Data Analysis Using Regression And Multilevel Hierarchical Models

Advertisement



  data analysis using regression and multilevel hierarchical models: Data Analysis Using Regression and Multilevel/Hierarchical Models Andrew Gelman, Jennifer Hill, 2007 This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
  data analysis using regression and multilevel hierarchical models: Data Analysis Using Regression and Multilevel/Hierarchical Models Andrew Gelman, Jennifer Hill, 2006-12-18 Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.
  data analysis using regression and multilevel hierarchical models: Data Analysis Using Regression and Multilevel/hierarchical Models Andrew Gelman, 2009
  data analysis using regression and multilevel hierarchical models: Regression and Other Stories Andrew Gelman, Jennifer Hill, Aki Vehtari, 2021 A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
  data analysis using regression and multilevel hierarchical models: Teaching Statistics Andrew Gelman, Deborah Nolan, 2002-08-08 Students in the sciences, economics, psychology, social sciences, and medicine take introductory statistics. Statistics is increasingly offered at the high school level as well. However, statistics can be notoriously difficult to teach as it is seen by many students as difficult and boring, if not irrelevant to their subject of choice. To help dispel these misconceptions, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, examples and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and combines chapters such as, 'First week of class', with exercises to break the ice and get students talking; then 'Descriptive statistics' , collecting and displaying data; then follows the traditional topics - linear regression, data collection, probability and inference. Part II gives tips on what does and what doesn't work in class: how to set up effective demonstrations and examples, how to encourage students to participate in class and work effectively in group projects. A sample course plan is provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics and sampling.
  data analysis using regression and multilevel hierarchical models: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
  data analysis using regression and multilevel hierarchical models: Multilevel Analysis Tom A. B. Snijders, Roel J. Bosker, 1999 Multilevel analysis covers all the main methods, techniques and issues for carrying out multilevel modeling and analysis. The approach is applied, and less mathematical than many other textbooks.
  data analysis using regression and multilevel hierarchical models: Hierarchical Linear Models Anthony S. Bryk, Stephen W. Raudenbush, 1992 Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.
  data analysis using regression and multilevel hierarchical models: Hierarchical Linear Modeling G. David Garson, 2013 This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The guide portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The applications portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
  data analysis using regression and multilevel hierarchical models: Regression Models for Categorical and Limited Dependent Variables J. Scott Long, 1997-01-09 Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
  data analysis using regression and multilevel hierarchical models: Mixed Models Eugene Demidenko, 2013-08-05 Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
  data analysis using regression and multilevel hierarchical models: Bayes Rules! Alicia A. Johnson, Miles Q. Ott, Mine Dogucu, 2022-03-03 Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics. Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
  data analysis using regression and multilevel hierarchical models: Multilevel Statistical Models Harvey Goldstein, 1995 The basic linear multilevel model and its estimation - Extensions to the basic multilevel model - The multivariate multilevel model - Nonlinear multilevel models - Models for repeated meadures data - Multilevel models for discrete response data - Multilevel cross classification - Multilevel event history models - Multilevel models with measurement errors - Software for multilevel modelling; missing data and multilevel structural equation models.
  data analysis using regression and multilevel hierarchical models: Introducing Multilevel Modeling Ita G G Kreft, Jan de Leeuw, 1998-04-07 This is the first accessible and practical guide to using multilevel models in social research. Multilevel approaches are becoming increasingly important in social, behavioural, and educational research and it is clear from recent developments that such models are seen as being more realistic, and potentially more revealing, than ordinary regression models. While other books describe these multilevel models in considerable detail none focuses on the practical issues and potential problems of doing multilevel analyses that are covered in Introducing Multilevel Modeling. The authors' approach is user-oriented and the formal mathematics and statistics are kept to a minimum. Other key features include the use of worked examples using real data sets, analyzed using the leading computer package for multilevel modeling - MLn. Discussion site at: http: \www.stat.ucla.eduphplibw-agoraw-agora.phtml?bn=Sagebook Data files mentioned in the book are available from: http: \www.stat.ucla.edu deleeuwsagebook
  data analysis using regression and multilevel hierarchical models: The SAGE Handbook of Multilevel Modeling Marc A. Scott, Jeffrey S. Simonoff, Brian D. Marx, 2013-08-31 In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.
  data analysis using regression and multilevel hierarchical models: Doing Meta-Analysis with R Mathias Harrer, Pim Cuijpers, Toshi A. Furukawa, David D. Ebert, 2021-09-15 Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
  data analysis using regression and multilevel hierarchical models: Hierarchical Linear Models Stephen W. Raudenbush, Anthony S. Bryk, 2002 New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
  data analysis using regression and multilevel hierarchical models: Beyond Multiple Linear Regression Paul Roback, Julie Legler, 2021-01-14 Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
  data analysis using regression and multilevel hierarchical models: Data Analysis Charles M. Judd, Gary H. McClelland, Carey S. Ryan, 2017 Noted for its model-comparison approach and unified framework based on the general linear model (GLM), this classic text provides readers with a greater understanding of a variety of statistical procedures including analysis of variance (ANOVA) and regression.
