Data Integration In Business Intelligence



  data integration in business intelligence: Business Intelligence Guidebook Rick Sherman, 2014-11-04 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled – projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget – turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. - Provides practical guidelines for building successful BI, DW and data integration solutions. - Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. - Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses - Describes best practices and pragmatic approaches so readers can put them into action. - Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  data integration in business intelligence: Integration Challenges for Analytics, Business Intelligence, and Data Mining Azevedo, Ana, Santos, Manuel Filipe, 2020-12-11 As technology continues to advance, it is critical for businesses to implement systems that can support the transformation of data into information that is crucial for the success of the company. Without the integration of data (both structured and unstructured) mining in business intelligence systems, invaluable knowledge is lost. However, there are currently many different models and approaches that must be explored to determine the best method of integration. Integration Challenges for Analytics, Business Intelligence, and Data Mining is a relevant academic book that provides empirical research findings on increasing the understanding of using data mining in the context of business intelligence and analytics systems. Covering topics that include big data, artificial intelligence, and decision making, this book is an ideal reference source for professionals working in the areas of data mining, business intelligence, and analytics; data scientists; IT specialists; managers; researchers; academicians; practitioners; and graduate students.
  data integration in business intelligence: Data Virtualization for Business Intelligence Systems Rick van der Lans, 2012-07-25 Annotation In this book, Rick van der Lans explains how data virtualization servers work, what techniques to use to optimize access to various data sources and how these products can be applied in different projects.
  data integration in business intelligence: Managing Data in Motion April Reeve, 2013-02-26 Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment. The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired. The management of the data in motion in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and big data applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects. - Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types - Explains, in non-technical terms, the architecture and components required to perform data integration - Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of Big Data
  data integration in business intelligence: Business Intelligence David Loshin, 2012-11-27 Business Intelligence: The Savvy Managers Guide, Second Edition, discusses the objectives and practices for designing and deploying a business intelligence (BI) program. It looks at the basics of a BI program, from the value of information and the mechanics of planning for success to data model infrastructure, data preparation, data analysis, integration, knowledge discovery, and the actual use of discovered knowledge. Organized into 21 chapters, this book begins with an overview of the kind of knowledge that can be exposed and exploited through the use of BI. It then proceeds with a discussion of information use in the context of how value is created within an organization, how BI can improve the ways of doing business, and organizational preparedness for exploiting the results of a BI program. It also looks at some of the critical factors to be taken into account in the planning and execution of a successful BI program. In addition, the reader is introduced to considerations for developing the BI roadmap, the platforms for analysis such as data warehouses, and the concepts of business metadata. Other chapters focus on data preparation and data discovery, the business rules approach, and data mining techniques and predictive analytics. Finally, emerging technologies such as text analytics and sentiment analysis are considered. This book will be valuable to data management and BI professionals, including senior and middle-level managers, Chief Information Officers and Chief Data Officers, senior business executives and business staff members, database or software engineers, and business analysts. - Guides managers through developing, administering, or simply understanding business intelligence technology - Keeps pace with the changes in best practices, tools, methods and processes used to transform an organization's data into actionable knowledge - Contains a handy, quick-reference to technologies and terminology
  data integration in business intelligence: DW 2.0: The Architecture for the Next Generation of Data Warehousing W.H. Inmon, Derek Strauss, Genia Neushloss, 2010-07-28 DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level. The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0. It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals. - First book on the new generation of data warehouse architecture, DW 2.0 - Written by the father of the data warehouse, Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network - Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control
  data integration in business intelligence: Business Intelligence Roadmap Larissa Terpeluk Moss, S. Atre, 2003 This software will enable the user to learn about business intelligence roadmap.
