Data Analysis And Application

Advertisement



  data analysis and application: Data Analysis and Applications 1 Christos H. Skiadas, James R. Bozeman, 2019-05-21 This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining.
  data analysis and application: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  data analysis and application: Handbook of Statistical Analysis and Data Mining Applications Ken Yale, Robert Nisbet, Gary D. Miner, 2017-11-09 Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
  data analysis and application: Methods and Applications of Longitudinal Data Analysis Xian Liu, 2015-09-01 Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.
  data analysis and application: Topological Data Analysis with Applications Gunnar Carlsson, Mikael Vejdemo-Johansson, 2021-12-16 This timely text introduces topological data analysis from scratch, with detailed case studies.
  data analysis and application: Correlated Data Analysis: Modeling, Analytics, and Applications Xue-Kun Song, Peter X. -K. Song, 2007-07-27 This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.
  data analysis and application: Compositional Data Analysis Vera Pawlowsky-Glahn, Antonella Buccianti, 2011-09-19 It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.
  data analysis and application: Applied Compositional Data Analysis Peter Filzmoser, Karel Hron, Matthias Templ, 2018-11-03 This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.
  data analysis and application: Introduction to Statistics and Data Analysis Christian Heumann, Michael Schomaker, Shalabh, 2023-01-26 Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.
  data analysis and application: Big Data Analytics in Supply Chain Management Iman Rahimi, Amir H. Gandomi, Simon James Fong, M. Ali Ülkü, 2020-12-20 In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
  data analysis and application: Discrete Data Analysis with R Michael Friendly, David Meyer, 2015-12-16 An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
  data analysis and application: Data Analysis, Machine Learning and Applications Christine Preisach, Hans Burkhardt, Lars Schmidt-Thieme, Reinhold Decker, 2008-04-13 Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
  data analysis and application: High-Dimensional Data Analysis with Low-Dimensional Models John Wright, Yi Ma, 2022-01-13 Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.
  data analysis and application: Applied Missing Data Analysis Craig K. Enders, 2010-04-23 Walking readers step by step through complex concepts, this book translates missing data techniques into something that applied researchers and graduate students can understand and utilize in their own research. Enders explains the rationale and procedural details for maximum likelihood estimation, Bayesian estimation, multiple imputation, and models for handling missing not at random (MNAR) data. Easy-to-follow examples and small simulated data sets illustrate the techniques and clarify the underlying principles. The companion website includes data files and syntax for the examples in the book as well as up-to-date information on software. The book is accessible to substantive researchers while providing a level of detail that will satisfy quantitative specialists. This book will appeal to researchers and graduate students in psychology, education, management, family studies, public health, sociology, and political science. It will also serve as a supplemental text for doctoral-level courses or seminars in advanced quantitative methods, survey analysis, longitudinal data analysis, and multilevel modeling, and as a primary text for doctoral-level courses or seminars in missing data.
  data analysis and application: Topological Methods in Data Analysis and Visualization Valerio Pascucci, Xavier Tricoche, Hans Hagen, Julien Tierny, 2010-11-23 Topology-based methods are of increasing importance in the analysis and visualization of datasets from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation of large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. . The editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. This book contains the best 20 peer-reviewed papers resulting from the discussions and presentations at the third workshop on Topological Methods in Data Analysis and Visualization, held 2009 in Snowbird, Utah, US. The 2009 TopoInVis workshop follows the two successful workshops in 2005 (Slovakia) and 2007 (Germany).
  data analysis and application: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data analysis and application: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-08-01 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
  data analysis and application: Data Analysis in Management with SPSS Software J.P. Verma, 2012-12-13 This book provides readers with a greater understanding of a variety of statistical techniques along with the procedure to use the most popular statistical software package SPSS. It strengthens the intuitive understanding of the material, thereby increasing the ability to successfully analyze data in the future. The book provides more control in the analysis of data so that readers can apply the techniques to a broader spectrum of research problems. This book focuses on providing readers with the knowledge and skills needed to carry out research in management, humanities, social and behavioural sciences by using SPSS.
  data analysis and application: Computational Topology for Data Analysis Tamal Krishna Dey, Yusu Wang, 2022-03-10 Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
  data analysis and application: Python for Data Analysis Wes McKinney, 2017-09-25 Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
  data analysis and application: Concept Data Analysis Claudio Carpineto, Giovanni Romano, 2004-09-03 With the advent of the Web along with the unprecedented amount of information available in electronic format, conceptual data analysis is more useful and practical than ever, because this technology addresses important limitations of the systems that currently support users in their quest for information. Concept Data Analysis: Theory & Applications is the first book that provides a comprehensive treatment of the full range of algorithms available for conceptual data analysis, spanning creation, maintenance, display and manipulation of concept lattices. The accompanying website allows you to gain a greater understanding of the principles covered in the book through actively working on the topics discussed. The three main areas explored are interactive mining of documents or collections of documents (including Web documents), automatic text ranking, and rule mining from structured data. The potentials of conceptual data analysis in the application areas being considered are further illustrated by two detailed case studies. Concept Data Analysis: Theory & Applications is essential for researchers active in information processing and management and industry practitioners who are interested in creating a commercial product for conceptual data analysis or developing content management applications.
  data analysis and application: Data Science Applied to Sustainability Analysis Jennifer Dunn, Prasanna Balaprakash, 2021-05-11 Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
  data analysis and application: Regression Analysis and its Application Richard F. Gunst, Robert L. Mason, 2018-04-27 Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.
  data analysis and application: An Introduction to Categorical Data Analysis Alan Agresti, 2018-10-11 A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.
  data analysis and application: Statistical Data Analysis Glen Cowan, 1998 This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are takenfrom particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques,statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).
  data analysis and application: Inference for Functional Data with Applications Lajos Horváth, Piotr Kokoszka, 2012-05-08 This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.
  data analysis and application: Data Analytics for Intelligent Transportation Systems Mashrur Chowdhury, Kakan Dey, Amy Apon, 2024-11-02 Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics
  data analysis and application: Data Analysis and Applications 1 Christos H. Skiadas, James R. Bozeman, 2019-03-04 This series of books collects a diverse array of work that provides the reader with theoretical and applied information on data analysis methods, models, and techniques, along with appropriate applications. Volume 1 begins with an introductory chapter by Gilbert Saporta, a leading expert in the field, who summarizes the developments in data analysis over the last 50 years. The book is then divided into three parts: Part 1 presents clustering and regression cases; Part 2 examines grouping and decomposition, GARCH and threshold models, structural equations, and SME modeling; and Part 3 presents symbolic data analysis, time series and multiple choice models, modeling in demography, and data mining.
  data analysis and application: Advanced Excel for Scientific Data Analysis Robert De Levie, 2004 This guide to Excel focuses on three areas--least squares, Fourier transformation, and digital simulation. It illustrates the techniques with detailed examples, many drawn from the scientific literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. De Levie is affiliated with Bowdoin College. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
  data analysis and application: Computational and Statistical Methods for Analysing Big Data with Applications Shen Liu, James Mcgree, Zongyuan Ge, Yang Xie, 2015-11-20 Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
  data analysis and application: Dyadic Data Analysis David A. Kenny, Deborah A. Kashy, William L. Cook, 2020-11-26 Interpersonal phenomena such as attachment, conflict, person perception, learning, and influence have traditionally been studied by examining individuals in isolation, which falls short of capturing their truly interpersonal nature. This book offers state-of-the-art solutions to this age-old problem by presenting methodological and data-analytic approaches useful in investigating processes that take place among dyads: couples, coworkers, parent and child, teacher and student, or doctor and patient, to name just a few. Rich examples from psychology and across the behavioral and social sciences help build the researcher's ability to conceptualize relationship processes; model and test for actor effects, partner effects, and relationship effects; and model and control for the statistical interdependence that can exist between partners. The companion website provides clarifications, elaborations, corrections, and data and files for each chapter.
  data analysis and application: Data Analytics Mohiuddin Ahmed, Al-Sakib Khan Pathan, 2018-09-21 Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies.
  data analysis and application: Data Analysis Methods in Physical Oceanography Richard E. Thomson, William J. Emery, 2001-04-03 Data Analysis Methods in Physical Oceanography is a practical referenceguide to established and modern data analysis techniques in earth and oceansciences. This second and revised edition is even more comprehensive with numerous updates, and an additional appendix on 'Convolution and Fourier transforms'. Intended for both students and established scientists, the fivemajor chapters of the book cover data acquisition and recording, dataprocessing and presentation, statistical methods and error handling,analysis of spatial data fields, and time series analysis methods. Chapter 5on time series analysis is a book in itself, spanning a wide diversity oftopics from stochastic processes and stationarity, coherence functions,Fourier analysis, tidal harmonic analysis, spectral and cross-spectralanalysis, wavelet and other related methods for processing nonstationarydata series, digital filters, and fractals. The seven appendices includeunit conversions, approximation methods and nondimensional numbers used ingeophysical fluid dynamics, presentations on convolution, statisticalterminology, and distribution functions, and a number of importantstatistical tables. Twenty pages are devoted to references. Featuring:• An in-depth presentation of modern techniques for the analysis of temporal and spatial data sets collected in oceanography, geophysics, and other disciplines in earth and ocean sciences.• A detailed overview of oceanographic instrumentation and sensors - old and new - used to collect oceanographic data.• 7 appendices especially applicable to earth and ocean sciences ranging from conversion of units, through statistical tables, to terminology and non-dimensional parameters. In praise of the first edition: (...)This is a very practical guide to the various statistical analysis methods used for obtaining information from geophysical data, with particular reference to oceanography(...)The book provides both a text for advanced students of the geophysical sciences and a useful reference volume for researchers. Aslib Book Guide Vol 63, No. 9, 1998 (...)This is an excellent book that I recommend highly and will definitely use for my own research and teaching. EOS Transactions, D.A. Jay, 1999 (...)In summary, this book is the most comprehensive and practical source of information on data analysis methods available to the physical oceanographer. The reader gets the benefit of extremely broad coverage and an excellent set of examples drawn from geographical observations. Oceanography, Vol. 12, No. 3, A. Plueddemann, 1999 (...)Data Analysis Methods in Physical Oceanography is highly recommended for a wide range of readers, from the relative novice to the experienced researcher. It would be appropriate for academic and special libraries. E-Streams, Vol. 2, No. 8, P. Mofjelf, August 1999
  data analysis and application: Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality Tyagi, Amit Kumar, 2021-01-08 Augmented and virtual reality (AR and VR) offer exciting opportunities for human computer interaction (HCI), the enhancement of places, and new business cases. Though VR is most popular for video games, especially among younger generations, AR and VR can also be used in applications that include military, medical, navigational, tourism, marketing, and maintenance uses. Research in these technologies along with 3D user interfaces has gained momentum in recent years and has solidified it as a staple technology for the foreseeable future. Multimedia and Sensory Input for Augmented, Mixed, and Virtual Reality includes a collection of business case studies covering a variety of topics related to AR, VR, and mixed reality (MR) including their use in possible applications. This book also touches on the diverse uses of AR and VR in many industries and discusses their importance, challenges, and opportunities. While discussing the use these technologies in sectors such as education, healthcare, and computer science, this book is ideal for computer scientists, engineers, practitioners, stakeholders, researchers, academicians, and students who are interested in the latest research on augmented, mixed, and virtual reality.
  data analysis and application: Intelligent Data Analysis Michael R. Berthold, David J Hand, 2007-06-07 This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.
  data analysis and application: Data Analysis and Applications 4 Andreas Makrides, Alex Karagrigoriou, Christos H. Skiadas, 2020-04-09 Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into three parts: Financial Data Analysis and Methods, Statistics and Stochastic Data Analysis and Methods, and Demographic Methods and Data Analysis- providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.
  data analysis and application: Big Data Analytics Saumyadipta Pyne, B.L.S. Prakasa Rao, S.B. Rao, 2016-10-12 This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
  data analysis and application: Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications Gary Miner, 2012-01-11 The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities--
  data analysis and application: Data Analysis in Biochemistry and Biophysics Magar Mager, 2012-12-02 Data Analysis in Biochemistry and Biophysics describes the techniques how to derive the most amount of quantitative and statistical information from data gathered in enzyme kinetics, protein-ligand equilibria, optical rotatory dispersion, chemical relaxation methods. This book focuses on the determination and analysis of parameters in different models that are used in biochemistry, biophysics, and molecular biology. The Michaelis-Menten equation can explain the process to obtain the maximum amount of information by determining the parameters of the model. This text also explains the fundamentals present in hypothesis testing, and the equation that represents the statistical aspects of a linear model occurring frequently in this field of testing. This book also analyzes the ultraviolet spectra of nucleic acids, particularly, to establish the composition of melting regions of nucleic acids. The investigator can use the matrix rank analysis to determine the spectra to substantiate systems whose functions are not known. This text also explains flow techniques and relaxation methods associated with rapid reactions to determine transient kinetic parameters. This book is suitable for molecular biologists, biophysicists, physiologists, biochemists, bio- mathematicians, statisticians, computer programmers, and investigators involved in related sciences
  data analysis and application: Data Science Qurban A Memon, Shakeel Ahmed Khoja, 2019-09-26 The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows: • Part I: Data Science: Theory, Concepts, and Algorithms This part comprises five chapters on data Science theory, concepts, techniques and algorithms. • Part II: Data Design and Analysis This part comprises five chapters on data design and analysis. • Part III: Applications and New Trends in Data Science This part comprises four chapters on applications and new trends in data science.
The Practice and Application of Machine Learning in Data …
Mar 22, 2025 · This paper delves into the practices and applications of machine learning in data analysis, meticulously analyzing the specific roles of algorithms such as linear regression, …

Clustering and Topological Data Analysis: Comparison and …
Mar 30, 2022 · To answer these questions, this paper explores three dimensions of utility for clustering: accuracy of predicted clusters to known clusters, computation time, and a …

Large Scale Data Analysis with Application to Computational ...
This dissertation focuses on large-scale complex data analysis techniques for (i) computational epidemiology and (ii) multi-featured data arising in network science.

THE APPLICATION OF MACHINE LEARNING IN DATA …
THE APPLICATION OF MACHINE LEARNING IN DATA ANALYSIS Abstract This book chapter provides a comprehensive exploration of the transformative role that machine learning (ML) …

CHAPTER 1 An Introduction to Data Analysis - Springer
In this chapter, you’ll take your first steps in the world of data analysis, learning in detail the concepts and processes that make up this discipline.

Path Analysis: Data Analysis Application - ResearchGate
Path Analysis is a popular analysis procedure so far, especially in the field of researches using a quantitative approach. Nevertheless using this procedure is not as easy as we use other...

Review of functional data analysis - UC Davis
Functional data analysis (FDA) deals with the analysis and theory of data that are in the form of functions, images and shapes, or more general objects. The atom of functional data is a …

Data Analysis and its Importance - IRJAES
The process of scrutinizing raw data with the purpose of drawing conclusion about that information is called ―Data Analysis‖. The main aim of Data Analysis is to convert the …

Application of data visualization in enterprise data analysis
data visualization becomes a powerful tool that can help people extract useful information from massive amounts of data and present it in an intuitive way. This paper will focus on the …

HANDBOOK OF STATISTICAL ANALYSIS AND DATA MINING …
“Great introduction to the real-world process of data mining. The overviews, practical advice, tutorials, and extra DVD material make this book an invaluable resource for both new and …

Data Analysis Application - Thermo Fisher Scientific
This chapter provides a description of the SequencePro™ Data Analysis Application, and a flow diagram of a typical session using the software. This chapter also discusses how to set the …

An Introduction to Data Analysis - Springer
Starting from a simple methodical approach on data protection, data analysis has become a real discipline, leading to the development of real methodologies generating models .

Topological Data Analysis and Its Application to Time-Series …
To make the most of such information, we have developed a new machine learning technology based on topological data analysis (TDA) that focuses on and analyses the “shapes of data.” …

Introduction to Business Data Analytics: Organizational View
the relationship of business data analytics to business analysis, emphasizing how organizations can leverage the business data analytics cycle, team structures and required skills, and …

Research on the Application of Data Analysis in Enterprise …
Nov 14, 2024 · This study explores the application of data analysis technologies in enterprise risk management, focusing on risk identification, prediction, and decision support.

Topological Data Analysis: Developments and Applications
Recently, a computational paradigm known as Topological Data Analysis (TDA) has emerged as an applied branch of topology. TDA represents a set of computational methods aimed at …

Application Of Data Analytics in Process Predictions, Analysis ...
This research explores the application of data ana-lytics, speci cally Microsoft Power BI, to optimize processes within the chemical and manufacturing in-dustries. By analyzing large …

AN APPLICATION FOR SALES DATA ANALYSIS AND …
the paper is to make a web application that analyzes a company’s sales data of varied products. The main focus here is to read and analyze data to produce insights and the company’s …

An Introduction to Data Analysis - Springer
Data analysis is basically a discipline suitable to the study of problems that may occur in several fields of applications. Moreover, in processes of data analysis you have many tools and …

Introduction to Data Analysis Handbook - ed
in order to gather and analysis data in an efficient and effective way in your program. We present a framework for managing the process of data collection and analysis.

The Practice and Application of Machine Learning in Data …
Mar 22, 2025 · This paper delves into the practices and applications of machine learning in data analysis, meticulously analyzing the specific roles of algorithms such as linear regression, …

Clustering and Topological Data Analysis: Comparison and …
Mar 30, 2022 · To answer these questions, this paper explores three dimensions of utility for clustering: accuracy of predicted clusters to known clusters, computation time, and a qualitative …

Large Scale Data Analysis with Application to Computational ...
This dissertation focuses on large-scale complex data analysis techniques for (i) computational epidemiology and (ii) multi-featured data arising in network science.

THE APPLICATION OF MACHINE LEARNING IN DATA …
THE APPLICATION OF MACHINE LEARNING IN DATA ANALYSIS Abstract This book chapter provides a comprehensive exploration of the transformative role that machine learning (ML) …

CHAPTER 1 An Introduction to Data Analysis - Springer
In this chapter, you’ll take your first steps in the world of data analysis, learning in detail the concepts and processes that make up this discipline.

Path Analysis: Data Analysis Application - ResearchGate
Path Analysis is a popular analysis procedure so far, especially in the field of researches using a quantitative approach. Nevertheless using this procedure is not as easy as we use other...

Review of functional data analysis - UC Davis
Functional data analysis (FDA) deals with the analysis and theory of data that are in the form of functions, images and shapes, or more general objects. The atom of functional data is a …

Data Analysis and its Importance - IRJAES
The process of scrutinizing raw data with the purpose of drawing conclusion about that information is called ―Data Analysis‖. The main aim of Data Analysis is to convert the available cluttered …

Application of data visualization in enterprise data analysis
data visualization becomes a powerful tool that can help people extract useful information from massive amounts of data and present it in an intuitive way. This paper will focus on the …

HANDBOOK OF STATISTICAL ANALYSIS AND DATA MINING …
“Great introduction to the real-world process of data mining. The overviews, practical advice, tutorials, and extra DVD material make this book an invaluable resource for both new and …

Data Analysis Application - Thermo Fisher Scientific
This chapter provides a description of the SequencePro™ Data Analysis Application, and a flow diagram of a typical session using the software. This chapter also discusses how to set the …

An Introduction to Data Analysis - Springer
Starting from a simple methodical approach on data protection, data analysis has become a real discipline, leading to the development of real methodologies generating models .

Topological Data Analysis and Its Application to Time-Series …
To make the most of such information, we have developed a new machine learning technology based on topological data analysis (TDA) that focuses on and analyses the “shapes of data.” …

Introduction to Business Data Analytics: Organizational View
the relationship of business data analytics to business analysis, emphasizing how organizations can leverage the business data analytics cycle, team structures and required skills, and …

Research on the Application of Data Analysis in Enterprise …
Nov 14, 2024 · This study explores the application of data analysis technologies in enterprise risk management, focusing on risk identification, prediction, and decision support.

Topological Data Analysis: Developments and Applications
Recently, a computational paradigm known as Topological Data Analysis (TDA) has emerged as an applied branch of topology. TDA represents a set of computational methods aimed at …

Application Of Data Analytics in Process Predictions, …
This research explores the application of data ana-lytics, speci cally Microsoft Power BI, to optimize processes within the chemical and manufacturing in-dustries. By analyzing large …

AN APPLICATION FOR SALES DATA ANALYSIS AND …
the paper is to make a web application that analyzes a company’s sales data of varied products. The main focus here is to read and analyze data to produce insights and the company’s overall …

An Introduction to Data Analysis - Springer
Data analysis is basically a discipline suitable to the study of problems that may occur in several fields of applications. Moreover, in processes of data analysis you have many tools and …