  data analysis using regression and multilevel hierarchical models: Classification, Data Analysis, and Data Highways Ingo Balderjahn, Rudolf Mathar, Martin Schader, 2013-03-12 This volume presents 43 articles dealing with models and methods of data analysis and classification, statistics and stochastics, information systems and WWW- and Internet-related topics as well as many applications. These articles are selected from more than 100 papers presented at the 21st Annual Conference of the Gesellschaft für Klassifikation. Based on the submitted and revised papers six sections have been arranged: - Classification and Data Analysis - Mathematical and Statistical Methods - World Wide Web and the Internet - Speech and Pattern Recognition - Marketing.
  data analysis using regression and multilevel hierarchical models: Bayesian Hierarchical Models Peter D. Congdon, 2019-09-16 An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
  data analysis using regression and multilevel hierarchical models: Multilevel Modeling Douglas A. Luke, 2019-12-13 Multilevel Modeling is a concise, practical guide to building models for multilevel and longitudinal data. Author Douglas A. Luke begins by providing a rationale for multilevel models; outlines the basic approach to estimating and evaluating a two-level model; discusses the major extensions to mixed-effects models; and provides advice for where to go for instruction in more advanced techniques. Rich with examples, the Second Edition expands coverage of longitudinal methods, diagnostic procedures, models of counts (Poisson), power analysis, cross-classified models, and adds a new section added on presenting modeling results. A website for the book includes the data and the statistical code (both R and Stata) used for all of the presented analyses.
  data analysis using regression and multilevel hierarchical models: Regression & Linear Modeling Jason W. Osborne, 2016-03-24 In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.
  data analysis using regression and multilevel hierarchical models: Applied Regression Analysis and Generalized Linear Models John Fox, 2015-03-18 Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
  data analysis using regression and multilevel hierarchical models: Bayesian inference with INLA Virgilio Gomez-Rubio, 2020-02-20 The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
  data analysis using regression and multilevel hierarchical models: The Statistical Sleuth Fred L. Ramsey, Daniel W. Schafer, 2002 Prepare for exams and succeed in your statistics course with this comprehensive solutions manual! Featuring worked out-solutions to the problems in THE STATISTICAL SLEUTH: A COURSE IN METHODS OF DATA ANALYSIS, 2nd Edition, this manual shows you how to approach and solve problems using the same step-by-step explanations found in your textbook examples.
  data analysis using regression and multilevel hierarchical models: The SAGE Handbook of Regression Analysis and Causal Inference Henning Best, Christof Wolf, 2013-12-20 ′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
  data analysis using regression and multilevel hierarchical models: Egocentric Network Analysis Brea L. Perry, Bernice A. Pescosolido, Stephen P. Borgatti, 2018-03-22 An in-depth, comprehensive and practical guide to egocentric network analysis, focusing on fundamental theoretical, research design, and analytic issues.
  data analysis using regression and multilevel hierarchical models: Models for Intensive Longitudinal Data Theodore A. Walls, Joseph L. Schafer, 2006-01-19 Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy. Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.
  data analysis using regression and multilevel hierarchical models: Ecological Inference Gary King, Martin A. Tanner, Ori Rosen, 2004-09-13 Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.
  data analysis using regression and multilevel hierarchical models: Fisher, Neyman, and the Creation of Classical Statistics Erich L. Lehmann, 2011-07-25 Classical statistical theory—hypothesis testing, estimation, and the design of experiments and sample surveys—is mainly the creation of two men: Ronald A. Fisher (1890-1962) and Jerzy Neyman (1894-1981). Their contributions sometimes complemented each other, sometimes occurred in parallel, and, particularly at later stages, often were in strong opposition. The two men would not be pleased to see their names linked in this way, since throughout most of their working lives they detested each other. Nevertheless, they worked on the same problems, and through their combined efforts created a new discipline. This new book by E.L. Lehmann, himself a student of Neyman’s, explores the relationship between Neyman and Fisher, as well as their interactions with other influential statisticians, and the statistical history they helped create together. Lehmann uses direct correspondence and original papers to recreate an historical account of the creation of the Neyman-Pearson Theory as well as Fisher’s dissent, and other important statistical theories.
  data analysis using regression and multilevel hierarchical models: Multilevel Modeling Using R W. Holmes Finch, Jocelyn E. Bolin, Ken Kelley, 2019-07-16 Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.
  data analysis using regression and multilevel hierarchical models: Probability and Bayesian Modeling Jim Albert, Jingchen Hu, 2019-12-06 Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.
  data analysis using regression and multilevel hierarchical models: Multilevel Modeling Steven P. Reise, Naihua Duan, 2003-01-30 This book appeals to researchers who work with nested data structures or repeated measures data, including biomed & health researchers, clinical/intervention researchers and developmental & educational psychologists. Also some potential as a grad lvl tex
  data analysis using regression and multilevel hierarchical models: Flexible Imputation of Missing Data, Second Edition Stef van Buuren, 2018-07-17 Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
  data analysis using regression and multilevel hierarchical models: Multilevel Analysis Joop J. Hox, Mirjam Moerbeek, Rens van de Schoot, 2010-09-13 This practical introduction helps readers apply multilevel techniques to their research. Noted as an accessible introduction, the book also includes advanced extensions, making it useful as both an introduction and as a reference to students, researchers, and methodologists. Basic models and examples are discussed in non-technical terms with an emphasis on understanding the methodological and statistical issues involved in using these models. The estimation and interpretation of multilevel models is demonstrated using realistic examples from various disciplines. For example, readers will find data sets on stress in hospitals, GPA scores, survey responses, street safety, epilepsy, divorce, and sociometric scores, to name a few. The data sets are available on the website in SPSS, HLM, MLwiN, LISREL and/or Mplus files. Readers are introduced to both the multilevel regression model and multilevel structural models. Highlights of the second edition include: Two new chapters—one on multilevel models for ordinal and count data (Ch. 7) and another on multilevel survival analysis (Ch. 8). Thoroughly updated chapters on multilevel structural equation modeling that reflect the enormous technical progress of the last few years. The addition of some simpler examples to help the novice, whilst the more complex examples that combine more than one problem have been retained. A new section on multivariate meta-analysis (Ch. 11). Expanded discussions of covariance structures across time and analyzing longitudinal data where no trend is expected. Expanded chapter on the logistic model for dichotomous data and proportions with new estimation methods. An updated website at http://www.joophox.net/ with data sets for all the text examples and up-to-date screen shots and PowerPoint slides for instructors. Ideal for introductory courses on multilevel modeling and/or ones that introduce this topic in some detail taught in a variety of disciplines including: psychology, education, sociology, the health sciences, and business. The advanced extensions also make this a favorite resource for researchers and methodologists in these disciplines. A basic understanding of ANOVA and multiple regression is assumed. The section on multilevel structural equation models assumes a basic understanding of SEM.
  data analysis using regression and multilevel hierarchical models: Handbook of Advanced Multilevel Analysis Joop Hox, J. Kyle Roberts, 2011-01-11 This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed. Each chapter features examples that use actual datasets. These datasets, as well as the code to run the models, are available on the book’s website http://www.hlm-online.com . Each chapter includes an introduction that sets the stage for the material to come and a conclusion. Divided into five sections, the first provides a broad introduction to the field that serves as a framework for understanding the latter chapters. Part 2 focuses on multilevel latent variable modeling including item response theory and mixture modeling. Section 3 addresses models used for longitudinal data including growth curve and structural equation modeling. Special estimation problems are examined in section 4 including the difficulties involved in estimating survival analysis, Bayesian estimation, bootstrapping, multiple imputation, and complicated models, including generalized linear models, optimal design in multilevel models, and more. The book’s concluding section focuses on statistical design issues encountered when doing multilevel modeling including nested designs, analyzing cross-classified models, and dyadic data analysis. Intended for methodologists, statisticians, and researchers in a variety of fields including psychology, education, and the social and health sciences, this handbook also serves as an excellent text for graduate and PhD level courses in multilevel modeling. A basic knowledge of multilevel modeling is assumed.
  data analysis using regression and multilevel hierarchical models: Multilevel Models Jichuan Wang, Haiyi Xie, James F. Fisher, 2011-12-23 Interest in multilevel statistical models for social science and public health studies has been aroused dramatically since the mid-1980s. New multilevel modeling techniques are giving researchers tools for analyzing data that have a hierarchical or clustered structure. Multilevel models are now applied to a wide range of studies in sociology, population studies, education studies, psychology, economics, epidemiology, and public health. This book covers a broad range of topics about multilevel modeling. The goal of the authors is to help students and researchers who are interested in analysis of multilevel data to understand the basic concepts, theoretical frameworks and application methods of multilevel modeling. The book is written in non-mathematical terms, focusing on the methods and application of various multilevel models, using the internationally widely used statistical software, the Statistics Analysis System (SAS®). Examples are drawn from analysis of real-world research data. The authors focus on twolevel models in this book because it is most frequently encountered situation in real research. These models can be readily expanded to models with three or more levels when applicable. A wide range of linear and non-linear multilevel models are introduced and demonstrated.
  data analysis using regression and multilevel hierarchical models: Multilevel Modeling of Educational Data Ann A. O'Connell, D. Betsy McCoach, 2008-04-01 (sponsored by the Educational Statisticians, SIG) Multilevel Modeling of Educational Data, co-edited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach, Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences: Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians' Special Interest Group (Ed-Stat SIG) of the American Educational Research Association. The use of multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model data that occur within multiple hierarchies (i.e.- the classroom, the school, and/or the district). Examples of multilevel research problems involving schools include establishing trajectories of academic achievement for children within diverse classrooms or schools or studying school-level characteristics on the incidence of bullying. Multilevel models provide an improvement over traditional single-level approaches to working with clustered or hierarchical data; however, multilevel data present complex and interesting methodological challenges for the applied education research community. In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through hands-on data analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data.
  data analysis using regression and multilevel hierarchical models: Multilevel Modeling in Plain Language Karen Robson, David Pevalin, 2015-11-02 Have you been told you need to do multilevel modeling, but you can′t get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense? Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.

  data analysis using regression and multilevel/hierarchical models: Data Analysis Using Regression and Multilevel/Hierarchical Models Andrew Gelman, Jennifer Hill, 2007 This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.
  data analysis using regression and multilevel/hierarchical models: Data Analysis Using Regression and Multilevel/Hierarchical Models Andrew Gelman, Jennifer Hill, 2006-12-18 Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models. The book introduces a wide variety of models, whilst at the same time instructing the reader in how to fit these models using available software packages. The book illustrates the concepts by working through scores of real data examples that have arisen from the authors' own applied research, with programming codes provided for each one. Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression and missing-data imputation. Practical tips regarding building, fitting, and understanding are provided throughout.
  data analysis using regression and multilevel/hierarchical models: Data Analysis Using Regression and Multilevel/hierarchical Models Andrew Gelman, 2009
  data analysis using regression and multilevel/hierarchical models: Regression and Other Stories Andrew Gelman, Jennifer Hill, Aki Vehtari, 2021 A practical approach to using regression and computation to solve real-world problems of estimation, prediction, and causal inference.
  data analysis using regression and multilevel/hierarchical models: Teaching Statistics Andrew Gelman, Deborah Nolan, 2002-08-08 Students in the sciences, economics, psychology, social sciences, and medicine take introductory statistics. Statistics is increasingly offered at the high school level as well. However, statistics can be notoriously difficult to teach as it is seen by many students as difficult and boring, if not irrelevant to their subject of choice. To help dispel these misconceptions, Gelman and Nolan have put together this fascinating and thought-provoking book. Based on years of teaching experience the book provides a wealth of demonstrations, examples and projects that involve active student participation. Part I of the book presents a large selection of activities for introductory statistics courses and combines chapters such as, 'First week of class', with exercises to break the ice and get students talking; then 'Descriptive statistics' , collecting and displaying data; then follows the traditional topics - linear regression, data collection, probability and inference. Part II gives tips on what does and what doesn't work in class: how to set up effective demonstrations and examples, how to encourage students to participate in class and work effectively in group projects. A sample course plan is provided. Part III presents material for more advanced courses on topics such as decision theory, Bayesian statistics and sampling.
  data analysis using regression and multilevel/hierarchical models: Bayesian Data Analysis, Third Edition Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin, 2013-11-01 Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
  data analysis using regression and multilevel/hierarchical models: Multilevel Analysis Tom A. B. Snijders, Roel J. Bosker, 1999 Multilevel analysis covers all the main methods, techniques and issues for carrying out multilevel modeling and analysis. The approach is applied, and less mathematical than many other textbooks.
  data analysis using regression and multilevel/hierarchical models: Hierarchical Linear Models Anthony S. Bryk, Stephen W. Raudenbush, 1992 Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.
  data analysis using regression and multilevel/hierarchical models: Hierarchical Linear Modeling G. David Garson, 2013 This book provides a brief, easy-to-read guide to implementing hierarchical linear modeling using three leading software platforms, followed by a set of original how-to applications articles following a standardard instructional format. The guide portion consists of five chapters by the editor, providing an overview of HLM, discussion of methodological assumptions, and parallel worked model examples in SPSS, SAS, and HLM software. The applications portion consists of ten contributions in which authors provide step by step presentations of how HLM is implemented and reported for introductory to intermediate applications.
  data analysis using regression and multilevel/hierarchical models: Mixed Models Eugene Demidenko, 2013-08-05 Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
  data analysis using regression and multilevel/hierarchical models: Regression Models for Categorical and Limited Dependent Variables J. Scott Long, 1997-01-09 Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.
  data analysis using regression and multilevel/hierarchical models: Multilevel Statistical Models Harvey Goldstein, 1995 The basic linear multilevel model and its estimation - Extensions to the basic multilevel model - The multivariate multilevel model - Nonlinear multilevel models - Models for repeated meadures data - Multilevel models for discrete response data - Multilevel cross classification - Multilevel event history models - Multilevel models with measurement errors - Software for multilevel modelling; missing data and multilevel structural equation models.
  data analysis using regression and multilevel/hierarchical models: Bayes Rules! Alicia A. Johnson, Miles Q. Ott, Mine Dogucu, 2022-03-03 Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics. Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
