, poverty alleviation, and consumer behavior, this book is ideally designed for economists, government officials, policymakers, ICT specialists, business professionals, researchers, academicians, students, and entrepreneurs. |
data analytics in education industry: Learning With Big Data Viktor Mayer-Schönberger, Kenneth Cukier, 2014-03-04 Homework assignments that learn from students. Courses tailored to fit individual pupils. Textbooks that talk back. This is tomorrow’s education landscape, thanks to the power of big data. These advances go beyond online courses. As the New York Times-bestselling authors of Big Data explain, the truly fascinating changes are actually occurring in how we measure students’ progress and how we can use that data to improve education for everyone, in real time, both on- and offline. Learning with Big Data offers an eye-opening, insight-packed tour through these new trends, for educators, administrators, and readers interested in the latest developments in business and technology. |
data analytics in education industry: Applications of Big Data Analytics Mohammed M. Alani, Hissam Tawfik, Mohammed Saeed, Obinna Anya, 2019-02-09 This timely text/reference reviews the state of the art of big data analytics, with a particular focus on practical applications. An authoritative selection of leading international researchers present detailed analyses of existing trends for storing and analyzing big data, together with valuable insights into the challenges inherent in current approaches and systems. This is further supported by real-world examples drawn from a broad range of application areas, including healthcare, education, and disaster management. The text also covers, typically from an application-oriented perspective, advances in data science in such areas as big data collection, searching, analysis, and knowledge discovery. Topics and features: Discusses a model for data traffic aggregation in 5G cellular networks, and a novel scheme for resource allocation in 5G networks with network slicing Explores methods that use big data in the assessment of flood risks, and apply neural networks techniques to monitor the safety of nuclear power plants Describes a system which leverages big data analytics and the Internet of Things in the application of drones to aid victims in disaster scenarios Proposes a novel deep learning-based health data analytics application for sleep apnea detection, and a novel pathway for diagnostic models of headache disorders Reviews techniques for educational data mining and learning analytics, and introduces a scalable MapReduce graph partitioning approach for high degree vertices Presents a multivariate and dynamic data representation model for the visualization of healthcare data, and big data analytics methods for software reliability assessment This practically-focused volume is an invaluable resource for all researchers, academics, data scientists and business professionals involved in the planning, designing, and implementation of big data analytics projects. Dr. Mohammed M. Alani is an Associate Professor in Computer Engineering and currently is the Provost at Al Khawarizmi International College, Abu Dhabi, UAE. Dr. Hissam Tawfik is a Professor of Computer Science in the School of Computing, Creative Technologies & Engineering at Leeds Beckett University, UK. Dr. Mohammed Saeed is a Professor in Computing and currently is the Vice President for Academic Affairs and Research at the University of Modern Sciences, Dubai, UAE. Dr. Obinna Anya is a Research Staff Member at IBM Research – Almaden, San Jose, CA, USA. |
data analytics in education industry: Classification, (big) Data Analysis and Statistical Learning Francesco Mola, Claudio Conversano, Maurizio Vichi, 2018 This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8-10, 2015. |
data analytics in education industry: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
data analytics in education industry: The Handbook on Innovations in Learning Marilyn Murphy, Sam Redding, Janet Twyman, 2014-03-01 An innovation in learning improves upon the implementation of the standard practice or introduces a new practice, thus achieving greater learning outcomes. The Handbook on Innovations in Learning, developed by the Center on Innovations in Learning, presents commissioned chapters describing current best practices of instruction before embarking on descriptions of selected innovative practices which promise better methods of engaging and teaching students. Written by a diverse and talented field of experts, chapters in the Handbook seek to facilitate the adoption of the innovative practices they describe by suggesting implementation policies and procedures to leaders of state and local education agencies. |
data analytics in education industry: Knowledge Modelling and Big Data Analytics in Healthcare Mayuri Mehta, Kalpdrum Passi, Indranath Chatterjee, Rajan Patel, 2021-12-08 Knowledge Modelling and Big Data Analytics in Healthcare: Advances and Applications focuses on automated analytical techniques for healthcare applications used to extract knowledge from a vast amount of data. It brings together a variety of different aspects of the healthcare system and aids in the decision-making processes for healthcare professionals. The editors connect four contemporary areas of research rarely brought together in one book: artificial intelligence, big data analytics, knowledge modelling, and healthcare. They present state-of-the-art research from the healthcare sector, including research on medical imaging, healthcare analysis, and the applications of artificial intelligence in drug discovery. This book is intended for data scientists, academicians, and industry professionals in the healthcare sector. |
data analytics in education industry: International Perspectives on School Settings, Education Policy and Digital Strategies Annika Wilmers, Sieglinde Jornitz, 2021-02-15 An exchange on education ideas has shaped the transatlantic discourse in education for a long time. Over the past two decades education science has increasingly become networked internationally. Since 2015, the Office for International Cooperation in Education at DIPF | Leibniz Institute for Research and Information in Education has organized international sessions on education research at the Annual Meetings of the American Educational Research Association, thus providing a floor for transatlantic exchange on current research topics. The volume gives an overview of the transatlantic activities in education research with regard to these sessions representing a collection of topics ranging from school development over the use of large scale assessment and digital data in education to questions related to migration and public education or the economization of education. At the same time the volume offers a reflection on the assets and obstacles of international exchange. |
data analytics in education industry: Information and Communication Technology and Applications Sanjay Misra, Bilkisu Muhammad-Bello, 2021-02-13 This book constitutes revised selected papers from the Third International Conference on Information and Communication Technology and Applications, ICTA 2020, held in Minna, Nigeria, in November 2020. Due to the COVID-19 pandemic the conference was held online. The 67 full papers were carefully reviewed and selected from 234 submissions. The papers are organized in the topical sections on Artificial Intelligence, Big Data and Machine Learning; Information Security Privacy and Trust; Information Science and Technology. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …