Advertisement
data analysis for social science pdf: Data Analysis for Social Science Elena Llaudet, Kosuke Imai, 2022-11-29 Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors-- |
data analysis for social science pdf: Theory-Based Data Analysis for the Social Sciences Carol S. Aneshensel, 2013 This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of third variables to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions. |
data analysis for social science pdf: Text Mining for Qualitative Data Analysis in the Social Sciences Gregor Wiedemann, 2016-08-23 Gregor Wiedemann evaluates text mining applications for social science studies with respect to conceptual integration of consciously selected methods, systematic optimization of algorithms and workflows, and methodological reflections relating to empirical research. In an exemplary study, he introduces workflows to analyze a corpus of around 600,000 newspaper articles on the subject of “democratic demarcation” in Germany. He provides a valuable resource for innovative measures to social scientists and computer scientists in the field of applied natural language processing. |
data analysis for social science pdf: Data Analytics for the Social Sciences G. David Garson, 2021-11-30 Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the caret package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two Quick Start exercises designed to allow quick immersion in chapter topics, followed by In Depth coverage. Data are available for all examples and runnable R code is provided in a Command Summary. An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, books within the book on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis. |
data analysis for social science pdf: Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences Michael J. Albers, 2017-04-03 Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University. |
data analysis for social science pdf: Quantitative Social Science Kosuke Imai, Lori D. Bougher, 2021-03-16 Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a translation of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place-- |
data analysis for social science pdf: Qualitative Data Analysis Ian Dey, 2003-09-02 Qualitative Data Analysis shows that learning how to analyse qualitative data by computer can be fun. Written in a stimulating style, with examples drawn mainly from every day life and contemporary humour, it should appeal to a wide audience. |
data analysis for social science pdf: Social Science Research Anol Bhattacherjee, 2012-04-01 This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages. |
data analysis for social science pdf: Analyzing Social Science Data D. A. De Vaus, 2002-09-17 Abridged Contents PART ONE: HOW TO PREPARE DATA FOR ANALYSIS\PART TWO: HOW TO PREPARE VARIABLE FOR ANALYSIS\PART THREE: HOW TO REDUCE THE AMOUNT OF DATA TO ANALYZE\PART FOUR: HOW AND WHEN TO GENERALIZE\PART FIVE: HOW TO ANALYZE A SINGLE VARIABLE\PART SIX: HOW TO ANALYZE TWO VARIABLES\PART SEVEN: HOW TO CARRY OUT MULTIVARIATE ANALYSIS |
data analysis for social science pdf: Data Science and Social Research N. Carlo Lauro, Enrica Amaturo, Maria Gabriella Grassia, Biagio Aragona, Marina Marino, 2017-11-17 This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from the international conference on Data Science & Social Research, held in Naples, Italy in February 2016, and will appeal to researchers in the social sciences working in academia as well as in statistical institutes and offices. |
data analysis for social science pdf: Social Phenomena Bruno Gonçalves, Nicola Perra, 2015-08-14 This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, physics and computer science. We hope to not only provide an unifying framework to understand and characterize social phenomena, but also to help foster the dialogue between researchers working on similar problems from different fields and perspectives. |
data analysis for social science pdf: Applied Panel Data Analysis for Economic and Social Surveys Hans-Jürgen Andreß, Katrin Golsch, Alexander W. Schmidt, 2013-01-24 Many economic and social surveys are designed as panel studies, which provide important data for describing social changes and testing causal relations between social phenomena. This textbook shows how to manage, describe, and model these kinds of data. It presents models for continuous and categorical dependent variables, focusing either on the level of these variables at different points in time or on their change over time. It covers fixed and random effects models, models for change scores and event history models. All statistical methods are explained in an application-centered style using research examples from scholarly journals, which can be replicated by the reader through data provided on the accompanying website. As all models are compared to each other, it provides valuable assistance with choosing the right model in applied research. The textbook is directed at master and doctoral students as well as applied researchers in the social sciences, psychology, business administration and economics. Readers should be familiar with linear regression and have a good understanding of ordinary least squares estimation. |