  data analysis using regression and multilevel/hierarchical models: Introducing Multilevel Modeling Ita G G Kreft, Jan de Leeuw, 1998-04-07 This is the first accessible and practical guide to using multilevel models in social research. Multilevel approaches are becoming increasingly important in social, behavioural, and educational research and it is clear from recent developments that such models are seen as being more realistic, and potentially more revealing, than ordinary regression models. While other books describe these multilevel models in considerable detail none focuses on the practical issues and potential problems of doing multilevel analyses that are covered in Introducing Multilevel Modeling. The authors' approach is user-oriented and the formal mathematics and statistics are kept to a minimum. Other key features include the use of worked examples using real data sets, analyzed using the leading computer package for multilevel modeling - MLn. Discussion site at: http: \www.stat.ucla.eduphplibw-agoraw-agora.phtml?bn=Sagebook Data files mentioned in the book are available from: http: \www.stat.ucla.edu deleeuwsagebook
  data analysis using regression and multilevel/hierarchical models: Hierarchical Linear Models Stephen W. Raudenbush, Anthony S. Bryk, 2002 New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
  data analysis using regression and multilevel/hierarchical models: Doing Meta-Analysis with R Mathias Harrer, Pim Cuijpers, Toshi A. Furukawa, David D. Ebert, 2021-09-15 Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
  data analysis using regression and multilevel/hierarchical models: Beyond Multiple Linear Regression Paul Roback, Julie Legler, 2021-01-14 Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
  data analysis using regression and multilevel/hierarchical models: The SAGE Handbook of Multilevel Modeling Marc A. Scott, Jeffrey S. Simonoff, Brian D. Marx, 2013-08-31 In this important new Handbook, the editors have gathered together a range of leading contributors to introduce the theory and practice of multilevel modeling. The Handbook establishes the connections in multilevel modeling, bringing together leading experts from around the world to provide a roadmap for applied researchers linking theory and practice, as well as a unique arsenal of state-of-the-art tools. It forges vital connections that cross traditional disciplinary divides and introduces best practice in the field. Part I establishes the framework for estimation and inference, including chapters dedicated to notation, model selection, fixed and random effects, and causal inference. Part II develops variations and extensions, such as nonlinear, semiparametric and latent class models. Part III includes discussion of missing data and robust methods, assessment of fit and software. Part IV consists of exemplary modeling and data analyses written by methodologists working in specific disciplines. Combining practical pieces with overviews of the field, this Handbook is essential reading for any student or researcher looking to apply multilevel techniques in their own research.
  data analysis using regression and multilevel/hierarchical models: Data Analysis Charles M. Judd, Gary H. McClelland, Carey S. Ryan, 2017 Noted for its model-comparison approach and unified framework based on the general linear model (GLM), this classic text provides readers with a greater understanding of a variety of statistical procedures including analysis of variance (ANOVA) and regression.
  data analysis using regression and multilevel/hierarchical models: Classification, Data Analysis, and Data Highways Ingo Balderjahn, Rudolf Mathar, Martin Schader, 2013-03-12 This volume presents 43 articles dealing with models and methods of data analysis and classification, statistics and stochastics, information systems and WWW- and Internet-related topics as well as many applications. These articles are selected from more than 100 papers presented at the 21st Annual Conference of the Gesellschaft für Klassifikation. Based on the submitted and revised papers six sections have been arranged: - Classification and Data Analysis - Mathematical and Statistical Methods - World Wide Web and the Internet - Speech and Pattern Recognition - Marketing.
  data analysis using regression and multilevel/hierarchical models: Bayesian Hierarchical Models Peter D. Congdon, 2019-09-16 An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
  data analysis using regression and multilevel/hierarchical models: Bayesian inference with INLA Virgilio Gomez-Rubio, 2020-02-20 The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
  data analysis using regression and multilevel/hierarchical models: Multilevel Modeling Douglas A. Luke, 2019-12-13 Multilevel Modeling is a concise, practical guide to building models for multilevel and longitudinal data. Author Douglas A. Luke begins by providing a rationale for multilevel models; outlines the basic approach to estimating and evaluating a two-level model; discusses the major extensions to mixed-effects models; and provides advice for where to go for instruction in more advanced techniques. Rich with examples, the Second Edition expands coverage of longitudinal methods, diagnostic procedures, models of counts (Poisson), power analysis, cross-classified models, and adds a new section added on presenting modeling results. A website for the book includes the data and the statistical code (both R and Stata) used for all of the presented analyses.
  data analysis using regression and multilevel/hierarchical models: Applied Regression Analysis and Generalized Linear Models John Fox, 2015-03-18 Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
  data analysis using regression and multilevel/hierarchical models: Regression & Linear Modeling Jason W. Osborne, 2016-03-24 In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.
  data analysis using regression and multilevel/hierarchical models: The Statistical Sleuth Fred L. Ramsey, Daniel W. Schafer, 2002 Prepare for exams and succeed in your statistics course with this comprehensive solutions manual! Featuring worked out-solutions to the problems in THE STATISTICAL SLEUTH: A COURSE IN METHODS OF DATA ANALYSIS, 2nd Edition, this manual shows you how to approach and solve problems using the same step-by-step explanations found in your textbook examples.
  data analysis using regression and multilevel/hierarchical models: The SAGE Handbook of Regression Analysis and Causal Inference Henning Best, Christof Wolf, 2013-12-20 ′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
  data analysis using regression and multilevel/hierarchical models: Models for Intensive Longitudinal Data Theodore A. Walls, Joseph L. Schafer, 2006-01-19 Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy. Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.
  data analysis using regression and multilevel/hierarchical models: Egocentric Network Analysis Brea L. Perry, Bernice A. Pescosolido, Stephen P. Borgatti, 2018-03-22 An in-depth, comprehensive and practical guide to egocentric network analysis, focusing on fundamental theoretical, research design, and analytic issues.
  data analysis using regression and multilevel/hierarchical models: Fisher, Neyman, and the Creation of Classical Statistics Erich L. Lehmann, 2011-07-25 Classical statistical theory—hypothesis testing, estimation, and the design of experiments and sample surveys—is mainly the creation of two men: Ronald A. Fisher (1890-1962) and Jerzy Neyman (1894-1981). Their contributions sometimes complemented each other, sometimes occurred in parallel, and, particularly at later stages, often were in strong opposition. The two men would not be pleased to see their names linked in this way, since throughout most of their working lives they detested each other. Nevertheless, they worked on the same problems, and through their combined efforts created a new discipline. This new book by E.L. Lehmann, himself a student of Neyman’s, explores the relationship between Neyman and Fisher, as well as their interactions with other influential statisticians, and the statistical history they helped create together. Lehmann uses direct correspondence and original papers to recreate an historical account of the creation of the Neyman-Pearson Theory as well as Fisher’s dissent, and other important statistical theories.
  data analysis using regression and multilevel/hierarchical models: Ecological Inference Gary King, Martin A. Tanner, Ori Rosen, 2004-09-13 Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.
  data analysis using regression and multilevel/hierarchical models: Multilevel Modeling Using R W. Holmes Finch, Jocelyn E. Bolin, Ken Kelley, 2019-07-16 Like its bestselling predecessor, Multilevel Modeling Using R, Second Edition provides the reader with a helpful guide to conducting multilevel data modeling using the R software environment. After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models for categorical dependent variables in both single level and multilevel data. New in the Second Edition: Features the use of lmer (instead of lme) and including the most up to date approaches for obtaining confidence intervals for the model parameters. Discusses measures of R2 (the squared multiple correlation coefficient) and overall model fit. Adds a chapter on nonparametric and robust approaches to estimating multilevel models, including rank based, heavy tailed distributions, and the multilevel lasso. Includes a new chapter on multivariate multilevel models. Presents new sections on micro-macro models and multilevel generalized additive models. This thoroughly updated revision gives the reader state-of-the-art tools to launch their own investigations in multilevel modeling and gain insight into their research. About the Authors: W. Holmes Finch is the George and Frances Ball Distinguished Professor of Educational Psychology at Ball State University. Jocelyn E. Bolin is a Professor in the Department of Educational Psychology at Ball State University. Ken Kelley is the Edward F. Sorin Society Professor of IT, Analytics and Operations and the Associate Dean for Faculty and Research for the Mendoza College of Business at the University of Notre Dame.
  data analysis using regression and multilevel/hierarchical models: Multilevel Modeling Steven P. Reise, Naihua Duan, 2003-01-30 This book appeals to researchers who work with nested data structures or repeated measures data, including biomed & health researchers, clinical/intervention researchers and developmental & educational psychologists. Also some potential as a grad lvl tex
  data analysis using regression and multilevel/hierarchical models: Probability and Bayesian Modeling Jim Albert, Jingchen Hu, 2019-12-06 Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.
  data analysis using regression and multilevel/hierarchical models: Flexible Imputation of Missing Data, Second Edition Stef van Buuren, 2018-07-17 Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.
  data analysis using regression and multilevel/hierarchical models: Handbook of Advanced Multilevel Analysis Joop Hox, J. Kyle Roberts, 2011-01-11 This new handbook is the definitive resource on advanced topics related to multilevel analysis. The editors assembled the top minds in the field to address the latest applications of multilevel modeling as well as the specific difficulties and methodological problems that are becoming more common as more complicated models are developed. Each chapter features examples that use actual datasets. These datasets, as well as the code to run the models, are available on the book’s website http://www.hlm-online.com . Each chapter includes an introduction that sets the stage for the material to come and a conclusion. Divided into five sections, the first provides a broad introduction to the field that serves as a framework for understanding the latter chapters. Part 2 focuses on multilevel latent variable modeling including item response theory and mixture modeling. Section 3 addresses models used for longitudinal data including growth curve and structural equation modeling. Special estimation problems are examined in section 4 including the difficulties involved in estimating survival analysis, Bayesian estimation, bootstrapping, multiple imputation, and complicated models, including generalized linear models, optimal design in multilevel models, and more. The book’s concluding section focuses on statistical design issues encountered when doing multilevel modeling including nested designs, analyzing cross-classified models, and dyadic data analysis. Intended for methodologists, statisticians, and researchers in a variety of fields including psychology, education, and the social and health sciences, this handbook also serves as an excellent text for graduate and PhD level courses in multilevel modeling. A basic knowledge of multilevel modeling is assumed.
  data analysis using regression and multilevel/hierarchical models: Multilevel Models Jichuan Wang, Haiyi Xie, James F. Fisher, 2011-12-23 Interest in multilevel statistical models for social science and public health studies has been aroused dramatically since the mid-1980s. New multilevel modeling techniques are giving researchers tools for analyzing data that have a hierarchical or clustered structure. Multilevel models are now applied to a wide range of studies in sociology, population studies, education studies, psychology, economics, epidemiology, and public health. This book covers a broad range of topics about multilevel modeling. The goal of the authors is to help students and researchers who are interested in analysis of multilevel data to understand the basic concepts, theoretical frameworks and application methods of multilevel modeling. The book is written in non-mathematical terms, focusing on the methods and application of various multilevel models, using the internationally widely used statistical software, the Statistics Analysis System (SAS®). Examples are drawn from analysis of real-world research data. The authors focus on twolevel models in this book because it is most frequently encountered situation in real research. These models can be readily expanded to models with three or more levels when applicable. A wide range of linear and non-linear multilevel models are introduced and demonstrated.
  data analysis using regression and multilevel/hierarchical models: Multilevel Modeling of Educational Data Ann A. O'Connell, D. Betsy McCoach, 2008-04-01 (sponsored by the Educational Statisticians, SIG) Multilevel Modeling of Educational Data, co-edited by Ann A. O’Connell, Ed.D., and D. Betsy McCoach, Ph.D., is the next volume in the series: Quantitative Methods in Education and the Behavioral Sciences: Issues, Research and Teaching (Information Age Publishing), sponsored by the Educational Statisticians' Special Interest Group (Ed-Stat SIG) of the American Educational Research Association. The use of multilevel analyses to examine effects of groups or contexts on individual outcomes has burgeoned over the past few decades. Multilevel modeling techniques allow educational researchers to more appropriately model data that occur within multiple hierarchies (i.e.- the classroom, the school, and/or the district). Examples of multilevel research problems involving schools include establishing trajectories of academic achievement for children within diverse classrooms or schools or studying school-level characteristics on the incidence of bullying. Multilevel models provide an improvement over traditional single-level approaches to working with clustered or hierarchical data; however, multilevel data present complex and interesting methodological challenges for the applied education research community. In keeping with the pedagogical focus for this book series, the papers this volume emphasize applications of multilevel models using educational data, with chapter topics ranging from basic to advanced. This book represents a comprehensive and instructional resource text on multilevel modeling for quantitative researchers who plan to use multilevel techniques in their work, as well as for professors and students of quantitative methods courses focusing on multilevel analysis. Through the contributions of experienced researchers and teachers of multilevel modeling, this volume provides an accessible and practical treatment of methods appropriate for use in a first and/or second course in multilevel analysis. A supporting website links chapter examples to actual data, creating an opportunity for readers to reinforce their knowledge through hands-on data analysis. This book serves as a guide for designing multilevel studies and applying multilevel modeling techniques in educational and behavioral research, thus contributing to a better understanding of and solution for the challenges posed by multilevel systems and data.
  data analysis using regression and multilevel/hierarchical models: Multilevel Modeling in Plain Language Karen Robson, David Pevalin, 2015-11-02 Have you been told you need to do multilevel modeling, but you can′t get past the forest of equations? Do you need the techniques explained with words and practical examples so they make sense? Help is here! This book unpacks these statistical techniques in easy-to-understand language with fully annotated examples using the statistical software Stata. The techniques are explained without reliance on equations and algebra so that new users will understand when to use these approaches and how they are really just special applications of ordinary regression. Using real life data, the authors show you how to model random intercept models and random coefficient models for cross-sectional data in a way that makes sense and can be retained and repeated. This book is the perfect answer for anyone who needs a clear, accessible introduction to multilevel modeling.
  data analysis using regression and multilevel/hierarchical models: Linear and Generalized Linear Mixed Models and Their Applications Jiming Jiang, 2007-05-30 This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.
Data Analysis Using Regression and Multilevel/Hierarchical Models
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using …