  data integration in business intelligence: Data Integration Blueprint and Modeling Anthony David Giordano, 2010-12-27 Making Data Integration Work: How to Systematically Reduce Cost, Improve Quality, and Enhance Effectiveness Today’s enterprises are investing massive resources in data integration. Many possess thousands of point-to-point data integration applications that are costly, undocumented, and difficult to maintain. Data integration now accounts for a major part of the expense and risk of typical data warehousing and business intelligence projects--and, as businesses increasingly rely on analytics, the need for a blueprint for data integration is increasing now more than ever. This book presents the solution: a clear, consistent approach to defining, designing, and building data integration components to reduce cost, simplify management, enhance quality, and improve effectiveness. Leading IBM data management expert Tony Giordano brings together best practices for architecture, design, and methodology, and shows how to do the disciplined work of getting data integration right. Mr. Giordano begins with an overview of the “patterns” of data integration, showing how to build blueprints that smoothly handle both operational and analytic data integration. Next, he walks through the entire project lifecycle, explaining each phase, activity, task, and deliverable through a complete case study. Finally, he shows how to integrate data integration with other information management disciplines, from data governance to metadata. The book’s appendices bring together key principles, detailed models, and a complete data integration glossary. Coverage includes Implementing repeatable, efficient, and well-documented processes for integrating data Lowering costs and improving quality by eliminating unnecessary or duplicative data integrations Managing the high levels of complexity associated with integrating business and technical data Using intuitive graphical design techniques for more effective process and data integration modeling Building end-to-end data integration applications that bring together many complex data sources
  data integration in business intelligence: Business Intelligence Rimvydas Skyrius, 2022-03-09 This book examines the managerial dimensions of business intelligence (BI) systems. It develops a set of guidelines for value creation by implementing business intelligence systems and technologies. In particular the book looks at BI as a process – driven by a mix of human and technological capabilities – to serve complex information needs in building insights and providing aid in decision making. After an introduction to the key concepts of BI and neighboring areas of information processing, the book looks at the complexity and multidimensionality of BI. It tackles both data integration and information integration issues. Bodies of knowledge and other widely accepted collections of experience are presented and turned into lessons learned. Following a straightforward introduction to the processes and technologies of BI the book embarks on BI maturity and agility, the components, drivers and inhibitors of BI culture and soft BI factors like attention, sense and trust. Eventually the book attempts to provide a holistic view on business intelligence, possible structures and tradeoffs and embarks to provide an outlook on possible developments in BI and analytics.
  data integration in business intelligence: The Biml Book Andy Leonard, Scott Currie, Jacob Alley, Martin Andersson, Peter Avenant, Bill Fellows, Simon Peck, Reeves Smith, Raymond Sondak, Benjamin Weissman, Cathrine Wilhelmsen, 2017-10-30 Learn Business Intelligence Markup Language (Biml) for automating much of the repetitive, manual labor involved in data integration. We teach you how to build frameworks and use advanced Biml features to get more out of SQL Server Integration Services (SSIS), Transact-SQL (T-SQL), and SQL Server Analysis Services (SSAS) than you ever thought possible. The first part of the book starts with the basics—getting your development environment configured, Biml syntax, and scripting essentials. Whether a beginner or a seasoned Biml expert, the next part of the book guides you through the process of using Biml to build a framework that captures both your design patterns and execution management. Design patterns are reusable code blocks that standardize the approach you use to perform certain types of data integration, logging, and other key data functions. Design patterns solve common problems encountered when developing data integration solutions. Because you do not have to build the code from scratch each time, design patterns improve your efficiency as a Biml developer. In addition to leveraging design patterns in your framework, you will learn how to build a robust metadata store and how to package your framework into Biml bundles for deployment within your enterprise. In the last part of the book, we teach you more advanced Biml features and capabilities, such as SSAS development, T-SQL recipes, documentation autogeneration, and Biml troubleshooting. The Biml Book: Provides practical and applicable examples Teaches you how to use Biml to reduce development time while improving quality Takes you through solutions to common data integration and BI challenges What You'll Learn Master the basics of Business Intelligence Markup Language (Biml) Study patterns for automating SSIS package generation Build a Biml Framework Import and transform database schemas Automate generation of scripts and projects Who This Book Is For BI developers wishing to quickly locate previously tested solutions, Microsoft BI specialists, those seeking more information about solution automation and code generation, and practitioners of Data Integration Lifecycle Management (DILM) in the DevOps enterprise
  data integration in business intelligence: Business Intelligence in the Digital Economy Mahesh S. Raisinghani, 2004-01-01 Annotation Business Intelligence in the Digital Economy: Opportunities, Limitations and Risks describes business intelligence (BI), how it is being conducted and managed and its major opportunities, limitations, issues and risks. This book takes an in-depth look at the scope of global technological change and BI. During this transition to BI, information does not merely add efficiency to the transaction; it adds value. This book brings together high quality expository discussions from experts in this field to identify, define, and explore BI methodologies, systems, and approaches in order to understand the opportunities, limitations and risks.
  data integration in business intelligence: Open Source Data Warehousing and Business Intelligence Lakshman Bulusu, 2012-08-06 Open Source Data Warehousing and Business Intelligence is an all-in-one reference for developing open source based data warehousing (DW) and business intelligence (BI) solutions that are business-centric, cross-customer viable, cross-functional, cross-technology based, and enterprise-wide. Considering the entire lifecycle of an open source DW &
  data integration in business intelligence: Agile Data Warehousing Project Management Ralph Hughes, 2012-12-28 You have to make sense of enormous amounts of data, and while the notion of agile data warehousing might sound tricky, it can yield as much as a 3-to-1 speed advantage while cutting project costs in half. Bring this highly effective technique to your organization with the wisdom of agile data warehousing expert Ralph Hughes. Agile Data Warehousing Project Management will give you a thorough introduction to the method as you would practice it in the project room to build a serious data mart. Regardless of where you are today, this step-by-step implementation guide will prepare you to join or even lead a team in visualizing, building, and validating a single component to an enterprise data warehouse. - Provides a thorough grounding on the mechanics of Scrum as well as practical advice on keeping your team on track - Includes strategies for getting accurate and actionable requirements from a team's business partner - Revolutionary estimating techniques that make forecasting labor far more understandable and accurate - Demonstrates a blends of Agile methods to simplify team management and synchronize inputs across IT specialties - Enables you and your teams to start simple and progress steadily to world-class performance levels
  data integration in business intelligence: Big Data For Dummies Judith S. Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, 2013-04-02 Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it matters, and how to choose and implement solutions that work. Effectively managing big data is an issue of growing importance to businesses, not-for-profit organizations, government, and IT professionals Authors are experts in information management, big data, and a variety of solutions Explains big data in detail and discusses how to select and implement a solution, security concerns to consider, data storage and presentation issues, analytics, and much more Provides essential information in a no-nonsense, easy-to-understand style that is empowering Big Data For Dummies cuts through the confusion and helps you take charge of big data solutions for your organization.