data analysis for social science pdf: Qualitative Analysis for Social Scientists Anselm L. Strauss, 1987-06-26 The teaching of qualitative analysis in the social sciences is rarely undertaken in a structured way. This handbook is designed to remedy that and to present students and researchers with a systematic method for interpreting qualitative data', whether derived from interviews, field notes, or documentary materials. The special emphasis of the book is on how to develop theory through qualitative analysis. The reader is provided with the tools for doing qualitative analysis, such as codes, memos, memo sequences, theoretical sampling and comparative analysis, and diagrams, all of which are abundantly illustrated by actual examples drawn from the author's own varied qualitative research and research consultations, as well as from his research seminars. Many of the procedural discussions are concluded with rules of thumb that can usefully guide the researchers' analytic operations. The difficulties that beginners encounter when doing qualitative analysis and the kinds of persistent questions they raise are also discussed, as is the problem of how to integrate analyses. In addition, there is a chapter on the teaching of qualitative analysis and the giving of useful advice during research consultations, and there is a discussion of the preparation of material for publication. The book has been written not only for sociologists but for all researchers in the social sciences and in such fields as education, public health, nursing, and administration who employ qualitative methods in their work. |
data analysis for social science pdf: Big Data and Social Science Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter, Julia Lane, 2016-08-10 Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website. |
data analysis for social science pdf: Data Analysis for the Social Sciences Douglas Bors, 2018-01-08 ′This book fosters in-depth understanding of the logic underpinning the most common statistical tests within the behavioural sciences. By emphasising the shared ground between these tests, the author provides crucial scaffolding for students as they embark upon their research journey.′ —Ruth Horry, Psychology, Swansea University ′This unique text presents the conceptual underpinnings of statistics as well as the computation and application of statistics to real-life situations--a combination rarely covered in one book. A must-have for students learning statistical techniques and a go-to handbook for experienced researchers.′ —Barbra Teater, Social Work, College of Staten Island, City University of New York Accessible, engaging, and informative, this book will help any social science student approach statistics with confidence. With a well-paced and well-judged integrated approach rather than a simple linear trajectory, this book progresses at a realistic speed that matches the pace at which statistics novices actually learn. Packed with global, interdisciplinary examples that ground statistical theory and concepts in real-world situations, it shows students not only how to apply newfound knowledge using IBM SPSS Statistics, but also why they would want to. Spanning statistics basics like variables, constants, and sampling through to t-tests, multiple regression and factor analysis, it builds statistical literacy while also covering key research principles like research questions, error types and results reliability. It shows you how to: Describe data with graphs, tables, and numbers Calculate probability and value distributions Test a priori and post hoc hypotheses Conduct Chi-squared tests and observational studies Structure ANOVA, ANCOVA, and factorial designs Supported by lots of visuals and a website with interactive demonstrations, author video, and practice datasets, this book is the student-focused companion to support students through their statistics journeys. |
data analysis for social science pdf: Statistics and Data Analysis for Social Science Eric J. Krieg, 2019-07-11 Apply statistics to your everyday life. Statistics and Data Analysis for Social Science helps students to build a strong foundational understanding of statistics by providing clarity around when and why statistics useful. Rather than focusing on the how to of statistics, author Eric J. Krieg simplifies the complexity of statistical calculations by introducing only what is necessary to understanding each concept. Every chapter is written around and applied to a different social problem or issues—enabling students to broaden their imagination about the statistical tools that can be used to make sense of our world and, maybe, to make the world a better place. In addition to updating all the tables and examples with new data, the Second Edition has replaced the section on SPSS with three new sets of exercises at the end of each chapter: Chapter Exercises for students complete during their reading and bring questions to class, In-Class Exercises that focus on the areas that students struggled with during their reading, and Homework Exercises that can be assigned if students need extra practice with the concepts. |
data analysis for social science pdf: Quantitative Data Analysis for Social Scientists Alan Bryman, Duncan Cramer, 1990-01-01 |
data analysis for social science pdf: Data Analysis for Social Science Elena Llaudet, Kosuke Imai, 2022-11-29 Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors-- |
data analysis for social science pdf: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data analysis for social science pdf: Data Science and Social Research II Paolo Mariani, Mariangela Zenga, 2020-11-25 The peer-reviewed contributions gathered in this book address methods, software and applications of statistics and data science in the social sciences. The data revolution in social science research has not only produced new business models, but has also provided policymakers with better decision-making support tools. In this volume, statisticians, computer scientists and experts on social research discuss the opportunities and challenges of the social data revolution in order to pave the way for addressing new research problems. The respective contributions focus on complex social systems and current methodological advances in extracting social knowledge from large data sets, as well as modern social research on human behavior and society using large data sets. Moreover, they analyze integrated systems designed to take advantage of new social data sources, and discuss quality-related issues. The papers were originally presented at the 2nd International Conference on Data Science and Social Research, held in Milan, Italy, on February 4-5, 2019. |
data analysis for social science pdf: Categorical Data Analysis for the Behavioral and Social Sciences Razia Azen, Cindy M. Walker, 2021-05-26 Featuring a practical approach with numerous examples, the second edition of Categorical Data Analysis for the Behavioral and Social Sciences focuses on helping the reader develop a conceptual understanding of categorical methods, making it a much more accessible text than others on the market. The authors cover common categorical analysis methods and emphasize specific research questions that can be addressed by each analytic procedure, including how to obtain results using SPSS, SAS, and R, so that readers are able to address the research questions they wish to answer. Each chapter begins with a Look Ahead section to highlight key content. This is followed by an in-depth focus and explanation of the relationship between the initial research question, the use of software to perform the analyses, and how to interpret the output substantively. Included at the end of each chapter are a range of software examples and questions to test knowledge. New to the second edition: The addition of R syntax for all analyses and an update of SPSS and SAS syntax. The addition of a new chapter on GLMMs. Clarification of concepts and ideas that graduate students found confusing, including revised problems at the end of the chapters. Written for those without an extensive mathematical background, this book is ideal for a graduate course in categorical data analysis taught in departments of psychology, educational psychology, human development and family studies, sociology, public health, and business. Researchers in these disciplines interested in applying these procedures will also appreciate this book’s accessible approach. |
data analysis for social science pdf: Bayesian Analysis for the Social Sciences Simon Jackman, 2009-10-27 Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets. |
data analysis for social science pdf: Introduction to Data Science for Social and Policy Research Jose Manuel Magallanes Reyes, 2017-09-21 This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R. |
data analysis for social science pdf: Spatial Analysis for the Social Sciences David Darmofal, 2015-11-12 This book shows how to model the spatial interactions between actors that are at the heart of the social sciences. |
data analysis for social science pdf: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page. |
data analysis for social science pdf: Time Series Analysis for the Social Sciences Janet M. Box-Steffensmeier, John R. Freeman, Matthew P. Hitt, Jon C. W. Pevehouse, 2014-12-22 Time series, or longitudinal, data are ubiquitous in the social sciences. Unfortunately, analysts often treat the time series properties of their data as a nuisance rather than a substantively meaningful dynamic process to be modeled and interpreted. Time Series Analysis for the Social Sciences provides accessible, up-to-date instruction and examples of the core methods in time series econometrics. Janet M. Box-Steffensmeier, John R. Freeman, Jon C. Pevehouse and Matthew P. Hitt cover a wide range of topics including ARIMA models, time series regression, unit-root diagnosis, vector autoregressive models, error-correction models, intervention models, fractional integration, ARCH models, structural breaks, and forecasting. This book is aimed at researchers and graduate students who have taken at least one course in multivariate regression. Examples are drawn from several areas of social science, including political behavior, elections, international conflict, criminology, and comparative political economy. |
data analysis for social science pdf: The Behavioral and Social Sciences National Research Council, Division of Behavioral and Social Sciences and Education, Commission on Behavioral and Social Sciences and Education, Committee on Basic Research in the Behavioral and Social Sciences, 1988-02-01 This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research. |
data analysis for social science pdf: Dyadic Data Analysis David A. Kenny, Deborah A. Kashy, William L. Cook, 2020-11-26 Interpersonal phenomena such as attachment, conflict, person perception, learning, and influence have traditionally been studied by examining individuals in isolation, which falls short of capturing their truly interpersonal nature. This book offers state-of-the-art solutions to this age-old problem by presenting methodological and data-analytic approaches useful in investigating processes that take place among dyads: couples, coworkers, parent and child, teacher and student, or doctor and patient, to name just a few. Rich examples from psychology and across the behavioral and social sciences help build the researcher's ability to conceptualize relationship processes; model and test for actor effects, partner effects, and relationship effects; and model and control for the statistical interdependence that can exist between partners. The companion website provides clarifications, elaborations, corrections, and data and files for each chapter. |
data analysis for social science pdf: Handbook of Data Analysis Melissa A Hardy, Alan Bryman, 2009-06-17 ′This book provides an excellent reference guide to basic theoretical arguments, practical quantitative techniques and the methodologies that the majority of social science researchers are likely to require for postgraduate study and beyond′ - Environment and Planning ′The book provides researchers with guidance in, and examples of, both quantitative and qualitative modes of analysis, written by leading practitioners in the field. The editors give a persuasive account of the commonalities of purpose that exist across both modes, as well as demonstrating a keen awareness of the different things that each offers the practising researcher′ - Clive Seale, Brunel University ′With the appearance of this handbook, data analysts no longer have to consult dozens of disparate publications to carry out their work. The essential tools for an intelligent telling of the data story are offered here, in thirty chapters written by recognized experts. ′ - Michael Lewis-Beck, F Wendell Miller Distinguished Professor of Political Science, University of Iowa ′This is an excellent guide to current issues in the analysis of social science data. I recommend it to anyone who is looking for authoritative introductions to the state of the art. Each chapter offers a comprehensive review and an extensive bibliography and will be invaluable to researchers wanting to update themselves about modern developments′ - Professor Nigel Gilbert, Pro Vice-Chancellor and Professor of Sociology, University of Surrey This is a book that will rapidly be recognized as the bible for social researchers. It provides a first-class, reliable guide to the basic issues in data analysis, such as the construction of variables, the characterization of distributions and the notions of inference. Scholars and students can turn to it for teaching and applied needs with confidence. The book also seeks to enhance debate in the field by tackling more advanced topics such as models of change, causality, panel models and network analysis. Specialists will find much food for thought in these chapters. A distinctive feature of the book is the breadth of coverage. No other book provides a better one-stop survey of the field of data analysis. In 30 specially commissioned chapters the editors aim to encourage readers to develop an appreciation of the range of analytic options available, so they can choose a research problem and then develop a suitable approach to data analysis. |
data analysis for social science pdf: Excel 2019 for Social Science Statistics Thomas J. Quirk, 2021-03-02 This book shows the capabilities of Microsoft Excel in teaching social science statistics effectively. Similar to the previously published Excel 2016 for Social Sciences Statistics, this book is a step-by-step, exercise-driven guide for students and practitioners who need to master Excel to solve practical social science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically inclined, or you are wary of computers, this is the right book for you. Excel, a widely available computer program for students and managers, is also an effective teaching and learning tool for quantitative analyses in social science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. Excel 2019 for Social Science Statistics: A Guide to Solving Practical Problems capitalizes on these improvements by teaching students and managers how to apply Excel to statistical techniques necessary in their courses and work. In this new edition, each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand social science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full practice test (with answers in an appendix) that allows readers to test what they have learned. |
data analysis for social science pdf: Data Mining for the Social Sciences Paul Attewell, David Monaghan, 2015-05 The amount of information collected on human behavior every day is staggering, and exponentially greater than at any time in the past. At the same time, we are inundated by stories of powerful algorithms capable of churning through this sea of data and uncovering patterns. These techniques go by many names - data mining, predictive analytics, machine learning - and they are being used by governments as they spy on citizens and by huge corporations are they fine-tune their advertising strategies. And yet social scientists continue mainly to employ a set of analytical tools developed in an earlier era when data was sparse and difficult to come by. In this timely book, Paul Attewell and David Monaghan provide a simple and accessible introduction to Data Mining geared towards social scientists. They discuss how the data mining approach differs substantially, and in some ways radically, from that of conventional statistical modeling familiar to most social scientists. They demystify data mining, describing the diverse set of techniques that the term covers and discussing the strengths and weaknesses of the various approaches. Finally they give practical demonstrations of how to carry out analyses using data mining tools in a number of statistical software packages. It is the hope of the authors that this book will empower social scientists to consider incorporating data mining methodologies in their analytical toolkits--Provided by publisher. |
data analysis for social science pdf: Statistics and Data Analysis for Social Science Eric J. Krieg, 2013-11-01 For a one-semester, undergraduate introductory course in social statistics. Statistical tools for understanding the social world. This first edition text seeks to answer the question, universally asked by the social science student, Why statistics? The author introduces only those statistical concepts that are necessary to understand, interpret, and present social science research. All concepts are introduced in the context of a social science application, and strong emphasis is placed on demonstrating what data looks like, as opposed to giving theoretical explanations. Complexity of calculations is reduced to those elements necessary for understanding the statistical concept. Optional technology use is paired with the core elements of the course, making this text a pragmatic and engaging introduction to the practice of social statistics. |
data analysis for social science pdf: Research Methods and Data Analysis for Business Decisions James E. Sallis, Geir Gripsrud, Ulf Henning Olsson, Ragnhild Silkoset, 2021-10-30 This introductory textbook presents research methods and data analysis tools in non-technical language. It explains the research process and the basics of qualitative and quantitative data analysis, including procedures and methods, analysis, interpretation, and applications using hands-on data examples in QDA Miner Lite and IBM SPSS Statistics software. The book is divided into four parts that address study and research design; data collection, qualitative methods and surveys; statistical methods, including hypothesis testing, regression, cluster and factor analysis; and reporting. The intended audience is business and social science students learning scientific research methods, however, given its business context, the book will be equally useful for decision-makers in businesses and organizations. |
data analysis for social science pdf: Just Plain Data Analysis Gary M. Klass, 2012-04-13 Just Plain Data Analysis teaches students statistical literacy skills that they can use to evaluate and construct arguments about public affairs issues grounded in numerical evidence. The book addresses skills that are often not taught in introductory social science research methods courses and that are often covered sketchily in the research methods textbooks: where to find commonly used measures of political and social conditions; how to assess the reliability and validity of specific indicators; how to present data efficiently in charts and tables; how to avoid common misinterpretations and misrepresentations of data; and how to evaluate causal arguments based on numerical data. With a new chapter on statistical fallacies and updates throughout the text, the new edition teaches students how to find, interpret, and present commonly used social indicators in an even clearer and more practical way. |
data analysis for social science pdf: Advances in Social Science Research Using R Hrishikesh D. Vinod, 2009-12-24 Quantitative social science research has been expanding due to the ava- ability of computers and data over the past few decades. Yet the textbooks and supplements for researchers do not adequately highlight the revolution created by the R software [2] and graphics system. R is fast becoming the l- gua franca of quantitative research with some 2000 free specialized packages, where the latest versions can be downloaded in seconds. Many packages such as “car” [1] developed by social scientists are popular among all scientists. An early 2009 article [3] in the New York Times notes that statisticians, engineers and scientists without computer programming skills ?nd R “easy to use.” A common language R can readily promote deeper mutual respect and understanding of unique problems facing quantitative work in various social sciences. Often the solutions developed in one ?eld can be extended and used in many ?elds. This book promotes just such exchange of ideas across many social sciences. Since Springer has played a leadership role in promoting R, we are fortunate to have Springer publish this book. A Conference on Quantitative Social Science Research Using R was held in New York City at the Lincoln Center campus of Fordham University, June 18–19, 2009. This book contains selected papers presented at the conference, representing the “Proceedings” of the conference. |
data analysis for social science pdf: Statistical Power Analysis for the Behavioral Sciences Jacob Cohen, 2013-05-13 Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of qualifying dependent variables and; * expanded power and sample size tables for multiple regression/correlation. |
data analysis for social science pdf: Longitudinal and Panel Data Edward W. Frees, 2004-08-16 An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers. |
data analysis for social science pdf: Statistics for the Social Sciences R. Mark Sirkin, 1999-05-14 Do your students lack confidence in handling quantitative work? Do they get confused about how to enter statistical data on SAS and SPSS programs? This Second Edition of Mark Sirkin's popular textbook is the solution for these dilemmas. The book progresses from concepts that require little computational work to the more demanding. It emphasizes utilization so that students appreciate the usefulness of statistics and shows how the interpretation of data is related to the methods by which data was obtained. The author includes coverage of the scientific method, levels of measurement and the interpretation of tables. |
data analysis for social science pdf: Text Mining Gabe Ignatow, Rada Mihalcea, 2016-04-20 Online communities generate massive volumes of natural language data and the social sciences continue to learn how to best make use of this new information and the technology available for analyzing it. Text Mining brings together a broad range of contemporary qualitative and quantitative methods to provide strategic and practical guidance on analyzing large text collections. This accessible book, written by a sociologist and a computer scientist, surveys the fast-changing landscape of data sources, programming languages, software packages, and methods of analysis available today. Suitable for novice and experienced researchers alike, the book will help readers use text mining techniques more efficiently and productively. |
data analysis for social science pdf: Making Sense of Statistical Methods in Social Research Keming Yang, 2010-03-25 Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap. |
14.310x: Data Analysis for Social Scientists - Amazon Web …
We will start with essential notions of probability and statistics. We will proceed to cover techniques in modern data analysis: regression and econometrics, design of experiments, …
Code and Data for the Social Sciences: A Practitioner’s Guide
We write code to clean data, to transform data, to scrape data, and to merge data. We write code to execute statistical analyses, to simulate models, to format results, to produce plots. We stare …
Introduction to Data Analysis Handbook - ed
observe basic techniques of data analysis to real-life Head Start examples; and identify and articulate trends and patterns in data gathered over time. Guiding Principles for Approaching …
STATISTICAL METHODS FOR THE SOCIAL SCIENCES - JSSCACS
we discuss how to describe data, using graphical and summary statistics. Chapter 3 covers probability while Chapters 4 and 5 cover probability distributions. Chapters 6, 7, 8 and 9 …
Statistical Tools for Social Sciences: A Comprehensive Review …
Evaluate the effectiveness of different statistical tools in analyzing social science data. Examine how statistical tools contribute to the interpretation of social phenomena. Assess the impact of …
DATA ANALYSIS IN SOCIAL SCIENCE RESEARCH - ijnrd.org
The social science data seeks researchers with training or a demonstrable aptitude for social science work and programming to refine and extend their skills through the generation, …
Statistical Methods in Social Science Research
specifically made about data integration, meta-analysis, content analysis, and multidimensional analysis—topics which have been dealt with in this book with due attention to rigor, simplicity, …
Theory-Based Data Analysis for the Social Sciences
Theory-Based Data Analysis for the Social Sciences applies the reasoning of the elaboration model to multivariate statistical techniques for observational data, making the model applicable …
QUANTITATIVE METHODS FOR THE SOCIAL SCIENCES: A …
Social science studies have remained prominent and contributors to economic development. However, the invention of data science in the field of social science requires various methods …
DATA ANALYSIS FOR THE SOCIAL SCIENCES - us.sagepub.com
Once researchers have collected their data, the first step in the analysis process is to summarize the observations, both pictorially and numerically. The purpose of this chapter is to examine …
SPSS: An Imperative Quantitative Data Analysis Tool for Social …
Abstract:- The purpose of this paper is to elaborate on the importance of the Statistical Package for the Social Sciences, widely known as SPSS in the field of social sciences as an effective...
QUANTITATIVE DATA ANALYSIS USING SPSS - Archive.org
This is a practical introduction to quantitative data analysis using the most widely available statistical software – SPSS (Statistical Package for the Social Sciences). The aim is to get …
POLITICAL DATA ANALYSIS
This course provides an introduction to the theory and practice of quantitative data analysis in political science. Most of the course will focus on probability theory, mathematical statistics and …
An Overview of Data Analysis and Interpretations in Research
Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, in different business, science, and social science domains. It can be done …
Quantitative Social Science: An Introduction - Chapter one …
In quantitative social science research, scholars analyze data to understand and solve problems about society and human behavior. For example, researchers examine racial discrimination in …
Introduction to Data Science for Social and Policy Research
Real-world data sets are messy and complicated. Written for students in social science and public management, this authoritative but approachable guide describes all the tools needed to …
Introduction to Quantitative Data Analysis in the Behavioral …
It looks at the data analysis from different viewpoints and using different tests to enable a student to learn how and when to apply different analysis methods.
SPSS as a means for Scientific Analysis in Social Science …
Abstract: SPSS (Statistical Package for the Social Sciences) is an innovative computerized programming for statistical analysis, specially developed for the social sciences research. Now …
Using Panel Data Techniques for Social Science - Redalyc
Se muestran las ventajas y se describen los pasos para aplicar técnicas para datos tipo panel (dp) en ciencias sociales. Se argumenta que los investigadores deberían entender las …
14.310x: Data Analysis for Social Scientists - Amazon Web …
We will start with essential notions of probability and statistics. We will proceed to cover techniques in modern data analysis: regression and econometrics, design of experiments, …
DATA ANALYSIS FOR THE SOCIAL SCIENCES - SAGE …
We differentiate the basic forms of research (experimental, quasi-experimental, and observational designs) and review the main characteristics of each.
Code and Data for the Social Sciences: A Practitioner’s Guide
We write code to clean data, to transform data, to scrape data, and to merge data. We write code to execute statistical analyses, to simulate models, to format results, to produce plots. We …
Introduction to Data Analysis Handbook - ed
observe basic techniques of data analysis to real-life Head Start examples; and identify and articulate trends and patterns in data gathered over time. Guiding Principles for Approaching …
STATISTICAL METHODS FOR THE SOCIAL SCIENCES - JSSCACS
we discuss how to describe data, using graphical and summary statistics. Chapter 3 covers probability while Chapters 4 and 5 cover probability distributions. Chapters 6, 7, 8 and 9 …
Statistical Tools for Social Sciences: A Comprehensive Review …
Evaluate the effectiveness of different statistical tools in analyzing social science data. Examine how statistical tools contribute to the interpretation of social phenomena. Assess the impact of …
DATA ANALYSIS IN SOCIAL SCIENCE RESEARCH - ijnrd.org
The social science data seeks researchers with training or a demonstrable aptitude for social science work and programming to refine and extend their skills through the generation, …
Statistical Methods in Social Science Research
specifically made about data integration, meta-analysis, content analysis, and multidimensional analysis—topics which have been dealt with in this book with due attention to rigor, simplicity, …
Theory-Based Data Analysis for the Social Sciences
Theory-Based Data Analysis for the Social Sciences applies the reasoning of the elaboration model to multivariate statistical techniques for observational data, making the model applicable …
QUANTITATIVE METHODS FOR THE SOCIAL SCIENCES: A …
Social science studies have remained prominent and contributors to economic development. However, the invention of data science in the field of social science requires various methods …
DATA ANALYSIS FOR THE SOCIAL SCIENCES - us.sagepub.com
Once researchers have collected their data, the first step in the analysis process is to summarize the observations, both pictorially and numerically. The purpose of this chapter is to examine …
SPSS: An Imperative Quantitative Data Analysis Tool for …
Abstract:- The purpose of this paper is to elaborate on the importance of the Statistical Package for the Social Sciences, widely known as SPSS in the field of social sciences as an effective...
QUANTITATIVE DATA ANALYSIS USING SPSS - Archive.org
This is a practical introduction to quantitative data analysis using the most widely available statistical software – SPSS (Statistical Package for the Social Sciences). The aim is to get …
POLITICAL DATA ANALYSIS
This course provides an introduction to the theory and practice of quantitative data analysis in political science. Most of the course will focus on probability theory, mathematical statistics …
An Overview of Data Analysis and Interpretations in Research
Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, in different business, science, and social science domains. It can be done …
Quantitative Social Science: An Introduction - Chapter one …
In quantitative social science research, scholars analyze data to understand and solve problems about society and human behavior. For example, researchers examine racial discrimination in …
Introduction to Data Science for Social and Policy Research
Real-world data sets are messy and complicated. Written for students in social science and public management, this authoritative but approachable guide describes all the tools needed to …
Introduction to Quantitative Data Analysis in the …
It looks at the data analysis from different viewpoints and using different tests to enable a student to learn how and when to apply different analysis methods.
SPSS as a means for Scientific Analysis in Social Science …
Abstract: SPSS (Statistical Package for the Social Sciences) is an innovative computerized programming for statistical analysis, specially developed for the social sciences research. Now …
Using Panel Data Techniques for Social Science - Redalyc
Se muestran las ventajas y se describen los pasos para aplicar técnicas para datos tipo panel (dp) en ciencias sociales. Se argumenta que los investigadores deberían entender las …