Data Analysis Using Regression and Multilevel/Hierarchical …
The text discusses nearly every aspect of the modeling process, from basic data entry concerns and hypothesis testing, to the use of simulation, model checking techniques, and methods of …

Home page for the book, "Data Analysis Using Regression and Multilevel ...
Containing practical as well as methodological insights into both Bayesian and traditional approaches, Applied Regression and Multilevel/Hierarchical Models provides useful guidance …

Data Analysis Using Regression and Multilevel/Hierarchical …
Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear …

Data Analysis Using Regression and Multilevel/Hierarchical Models ...
Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis...

Data Analysis Using Regression and Multilevel/Hierarchical Models
Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression …

Data Analysis Using Regression and Multilevel/Hierarchical Models ...
Dec 18, 2006 · Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data …

Data Analysis using Regression and Multilevel/Hierarchical Models
Jan 1, 2007 · The relationships built with an MLM model allow for estimations of missing data, predictions for future data and retainment of the variations in the original data.

Data Analysis Using Regression and Multilevel/Hierarchical Models
Advanced Regression and Multilevel Models (by Andrew Gelman, Jennifer Hill, Ben Goodrich, Jonah Gabry, Daniel Simpson, and Aki Vehtari) is the updated and expanded second edition …

Hierarchical Linear Modeling: Analyzing Data with Nested
4 days ago · Hierarchical linear modeling (HLM), also known as multilevel modeling, is an indispensable statistical tool for analyzing data with nested structures. Whether you’re dealing …

Data Analysis Using Regression and Multilevel/Hierarchical Models
Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data analysis using …

Data Analysis Using Regression and …
The text discusses nearly every aspect of the modeling process, from basic data entry concerns and hypothesis testing, to the use of simulation, model checking techniques, and methods of …

Home page for the book, "Data Analysis Using Regression and Multilevel …
Containing practical as well as methodological insights into both Bayesian and traditional approaches, Applied Regression and Multilevel/Hierarchical Models provides useful guidance …

Data Analysis Using Regression and …
Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear …

Data Analysis Using Regression and Multilevel/Hierarchical Models ...
Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis...

Data Analysis Using Regression and Multilevel/Hierarchical Models
Topics covered include causal inference, including regression, poststratification, matching, regression discontinuity, and instrumental variables, as well as multilevel logistic regression …

Data Analysis Using Regression and Multilevel/Hierarchical Models ...
Dec 18, 2006 · Data Analysis Using Regression and Multilevel/Hierarchical Models, first published in 2007, is a comprehensive manual for the applied researcher who wants to perform data …

Data Analysis using Regression and Multilevel/Hierarchical Models
Jan 1, 2007 · The relationships built with an MLM model allow for estimations of missing data, predictions for future data and retainment of the variations in the original data.

Data Analysis Using Regression and Multilevel/Hierarchical Models
Advanced Regression and Multilevel Models (by Andrew Gelman, Jennifer Hill, Ben Goodrich, Jonah Gabry, Daniel Simpson, and Aki Vehtari) is the updated and expanded second edition …

Hierarchical Linear Modeling: Analyzing Data with Nested
4 days ago · Hierarchical linear modeling (HLM), also known as multilevel modeling, is an indispensable statistical tool for analyzing data with nested structures. Whether you’re dealing …