  data integration in business intelligence: Advanced Data Warehouse Design Elzbieta Malinowski, Esteban Zimányi, 2008-01-22 This exceptional work provides readers with an introduction to the state-of-the-art research on data warehouse design, with many references to more detailed sources. It offers a clear and a concise presentation of the major concepts and results in the subject area. Malinowski and Zimányi explain conventional data warehouse design in detail, and additionally address two innovative domains recently introduced to extend the capabilities of data warehouse systems: namely, the management of spatial and temporal information.
  data integration in business intelligence: Successful Business Intelligence: Secrets to Making BI a Killer App Cindi Howson, 2007-12-17 Praise for Successful Business Intelligence If you want to be an analytical competitor, you've got to go well beyond business intelligence technology. Cindi Howson has wrapped up the needed advice on technology, organization, strategy, and even culture in a neat package. It's required reading for quantitatively oriented strategists and the technologists who support them. --Thomas H. Davenport, President's Distinguished Professor, Babson College and co-author, Competing on Analytics When used strategically, business intelligence can help companies transform their organization to be more agile, more competitive, and more profitable. Successful Business Intelligence offers valuable guidance for companies looking to embark upon their first BI project as well as those hoping to maximize their current deployments. --John Schwarz, CEO, Business Objects A thoughtful, clearly written, and carefully researched examination of all facets of business intelligence that your organization needs to know to run its business more intelligently and exploit information to its fullest extent. --Wayne Eckerson, Director, TDWI Research Using real-world examples, Cindi Howson shows you how to use business intelligence to improve the performance, and the quality, of your company. --Bill Baker, Distinguished Engineer & GM, Business Intelligence Applications, Microsoft Corporation This book outlines the key steps to make BI an integral part of your company's culture and demonstrates how your company can use BI as a competitive differentiator. --Robert VanHees, CFO, Corporate Express Given the trend to expand the business analytics user base, organizations are faced with a number of challenges that affect the success rate of these projects. This insightful book provides practical advice on improving that success rate. --Dan Vesset, Vice President, Business Analytics Solution Research, IDC
  data integration in business intelligence: FUNDAMENTALS OF BUSINESS ANALYTICS (With CD ) R. N. Prasad, Seema Acharya, 2011-08 Market_Desc: Primary MarketEngineering (BE/BTech)/ME/MTech students who are interested to develop conceptual level subject knowledge with examples of industrial strength applications.Secondary MarketMCA/MBA/Business users/business analysts Special Features: · Foreword by Prof R Natarajan, Former Chairman, AICTE, Former Director, IIT Madras.· Excellent authorship.· Single source of introductory knowledge on business intelligence (BI).· Provides a good start for first-time learners typically from the engineering and management discipline.· Covers the complete life cycle of BI/Analytics Application development project.· Helps develop deeper understanding of the subject with an enterprise context, and discusses its application in businesses.· Explains concepts with the help of illustrations, application to real-life scenarios and provides opportunities to test understanding.· States the pre-requisites for each chapter and different reference sources available.· In addition the book also has the following pedagogical features:· Industrial application case studies.· Crossword puzzles/do it yourself exercises/assignments to help with self-assessment. The solutions to these have also been provided. · Glossary of terms.· References/web links/bibliography - generally at the end of every concept.CD Companion:To ensure that concepts can be practiced for deeper understanding at low cost, the book is accompanied with a CD containing:· Step-by-step Hands-On manual on:ü An open source tool, Pentaho Data Integrator (PDI) to explain the process of extraction of data from multiple varied sources.ü MS Excel to explain the concept of analysis.ü MS Access to generate reports on the analyzed data.· An integrated project that encompasses the complete life cycle of a BI project. About The Book: The book promises to be a single source of introductory knowledge on business intelligence which can be taught in one semester. It will provide a good start for first time learners typically from the engineering and management discipline. Business Intelligence subject cannot be studied in isolation. The book provides a holistic coverage beginning with an enterprise context, developing deeper understanding through the use of tools, touching a few domains where BI is embraced and discussing the problems that BI can help solve. It covers the complete life cycle of BI/Analytics project: Covering operational/transactional data sources, data transformation, data mart/warehouse design-build, analytical reporting, and dashboards. To ensure that concepts can be practiced for deeper understanding at low cost, the book is accompanied with step-by-step hands-on manual in the CD.
  data integration in business intelligence: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure
  data integration in business intelligence: Business Intelligence Guidebook Rick Sherman, 2014 Between the high-level concepts of business intelligence and the nitty-gritty instructions for using vendors' tools lies the essential, yet poorly-understood layer of architecture, design and process. Without this knowledge, Big Data is belittled - projects flounder, are late and go over budget. Business Intelligence Guidebook: From Data Integration to Analytics shines a bright light on an often neglected topic, arming you with the knowledge you need to design rock-solid business intelligence and data integration processes. Practicing consultant and adjunct BI professor Rick Sherman takes the guesswork out of creating systems that are cost-effective, reusable and essential for transforming raw data into valuable information for business decision-makers. After reading this book, you will be able to design the overall architecture for functioning business intelligence systems with the supporting data warehousing and data-integration applications. You will have the information you need to get a project launched, developed, managed and delivered on time and on budget - turning the deluge of data into actionable information that fuels business knowledge. Finally, you'll give your career a boost by demonstrating an essential knowledge that puts corporate BI projects on a fast-track to success. Provides practical guidelines for building successful BI, DW and data integration solutions. Explains underlying BI, DW and data integration design, architecture and processes in clear, accessible language. Includes the complete project development lifecycle that can be applied at large enterprises as well as at small to medium-sized businesses Describes best practices and pragmatic approaches so readers can put them into action. Companion website includes templates and examples, further discussion of key topics, instructor materials, and references to trusted industry sources.
  data integration in business intelligence: Tapping into Unstructured Data William H. Inmon, Anthony Nesavich, 2007-12-11 The Definitive Guide to Unstructured Data Management and Analysis--From the World’s Leading Information Management Expert A wealth of invaluable information exists in unstructured textual form, but organizations have found it difficult or impossible to access and utilize it. This is changing rapidly: new approaches finally make it possible to glean useful knowledge from virtually any collection of unstructured data. William H. Inmon--the father of data warehousing--and Anthony Nesavich introduce the next data revolution: unstructured data management. Inmon and Nesavich cover all you need to know to make unstructured data work for your organization. You’ll learn how to bring it into your existing structured data environment, leverage existing analytical infrastructure, and implement textual analytic processing technologies to solve new problems and uncover new opportunities. Inmon and Nesavich introduce breakthrough techniques covered in no other book--including the powerful role of textual integration, new ways to integrate textual data into data warehouses, and new SQL techniques for reading and analyzing text. They also present five chapter-length, real-world case studies--demonstrating unstructured data at work in medical research, insurance, chemical manufacturing, contracting, and beyond. This book will be indispensable to every business and technical professional trying to make sense of a large body of unstructured text: managers, database designers, data modelers, DBAs, researchers, and end users alike. Coverage includes What unstructured data is, and how it differs from structured data First generation technology for handling unstructured data, from search engines to ECM--and its limitations Integrating text so it can be analyzed with a common, colloquial vocabulary: integration engines, ontologies, glossaries, and taxonomies Processing semistructured data: uncovering patterns, words, identifiers, and conflicts Novel processing opportunities that arise when text is freed from context Architecture and unstructured data: Data Warehousing 2.0 Building unstructured relational databases and linking them to structured data Visualizations and Self-Organizing Maps (SOMs), including Compudigm and Raptor solutions Capturing knowledge from spreadsheet data and email Implementing and managing metadata: data models, data quality, and more
  data integration in business intelligence: Business Intelligence For Dummies Swain Scheps, 2011-02-04 You're intelligent, right? So you've already figured out that Business Intelligence can be pretty valuable in making the right decisions about your business. But you’ve heard at least a dozen definitions of what it is, and heard of at least that many BI tools. Where do you start? Business Intelligence For Dummies makes BI understandable! It takes you step by step through the technologies and the alphabet soup, so you can choose the right technology and implement a successful BI environment. You'll see how the applications and technologies work together to access, analyze, and present data that you can use to make better decisions about your products, customers, competitors, and more. You’ll find out how to: Understand the principles and practical elements of BI Determine what your business needs Compare different approaches to BI Build a solid BI architecture and roadmap Design, develop, and deploy your BI plan Relate BI to data warehousing, ERP, CRM, and e-commerce Analyze emerging trends and developing BI tools to see what else may be useful Whether you’re the business owner or the person charged with developing and implementing a BI strategy, checking out Business Intelligence For Dummies is a good business decision.
  data integration in business intelligence: Microsoft Business Intelligence Tools for Excel Analysts Michael Alexander, Jared Decker, Bernard Wehbe, 2014-05-05 Bridge the big data gap with Microsoft Business Intelligence Tools for Excel Analysts The distinction between departmental reporting done by business analysts with Excel and the enterprise reporting done by IT departments with SQL Server and SharePoint tools is more blurry now than ever before. With the introduction of robust new features like PowerPivot and Power View, it is essential for business analysts to get up to speed with big data tools that in the past have been reserved for IT professionals. Written by a team of Business Intelligence experts, Microsoft Business Intelligence Tools for Excel Analysts introduces business analysts to the rich toolset and reporting capabilities that can be leveraged to more effectively source and incorporate large datasets in their analytics while saving them time and simplifying the reporting process. Walks you step-by-step through important BI tools like PowerPivot, SQL Server, and SharePoint and shows you how to move data back and forth between these tools and Excel Shows you how to leverage relational databases, slice data into various views to gain different visibility perspectives, create eye-catching visualizations and dashboards, automate SQL Server data retrieval and integration, and publish dashboards and reports to the web Details how you can use SQL Server’s built-in functions to analyze large amounts of data, Excel pivot tables to access and report OLAP data, and PowerPivot to create powerful reporting mechanisms You’ll get on top of the Microsoft BI stack and all it can do to enhance Excel data analysis with this one-of-a-kind guide written for Excel analysts just like you.
  data integration in business intelligence: Non-Functional Requirements in Software Engineering Lawrence Chung, Brian A. Nixon, Eric Yu, John Mylopoulos, 2012-12-06 Non-Functional Requirements in Software Engineering presents a systematic and pragmatic approach to `building quality into' software systems. Systems must exhibit software quality attributes, such as accuracy, performance, security and modifiability. However, such non-functional requirements (NFRs) are difficult to address in many projects, even though there are many techniques to meet functional requirements in order to provide desired functionality. This is particularly true since the NFRs for each system typically interact with each other, have a broad impact on the system and may be subjective. To enable developers to systematically deal with a system's diverse NFRs, this book presents the NFR Framework. Structured graphical facilities are offered for stating NFRs and managing them by refining and inter-relating NFRs, justifying decisions, and determining their impact. Since NFRs might not be absolutely achieved, they may simply be satisfied sufficiently (`satisficed'). To reflect this, NFRs are represented as `softgoals', whose interdependencies, such as tradeoffs and synergy, are captured in graphs. The impact of decisions is qualitatively propagated through the graph to determine how well a chosen target system satisfices its NFRs. Throughout development, developers direct the process, using their expertise while being aided by catalogues of knowledge about NFRs, development techniques and tradeoffs, which can all be explored, reused and customized. Non-Functional Requirements in Software Engineering demonstrates the applicability of the NFR Framework to a variety of NFRs, domains, system characteristics and application areas. This will help readers apply the Framework to NFRs and domains of particular interest to them. Detailed treatments of particular NFRs - accuracy, security and performance requirements - along with treatments of NFRs for information systems are presented as specializations of the NFR Framework. Case studies of NFRs for a variety of information systems include credit card and administrative systems. The use of the Framework for particular application areas is illustrated for software architecture as well as enterprise modelling. Feedback from domain experts in industry and government provides an initial evaluation of the Framework and some case studies. Drawing on research results from several theses and refereed papers, this book's presentation, terminology and graphical notation have been integrated and illustrated with many figures. Non-Functional Requirements in Software Engineering is an excellent resource for software engineering practitioners, researchers and students.
  data integration in business intelligence: Principles of Database Management Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens, 2018-07-12 Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.
  data integration in business intelligence: Theory and Practice of Business Intelligence in Healthcare Khuntia, Jiban, Ning, Xue, Tanniru, Mohan, 2019-12-27 Business intelligence supports managers in enterprises to make informed business decisions in various levels and domains such as in healthcare. These technologies can handle large structured and unstructured data (big data) in the healthcare industry. Because of the complex nature of healthcare data and the significant impact of healthcare data analysis, it is important to understand both the theories and practices of business intelligence in healthcare. Theory and Practice of Business Intelligence in Healthcare is a collection of innovative research that introduces data mining, modeling, and analytic techniques to health and healthcare data; articulates the value of big volumes of data to health and healthcare; evaluates business intelligence tools; and explores business intelligence use and applications in healthcare. While highlighting topics including digital health, operations intelligence, and patient empowerment, this book is ideally designed for healthcare professionals, IT consultants, hospital directors, data management staff, data analysts, hospital administrators, executives, managers, academicians, students, and researchers seeking current research on the digitization of health records and health systems integration.
  data integration in business intelligence: Performance Dashboards Wayne W. Eckerson, 2005-10-27 Tips, techniques, and trends on how to use dashboard technology to optimize business performance Business performance management is a hot new management discipline that delivers tremendous value when supported by information technology. Through case studies and industry research, this book shows how leading companies are using performance dashboards to execute strategy, optimize business processes, and improve performance. Wayne W. Eckerson (Hingham, MA) is the Director of Research for The Data Warehousing Institute (TDWI), the leading association of business intelligence and data warehousing professionals worldwide that provide high-quality, in-depth education, training, and research. He is a columnist for SearchCIO.com, DM Review, Application Development Trends, the Business Intelligence Journal, and TDWI Case Studies & Solution.
  data integration in business intelligence: Big Data Integration Xin Luna Dong, Divesh Srivastava, 2015-02-01 The big data era is upon us: data are being generated, analyzed, and used at an unprecedented scale, and data-driven decision making is sweeping through all aspects of society. Since the value of data explodes when it can be linked and fused with other data, addressing the big data integration (BDI) challenge is critical to realizing the promise of big data. BDI differs from traditional data integration along the dimensions of volume, velocity, variety, and veracity. First, not only can data sources contain a huge volume of data, but also the number of data sources is now in the millions. Second, because of the rate at which newly collected data are made available, many of the data sources are very dynamic, and the number of data sources is also rapidly exploding. Third, data sources are extremely heterogeneous in their structure and content, exhibiting considerable variety even for substantially similar entities. Fourth, the data sources are of widely differing qualities, with significant differences in the coverage, accuracy and timeliness of data provided. This book explores the progress that has been made by the data integration community on the topics of schema alignment, record linkage and data fusion in addressing these novel challenges faced by big data integration. Each of these topics is covered in a systematic way: first starting with a quick tour of the topic in the context of traditional data integration, followed by a detailed, example-driven exposition of recent innovative techniques that have been proposed to address the BDI challenges of volume, velocity, variety, and veracity. Finally, it presents merging topics and opportunities that are specific to BDI, identifying promising directions for the data integration community.
  data integration in business intelligence: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.
  data integration in business intelligence: Business Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2017-01-13 For courses on Business Intelligence or Decision Support Systems. A managerial approach to understanding business intelligence systems. To help future managers use and understand analytics, Business Intelligence provides students with a solid foundation of BI that is reinforced with hands-on practice.
  data integration in business intelligence: Perspectives on Business Intelligence Raymond T. Ng, Patricia C. Arocena, Denilson Barbosa, Giuseppe Carenini, 2013-04-01 business intelligence, big data, business modeling, vivification, data integration, information extraction, information visualization
  data integration in business intelligence: Big Data Analytics David Loshin, 2013-08-23 Big Data Analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise. - Guides the reader in assessing the opportunities and value proposition - Overview of big data hardware and software architectures - Presents a variety of technologies and how they fit into the big data ecosystem
  data integration in business intelligence: Information Management William McKnight, 2013-11-30 Information Management: Gaining a Competitive Advantage with Data is about making smart decisions to make the most of company information. Expert author William McKnight develops the value proposition for information in the enterprise and succinctly outlines the numerous forms of data storage. Information Management will enlighten you, challenge your preconceived notions, and help activate information in the enterprise. Get the big picture on managing data so that your team can make smart decisions by understanding how everything from workload allocation to data stores fits together. The practical, hands-on guidance in this book includes: - Part 1: The importance of information management and analytics to business, and how data warehouses are used - Part 2: The technologies and data that advance an organization, and extend data warehouses and related functionality - Part 3: Big Data and NoSQL, and how technologies like Hadoop enable management of new forms of data - Part 4: Pulls it all together, while addressing topics of agile development, modern business intelligence, and organizational change management Read the book cover-to-cover, or keep it within reach for a quick and useful resource. Either way, this book will enable you to master all of the possibilities for data or the broadest view across the enterprise. - Balances business and technology, with non-product-specific technical detail - Shows how to leverage data to deliver ROI for a business - Engaging and approachable, with practical advice on the pros and cons of each domain, so that you learn how information fits together into a complete architecture - Provides a path for the data warehouse professional into the new normal of heterogeneity, including NoSQL solutions
  data integration in business intelligence: Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2019) A. Pasumpon Pandian, Ram Palanisamy, Klimis Ntalianis, 2020-03-04 This book presents the proceedings of the International Conference on Computing Networks, Big Data and IoT [ICCBI 2019], held on December 19–20, 2019 at the Vaigai College of Engineering, Madurai, India. Recent years have witnessed the intertwining development of the Internet of Things and big data, which are increasingly deployed in computer network architecture. As society becomes smarter, it is critical to replace the traditional technologies with modern ICT architectures. In this context, the Internet of Things connects smart objects through the Internet and as a result generates big data. This has led to new computing facilities being developed to derive intelligent decisions in the big data environment. The book covers a variety of topics, including information management, mobile computing and applications, emerging IoT applications, distributed communication networks, cloud computing, and healthcare big data. It also discusses security and privacy issues, network intrusion detection, cryptography, 5G/6G networks, social network analysis, artificial intelligence, human–machine interaction, smart home and smart city applications.
  data integration in business intelligence: Agile Data Warehousing for the Enterprise Ralph Hughes, 2015-09-19 Building upon his earlier book that detailed agile data warehousing programming techniques for the Scrum master, Ralph's latest work illustrates the agile interpretations of the remaining software engineering disciplines: - Requirements management benefits from streamlined templates that not only define projects quickly, but ensure nothing essential is overlooked. - Data engineering receives two new hyper modeling techniques, yielding data warehouses that can be easily adapted when requirements change without having to invest in ruinously expensive data-conversion programs. - Quality assurance advances with not only a stereoscopic top-down and bottom-up planning method, but also the incorporation of the latest in automated test engines. Use this step-by-step guide to deepen your own application development skills through self-study, show your teammates the world's fastest and most reliable techniques for creating business intelligence systems, or ensure that the IT department working for you is building your next decision support system the right way. - Learn how to quickly define scope and architecture before programming starts - Includes techniques of process and data engineering that enable iterative and incremental delivery - Demonstrates how to plan and execute quality assurance plans and includes a guide to continuous integration and automated regression testing - Presents program management strategies for coordinating multiple agile data mart projects so that over time an enterprise data warehouse emerges - Use the provided 120-day road map to establish a robust, agile data warehousing program
  data integration in business intelligence: Business Intelligence Marie-Aude Aufaure, Esteban Zimányi, 2012-01-16 Business Intelligence (BI) promises an organization the capability of collecting and analyzing internal and external data to generate knowledge and value, providing decision support at the strategic, tactical, and operational levels. Business Intelligence is now impacted by the Big Data phenomena and the evolution of society and users, and needs to take into account high-level semantics, reasoning about unstructured and structured data, and to provide a simplified access and better understanding of diverse BI tools accessible trough mobile devices. In particular, BI applications must cope with additional heterogeneous (often Web-based) sources, e.g., from social networks, blogs, competitors’, suppliers’, or distributors’ data, governmental or NGO-based analysis and papers, or from research publications. The lectures held at the First European Business Intelligence Summer School (eBISS), which are presented here in an extended and refined format, cover not only established BI technologies like data warehouses, OLAP query processing, or performance issues, but extend into new aspects that are important in this new environment and for novel applications, e.g., semantic technologies, social network analysis and graphs, services, large-scale management, or collaborative decision making. Combining papers by leading researchers in the field, this volume will equip the reader with the state-of-the-art background necessary for inventing the future of BI. It will also provide the reader with an excellent basis and many pointers for further research in this growing field.
  data integration in business intelligence: Management of Heterogeneous and Autonomous Database Systems Ahmed K. Elmagarmid, Marek Rusinkiewicz, Amit Sheth, 1999 An Overview of Multidatabase Systems: Past and Present / Athman Bouguettaya, Boualem Benatallah, Ahmed Elmagarmid / - Local Autonomy and Its Effects on Multidatabase Systems / Ahmed Elmagarmid, Weimin Du, Rafi Ahmed / - Semantic Similarities Between Objects in Multiple Databases / Vipul Kashyap, Amit Sheth / - Resolution of Representational Diversity in Multidatabase Systems / Joachim Hammer, Dennis McLeod / - Schema Integration: Past, Present, and Future / Sudha Ram, V. Ramesh / - Schema and Language Translation / Bogdan Czejdo, Le Gruenwald / - Multidatabase Languages / Paolo Missier, Marek Rusinkiewicz, W. Jin / - Interdependent Database Systems / George Karabatis, Marek Rusinkiewicz, Amit Sheth / - Correctness Criteria and Concurrency Control / Panos K. Chrysanthis, Krithi Ramamritham / - Transaction Management in Multidatabase Systems: Current Technologies and Formalisms / Ken Barker, Ahmed Elmagarmid / - Transaction-Based Recovery / Jari Veijalainen. ...
  data integration in business intelligence: Business Intelligence with SQL Server Reporting Services Adam Aspin, 2015-03-02 Business Intelligence with SQL Server Reporting Services helps you deliver business intelligence with panache. Harness the power of the Reporting Services toolkit to combine charts, gauges, sparklines, indicators, and maps into compelling dashboards and scorecards. Create compelling visualizations that seize your audience’s attention and help business users identify and react swiftly to changing business conditions. Best of all, you'll do all these things by creating new value from software that is already installed and paid for – SQL Server and the included SQL Server Reporting Services. Businesses run on numbers, and good business intelligence systems make the critical numbers immediately and conveniently accessible. Business users want access to key performance indicators in the office, at the beach, and while riding the subway home after a day's work. Business Intelligence with SQL Server Reporting Services helps you meet these need for anywhere/anytime access by including chapters specifically showing how to deliver on modern devices such as smart phones and tablets. You'll learn to deliver the same information, with similar look-and-feel, across the entire range of devices used in business today. Key performance indicators give fast notification of business unit performance Polished dashboards deliver essential metrics and strategic comparisons Visually arresting output on multiple devices focuses attention
  data integration in business intelligence: Implementing Business Intelligence Solutions Leveraging Data Analytics for Enhanced Decision-Making SURAJ DHARMAPURAM ANTONY SATYA VIVEK VARDHAN AKISETTY RAFA ABDUL DR. SINGH RAJ, 2024-11-10 In the ever-evolving landscape of the modern world, the synergy between technology and management has become a cornerstone of innovation and progress. This book, Implementing Business Intelligence Solutions: Leveraging Data Analytics for Enhanced Decision-Making, is conceived to bridge the gap between emerging technological advancements in data analytics and their strategic application in business management. Our objective is to equip readers with the tools and insights necessary to excel in this dynamic intersection of fields. This book is structured to provide a comprehensive exploration of the methodologies and strategies that define the innovation of business intelligence (BI) solutions and their integration into decision-making practices. From foundational theories to advanced applications, we delve into the critical aspects that drive successful BI initiatives in various industries. We have made a concerted effort to present complex concepts in a clear and accessible manner, making this work suitable for a diverse audience, including students, managers, and industry professionals. In authoring this book, we have drawn upon the latest research and best practices to ensure that readers not only gain a robust theoretical understanding but also acquire practical skills that can be applied in real-world scenarios. The chapters are designed to strike a balance between depth and breadth, covering topics ranging from technological development and data analytics adoption to the strategic management of BI initiatives. Additionally, we emphasize the importance of effective communication, dedicating sections to the art of presenting data-driven insights and solutions in a precise and academically rigorous manner. The inspiration for this book arises from a recognition of the crucial role that business intelligence and data analytics play in shaping the future of business decision-making. We are profoundly grateful to Chancellor Shri Shiv Kumar Gupta of Maharaja Agrasen Himalayan Garhwal University for his unwavering support and vision. His dedication to fostering academic excellence and promoting a culture of innovation has been instrumental in bringing this project to fruition. We hope this book will serve as a valuable resource and inspiration for those eager to deepen their understanding of how data analytics and BI can be harnessed together to drive business innovation. We believe that the knowledge and insights contained within these pages will empower readers to lead the way in creating data-driven solutions that will define the future of business decision-making. Thank you for joining us on this journey. Authors
  data integration in business intelligence: The Profit Impact of Business Intelligence Steve Williams, Nancy Williams, 2010-07-27 The Profit Impact of Business Intelligence presents an A-to-Z approach for getting the most business intelligence (BI) from a company's data assets or data warehouse. BI is not just a technology or methodology, it is a powerful new management approach that – when done right – can deliver knowledge, efficiency, better decisions, and profit to almost any organization that uses it. When BI first came on the scene, it promised a lot but often failed to deliver. The missing element was the business-centric focus explained in this book. It shows how you can achieve the promise of BI by connecting it to your organization's strategic goals, culture, and strengths while correcting your BI weaknesses. It provides a practical, process-oriented guide to achieve the full promise of BI; shows how world-class companies used BI to become leaders in their industries; helps senior business and IT executives understand the strategic impact of BI and how they can ensure a strong payoff from their BI investments; and identifies the most common mistakes organizations make in implementing BI. The book also includes a helpful glossary of BI terms; a BI readiness assessment for your organization; and Web links and extensive references for more information. - A practical, process-oriented book that will help organizations realize the promise of BI - Written by Nancy and Steve Williams, veteran consultants and instructors with hands-on, in the trenches experience in government and corporate business intelligence applications - Will help senior business and IT executives understand the strategic impact of BI and how they can help ensure a strong payoff on BI investments
  data integration in business intelligence: Data Integration Life Cycle Management with SSIS Andy Leonard, 2017-11-17 Build a custom BimlExpress framework that generates dozens of SQL Server Integration Services (SSIS) packages in minutes. Use this framework to execute related SSIS packages in a single command. You will learn to configure SSIS catalog projects, manage catalog deployments, and monitor SSIS catalog execution and history. Data Integration Life Cycle Management with SSIS shows you how to bring DevOps benefits to SSIS integration projects. Practices in this book enable faster time to market, higher quality of code, and repeatable automation. Code will be created that is easier to support and maintain. The book teaches you how to more effectively manage SSIS in the enterprise environment by drawing on the art and science of modern DevOps practices. What You'll Learn Generate dozens of SSIS packages in minutes to speed your integration projects Reduce the execution of related groups of SSIS packages to a single command Successfully handle SSIS catalog deployments and their projects Monitor the execution and history of SSIS catalog projects Manage your enterprise data integration life cycle through automated tools and utilities Who This Book Is For Database professionals working with SQL Server Integration Services in enterprise environments. The book is especially useful to those readers following, or wishing to follow, DevOps practices in their use of SSIS.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …