Advertisement
data engineering technology stack: Practical Data Science Andreas François Vermeulen, 2018-02-21 Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers |
data engineering technology stack: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts. |
data engineering technology stack: Data Engineering with Google Cloud Platform Adi Wijaya, 2022-03-31 Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer Key Features Understand data engineering concepts, the role of a data engineer, and the benefits of using GCP for building your solution Learn how to use the various GCP products to ingest, consume, and transform data and orchestrate pipelines Discover tips to prepare for and pass the Professional Data Engineer exam Book DescriptionWith this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards. Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP. By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.What you will learn Load data into BigQuery and materialize its output for downstream consumption Build data pipeline orchestration using Cloud Composer Develop Airflow jobs to orchestrate and automate a data warehouse Build a Hadoop data lake, create ephemeral clusters, and run jobs on the Dataproc cluster Leverage Pub/Sub for messaging and ingestion for event-driven systems Use Dataflow to perform ETL on streaming data Unlock the power of your data with Data Studio Calculate the GCP cost estimation for your end-to-end data solutions Who this book is for This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book. |
data engineering technology stack: Cracking the Data Engineering Interview Kedeisha Bryan, Taamir Ransome, 2023-11-07 Get to grips with the fundamental concepts of data engineering, and solve mock interview questions while building a strong resume and a personal brand to attract the right employers Key Features Develop your own brand, projects, and portfolio with expert help to stand out in the interview round Get a quick refresher on core data engineering topics, such as Python, SQL, ETL, and data modeling Practice with 50 mock questions on SQL, Python, and more to ace the behavioral and technical rounds Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPreparing for a data engineering interview can often get overwhelming due to the abundance of tools and technologies, leaving you struggling to prioritize which ones to focus on. This hands-on guide provides you with the essential foundational and advanced knowledge needed to simplify your learning journey. The book begins by helping you gain a clear understanding of the nature of data engineering and how it differs from organization to organization. As you progress through the chapters, you’ll receive expert advice, practical tips, and real-world insights on everything from creating a resume and cover letter to networking and negotiating your salary. The chapters also offer refresher training on data engineering essentials, including data modeling, database architecture, ETL processes, data warehousing, cloud computing, big data, and machine learning. As you advance, you’ll gain a holistic view by exploring continuous integration/continuous development (CI/CD), data security, and privacy. Finally, the book will help you practice case studies, mock interviews, as well as behavioral questions. By the end of this book, you will have a clear understanding of what is required to succeed in an interview for a data engineering role.What you will learn Create maintainable and scalable code for unit testing Understand the fundamental concepts of core data engineering tasks Prepare with over 100 behavioral and technical interview questions Discover data engineer archetypes and how they can help you prepare for the interview Apply the essential concepts of Python and SQL in data engineering Build your personal brand to noticeably stand out as a candidate Who this book is for If you’re an aspiring data engineer looking for guidance on how to land, prepare for, and excel in data engineering interviews, this book is for you. Familiarity with the fundamentals of data engineering, such as data modeling, cloud warehouses, programming (python and SQL), building data pipelines, scheduling your workflows (Airflow), and APIs, is a prerequisite. |
data engineering technology stack: Data Engineering with Python Paul Crickard, 2020-10-23 Build, monitor, and manage real-time data pipelines to create data engineering infrastructure efficiently using open-source Apache projects Key Features Become well-versed in data architectures, data preparation, and data optimization skills with the help of practical examples Design data models and learn how to extract, transform, and load (ETL) data using Python Schedule, automate, and monitor complex data pipelines in production Book DescriptionData engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.What you will learn Understand how data engineering supports data science workflows Discover how to extract data from files and databases and then clean, transform, and enrich it Configure processors for handling different file formats as well as both relational and NoSQL databases Find out how to implement a data pipeline and dashboard to visualize results Use staging and validation to check data before landing in the warehouse Build real-time pipelines with staging areas that perform validation and handle failures Get to grips with deploying pipelines in the production environment Who this book is for This book is for data analysts, ETL developers, and anyone looking to get started with or transition to the field of data engineering or refresh their knowledge of data engineering using Python. This book will also be useful for students planning to build a career in data engineering or IT professionals preparing for a transition. No previous knowledge of data engineering is required. |
data engineering technology stack: Data Engineering Best Practices Richard J. Schiller, David Larochelle, 2024-10-11 Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines. |
data engineering technology stack: Fundamentals of Data Engineering Joe Reis, Matt Housley, 2022-06-22 Data engineering has grown rapidly in the past decade, leaving many software engineers, data scientists, and analysts looking for a comprehensive view of this practice. With this practical book, you'll learn how to plan and build systems to serve the needs of your organization and customers by evaluating the best technologies available through the framework of the data engineering lifecycle. Authors Joe Reis and Matt Housley walk you through the data engineering lifecycle and show you how to stitch together a variety of cloud technologies to serve the needs of downstream data consumers. You'll understand how to apply the concepts of data generation, ingestion, orchestration, transformation, storage, and governance that are critical in any data environment regardless of the underlying technology. This book will help you: Get a concise overview of the entire data engineering landscape Assess data engineering problems using an end-to-end framework of best practices Cut through marketing hype when choosing data technologies, architecture, and processes Use the data engineering lifecycle to design and build a robust architecture Incorporate data governance and security across the data engineering lifecycle |
data engineering technology stack: AI-DRIVEN DATA ENGINEERING TRANSFORMING BIG DATA INTO ACTIONABLE INSIGHT Eswar Prasad Galla, Chandrababu Kuraku, Hemanth Kumar Gollangi, Janardhana Rao Sunkara, Chandrakanth Rao Madhavaram, ..... |
data engineering technology stack: 97 Things Every Data Engineer Should Know Tobias Macey, 2021-06-11 Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail |
data engineering technology stack: Data Engineering for AI/ML Pipelines Venkata Karthik Penikalapati, Mitesh Mangaonkar, 2024-10-18 DESCRIPTION Data engineering is the art of building and managing data pipelines that enable efficient data flow for AI/ML projects. This book serves as a comprehensive guide to data engineering for AI/ML systems, equipping you with the knowledge and skills to create robust and scalable data infrastructure. This book covers everything from foundational concepts to advanced techniques. It begins by introducing the role of data engineering in AI/ML, followed by exploring the lifecycle of data, from data generation and collection to storage and management. Readers will learn how to design robust data pipelines, transform data, and deploy AI/ML models effectively for real-world applications. The book also explains security, privacy, and compliance, ensuring responsible data management. Finally, it explores future trends, including automation, real-time data processing, and advanced architectures, providing a forward-looking perspective on the evolution of data engineering. By the end of this book, you will have a deep understanding of the principles and practices of data engineering for AI/ML. You will be able to design and implement efficient data pipelines, select appropriate technologies, ensure data quality and security, and leverage data for building successful AI/ML models. KEY FEATURES ● Comprehensive guide to building scalable AI/ML data engineering pipelines. ● Practical insights into data collection, storage, processing, and analysis. ● Emphasis on data security, privacy, and emerging trends in AI/ML. WHAT YOU WILL LEARN ● Architect scalable data solutions for AI/ML-driven applications. ● Design and implement efficient data pipelines for machine learning. ● Ensure data security and privacy in AI/ML systems. ● Leverage emerging technologies in data engineering for AI/ML. ● Optimize data transformation processes for enhanced model performance. WHO THIS BOOK IS FOR This book is ideal for software engineers, ML practitioners, IT professionals, and students wanting to master data pipelines for AI/ML. It is also valuable for developers and system architects aiming to expand their knowledge of data-driven technologies. TABLE OF CONTENTS 1. Introduction to Data Engineering for AI/ML 2. Lifecycle of AI/ML Data Engineering 3. Architecting Data Solutions for AI/ML 4. Technology Selection in AI/ML Data Engineering 5. Data Generation and Collection for AI/ML 6. Data Storage and Management in AI/ML 7. Data Ingestion and Preparation for ML 8. Transforming and Processing Data for AI/ML 9. Model Deployment and Data Serving 10. Security and Privacy in AI/ML Data Engineering 11. Emerging Trends and Future Direction |
data engineering technology stack: Data Mesh Zhamak Dehghani, 2022-03-08 Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh. |
data engineering technology stack: Data Engineering with dbt Roberto Zagni, 2023-06-30 Use easy-to-apply patterns in SQL and Python to adopt modern analytics engineering to build agile platforms with dbt that are well-tested and simple to extend and run Purchase of the print or Kindle book includes a free PDF eBook Key Features Build a solid dbt base and learn data modeling and the modern data stack to become an analytics engineer Build automated and reliable pipelines to deploy, test, run, and monitor ELTs with dbt Cloud Guided dbt + Snowflake project to build a pattern-based architecture that delivers reliable datasets Book Descriptiondbt Cloud helps professional analytics engineers automate the application of powerful and proven patterns to transform data from ingestion to delivery, enabling real DataOps. This book begins by introducing you to dbt and its role in the data stack, along with how it uses simple SQL to build your data platform, helping you and your team work better together. You’ll find out how to leverage data modeling, data quality, master data management, and more to build a simple-to-understand and future-proof solution. As you advance, you’ll explore the modern data stack, understand how data-related careers are changing, and see how dbt enables this transition into the emerging role of an analytics engineer. The chapters help you build a sample project using the free version of dbt Cloud, Snowflake, and GitHub to create a professional DevOps setup with continuous integration, automated deployment, ELT run, scheduling, and monitoring, solving practical cases you encounter in your daily work. By the end of this dbt book, you’ll be able to build an end-to-end pragmatic data platform by ingesting data exported from your source systems, coding the needed transformations, including master data and the desired business rules, and building well-formed dimensional models or wide tables that’ll enable you to build reports with the BI tool of your choice.What you will learn Create a dbt Cloud account and understand the ELT workflow Combine Snowflake and dbt for building modern data engineering pipelines Use SQL to transform raw data into usable data, and test its accuracy Write dbt macros and use Jinja to apply software engineering principles Test data and transformations to ensure reliability and data quality Build a lightweight pragmatic data platform using proven patterns Write easy-to-maintain idempotent code using dbt materialization Who this book is for This book is for data engineers, analytics engineers, BI professionals, and data analysts who want to learn how to build simple, futureproof, and maintainable data platforms in an agile way. Project managers, data team managers, and decision makers looking to understand the importance of building a data platform and foster a culture of high-performing data teams will also find this book useful. Basic knowledge of SQL and data modeling will help you get the most out of the many layers of this book. The book also includes primers on many data-related subjects to help juniors get started. |
data engineering technology stack: Mastering Data Engineering and Analytics with Databricks Manoj Kumar, 2024-09-30 TAGLINE Master Databricks to Transform Data into Strategic Insights for Tomorrow’s Business Challenges KEY FEATURES ● Combines theory with practical steps to master Databricks, Delta Lake, and MLflow. ● Real-world examples from FMCG and CPG sectors demonstrate Databricks in action. ● Covers real-time data processing, ML integration, and CI/CD for scalable pipelines. ● Offers proven strategies to optimize workflows and avoid common pitfalls. DESCRIPTION In today’s data-driven world, mastering data engineering is crucial for driving innovation and delivering real business impact. Databricks is one of the most powerful platforms which unifies data, analytics and AI requirements of numerous organizations worldwide. Mastering Data Engineering and Analytics with Databricks goes beyond the basics, offering a hands-on, practical approach tailored for professionals eager to excel in the evolving landscape of data engineering and analytics. This book uniquely blends foundational knowledge with advanced applications, equipping readers with the expertise to build, optimize, and scale data pipelines that meet real-world business needs. With a focus on actionable learning, it delves into complex workflows, including real-time data processing, advanced optimization with Delta Lake, and seamless ML integration with MLflow—skills critical for today’s data professionals. Drawing from real-world case studies in FMCG and CPG industries, this book not only teaches you how to implement Databricks solutions but also provides strategic insights into tackling industry-specific challenges. From setting up your environment to deploying CI/CD pipelines, you'll gain a competitive edge by mastering techniques that are directly applicable to your organization’s data strategy. By the end, you’ll not just understand Databricks—you’ll command it, positioning yourself as a leader in the data engineering space. WHAT WILL YOU LEARN ● Design and implement scalable, high-performance data pipelines using Databricks for various business use cases. ● Optimize query performance and efficiently manage cloud resources for cost-effective data processing. ● Seamlessly integrate machine learning models into your data engineering workflows for smarter automation. ● Build and deploy real-time data processing solutions for timely and actionable insights. ● Develop reliable and fault-tolerant Delta Lake architectures to support efficient data lakes at scale. WHO IS THIS BOOK FOR? This book is designed for data engineering students, aspiring data engineers, experienced data professionals, cloud data architects, data scientists and analysts looking to expand their skill sets, as well as IT managers seeking to master data engineering and analytics with Databricks. A basic understanding of data engineering concepts, familiarity with data analytics, and some experience with cloud computing or programming languages such as Python or SQL will help readers fully benefit from the book’s content. TABLE OF CONTENTS SECTION 1 1. Introducing Data Engineering with Databricks 2. Setting Up a Databricks Environment for Data Engineering 3. Working with Databricks Utilities and Clusters SECTION 2 4. Extracting and Loading Data Using Databricks 5. Transforming Data with Databricks 6. Handling Streaming Data with Databricks 7. Creating Delta Live Tables 8. Data Partitioning and Shuffling 9. Performance Tuning and Best Practices 10. Workflow Management 11. Databricks SQL Warehouse 12. Data Storage and Unity Catalog 13. Monitoring Databricks Clusters and Jobs 14. Production Deployment Strategies 15. Maintaining Data Pipelines in Production 16. Managing Data Security and Governance 17. Real-World Data Engineering Use Cases with Databricks 18. AI and ML Essentials 19. Integrating Databricks with External Tools Index |
data engineering technology stack: The Rails Way Obie Fernandez, 2007-11-16 The expert guide to building Ruby on Rails applications Ruby on Rails strips complexity from the development process, enabling professional developers to focus on what matters most: delivering business value. Now, for the first time, there’s a comprehensive, authoritative guide to building production-quality software with Rails. Pioneering Rails developer Obie Fernandez and a team of experts illuminate the entire Rails API, along with the Ruby idioms, design approaches, libraries, and plug-ins that make Rails so valuable. Drawing on their unsurpassed experience, they address the real challenges development teams face, showing how to use Rails’ tools and best practices to maximize productivity and build polished applications users will enjoy. Using detailed code examples, Obie systematically covers Rails’ key capabilities and subsystems. He presents advanced programming techniques, introduces open source libraries that facilitate easy Rails adoption, and offers important insights into testing and production deployment. Dive deep into the Rails codebase together, discovering why Rails behaves as it does— and how to make it behave the way you want it to. This book will help you Increase your productivity as a web developer Realize the overall joy of programming with Ruby on Rails Learn what’s new in Rails 2.0 Drive design and protect long-term maintainability with TestUnit and RSpec Understand and manage complex program flow in Rails controllers Leverage Rails’ support for designing REST-compliant APIs Master sophisticated Rails routing concepts and techniques Examine and troubleshoot Rails routing Make the most of ActiveRecord object-relational mapping Utilize Ajax within your Rails applications Incorporate logins and authentication into your application Extend Rails with the best third-party plug-ins and write your own Integrate email services into your applications with ActionMailer Choose the right Rails production configurations Streamline deployment with Capistrano |
data engineering technology stack: Data Engineering with AWS Gareth Eagar, 2023-10-31 Looking to revolutionize your data transformation game with AWS? Look no further! From strong foundations to hands-on building of data engineering pipelines, our expert-led manual has got you covered. Key Features Delve into robust AWS tools for ingesting, transforming, and consuming data, and for orchestrating pipelines Stay up to date with a comprehensive revised chapter on Data Governance Build modern data platforms with a new section covering transactional data lakes and data mesh Book DescriptionThis book, authored by a seasoned Senior Data Architect with 25 years of experience, aims to help you achieve proficiency in using the AWS ecosystem for data engineering. This revised edition provides updates in every chapter to cover the latest AWS services and features, takes a refreshed look at data governance, and includes a brand-new section on building modern data platforms which covers; implementing a data mesh approach, open-table formats (such as Apache Iceberg), and using DataOps for automation and observability. You'll begin by reviewing the key concepts and essential AWS tools in a data engineer's toolkit and getting acquainted with modern data management approaches. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how that transformed data is used by various data consumers. You’ll learn how to ensure strong data governance, and about populating data marts and data warehouses along with how a data lakehouse fits into the picture. After that, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. Then, you'll explore how the power of machine learning and artificial intelligence can be used to draw new insights from data. In the final chapters, you'll discover transactional data lakes, data meshes, and how to build a cutting-edge data platform on AWS. By the end of this AWS book, you'll be able to execute data engineering tasks and implement a data pipeline on AWS like a pro!What you will learn Seamlessly ingest streaming data with Amazon Kinesis Data Firehose Optimize, denormalize, and join datasets with AWS Glue Studio Use Amazon S3 events to trigger a Lambda process to transform a file Load data into a Redshift data warehouse and run queries with ease Visualize and explore data using Amazon QuickSight Extract sentiment data from a dataset using Amazon Comprehend Build transactional data lakes using Apache Iceberg with Amazon Athena Learn how a data mesh approach can be implemented on AWS Who this book is forThis book is for data engineers, data analysts, and data architects who are new to AWS and looking to extend their skills to the AWS cloud. Anyone new to data engineering who wants to learn about the foundational concepts, while gaining practical experience with common data engineering services on AWS, will also find this book useful. A basic understanding of big data-related topics and Python coding will help you get the most out of this book, but it’s not a prerequisite. Familiarity with the AWS console and core services will also help you follow along. |
data engineering technology stack: The Pragmatic Programmer David Thomas, Andrew Hunt, 2019-07-30 “One of the most significant books in my life.” –Obie Fernandez, Author, The Rails Way “Twenty years ago, the first edition of The Pragmatic Programmer completely changed the trajectory of my career. This new edition could do the same for yours.” –Mike Cohn, Author of Succeeding with Agile , Agile Estimating and Planning , and User Stories Applied “. . . filled with practical advice, both technical and professional, that will serve you and your projects well for years to come.” –Andrea Goulet, CEO, Corgibytes, Founder, LegacyCode.Rocks “. . . lightning does strike twice, and this book is proof.” –VM (Vicky) Brasseur, Director of Open Source Strategy, Juniper Networks The Pragmatic Programmer is one of those rare tech books you’ll read, re-read, and read again over the years. Whether you’re new to the field or an experienced practitioner, you’ll come away with fresh insights each and every time. Dave Thomas and Andy Hunt wrote the first edition of this influential book in 1999 to help their clients create better software and rediscover the joy of coding. These lessons have helped a generation of programmers examine the very essence of software development, independent of any particular language, framework, or methodology, and the Pragmatic philosophy has spawned hundreds of books, screencasts, and audio books, as well as thousands of careers and success stories. Now, twenty years later, this new edition re-examines what it means to be a modern programmer. Topics range from personal responsibility and career development to architectural techniques for keeping your code flexible and easy to adapt and reuse. Read this book, and you’ll learn how to: Fight software rot Learn continuously Avoid the trap of duplicating knowledge Write flexible, dynamic, and adaptable code Harness the power of basic tools Avoid programming by coincidence Learn real requirements Solve the underlying problems of concurrent code Guard against security vulnerabilities Build teams of Pragmatic Programmers Take responsibility for your work and career Test ruthlessly and effectively, including property-based testing Implement the Pragmatic Starter Kit Delight your users Written as a series of self-contained sections and filled with classic and fresh anecdotes, thoughtful examples, and interesting analogies, The Pragmatic Programmer illustrates the best approaches and major pitfalls of many different aspects of software development. Whether you’re a new coder, an experienced programmer, or a manager responsible for software projects, use these lessons daily, and you’ll quickly see improvements in personal productivity, accuracy, and job satisfaction. You’ll learn skills and develop habits and attitudes that form the foundation for long-term success in your career. You’ll become a Pragmatic Programmer. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
data engineering technology stack: Scalable Data Architecture with Java Sinchan Banerjee, 2022-09-30 Orchestrate data architecting solutions using Java and related technologies to evaluate, recommend and present the most suitable solution to leadership and clients Key FeaturesLearn how to adapt to the ever-evolving data architecture technology landscapeUnderstand how to choose the best suited technology, platform, and architecture to realize effective business valueImplement effective data security and governance principlesBook Description Java architectural patterns and tools help architects to build reliable, scalable, and secure data engineering solutions that collect, manipulate, and publish data. This book will help you make the most of the architecting data solutions available with clear and actionable advice from an expert. You'll start with an overview of data architecture, exploring responsibilities of a Java data architect, and learning about various data formats, data storage, databases, and data application platforms as well as how to choose them. Next, you'll understand how to architect a batch and real-time data processing pipeline. You'll also get to grips with the various Java data processing patterns, before progressing to data security and governance. The later chapters will show you how to publish Data as a Service and how you can architect it. Finally, you'll focus on how to evaluate and recommend an architecture by developing performance benchmarks, estimations, and various decision metrics. By the end of this book, you'll be able to successfully orchestrate data architecture solutions using Java and related technologies as well as to evaluate and present the most suitable solution to your clients. What you will learnAnalyze and use the best data architecture patterns for problemsUnderstand when and how to choose Java tools for a data architectureBuild batch and real-time data engineering solutions using JavaDiscover how to apply security and governance to a solutionMeasure performance, publish benchmarks, and optimize solutionsEvaluate, choose, and present the best architectural alternativesUnderstand how to publish Data as a Service using GraphQL and a REST APIWho this book is for Data architects, aspiring data architects, Java developers and anyone who wants to develop or optimize scalable data architecture solutions using Java will find this book useful. A basic understanding of data architecture and Java programming is required to get the best from this book. |
data engineering technology stack: Analyzing the Analyzers Harlan Harris, Sean Murphy, Marck Vaisman, 2013-06-10 Despite the excitement around data science, big data, and analytics, the ambiguity of these terms has led to poor communication between data scientists and organizations seeking their help. In this report, authors Harlan Harris, Sean Murphy, and Marck Vaisman examine their survey of several hundred data science practitioners in mid-2012, when they asked respondents how they viewed their skills, careers, and experiences with prospective employers. The results are striking. Based on the survey data, the authors found that data scientists today can be clustered into four subgroups, each with a different mix of skillsets. Their purpose is to identify a new, more precise vocabulary for data science roles, teams, and career paths. This report describes: Four data scientist clusters: Data Businesspeople, Data Creatives, Data Developers, and Data Researchers Cases in miscommunication between data scientists and organizations looking to hire Why T-shaped data scientists have an advantage in breadth and depth of skills How organizations can apply the survey results to identify, train, integrate, team up, and promote data scientists |
data engineering technology stack: Google Cloud Professional Data Engineer , 2024-10-26 Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com |
data engineering technology stack: Google Cloud Platform for Data Engineering Alasdair Gilchrist, Google Cloud Platform for Data Engineering is designed to take the beginner through a journey to become a competent and certified GCP data engineer. The book, therefore, is split into three parts; the first part covers fundamental concepts of data engineering and data analysis from a platform and technology-neutral perspective. Reading part 1 will bring a beginner up to speed with the generic concepts, terms and technologies we use in data engineering. The second part, which is a high-level but comprehensive introduction to all the concepts, components, tools and services available to us within the Google Cloud Platform. Completing this section will provide the beginner to GCP and data engineering with a solid foundation on the architecture and capabilities of the GCP. Part 3, however, is where we delve into the moderate to advanced techniques that data engineers need to know and be able to carry out. By this time the raw beginner you started the journey at the beginning of part 1 will be a knowledgable albeit inexperienced data engineer. However, by the conclusion of part 3, they will have gained the advanced knowledge of data engineering techniques and practices on the GCP to pass not only the certification exam but also most interviews and practical tests with confidence. In short part 3, will provide the prospective data engineer with detailed knowledge on setting up and configuring DataProc - GCPs version of the Spark/Hadoop ecosystem for big data. They will also learn how to build and test streaming and batch data pipelines using pub/sub/ dataFlow and BigQuery. Furthermore, they will learn how to integrate all the ML and AI Platform components and APIs. They will be accomplished in connecting data analysis and visualisation tools such as Datalab, DataStudio and AI notebooks amongst others. They will also by now know how to build and train a TensorFlow DNN using APIs and Keras and optimise it to run large public data sets. Also, they will know how to provision and use Kubeflow and Kube Pipelines within Google Kubernetes engines to run container workloads as well as how to take advantage of serverless technologies such as Cloud Run and Cloud Functions to build transparent and seamless data processing platforms. The best part of the book though is its compartmental design which means that anyone from a beginner to an intermediate can join the book at whatever point they feel comfortable. |
data engineering technology stack: Data Teams Jesse Anderson, 2020 |
data engineering technology stack: Effective Data Science Infrastructure Ville Tuulos, 2022-08-30 Simplify data science infrastructure to give data scientists an efficient path from prototype to production. In Effective Data Science Infrastructure you will learn how to: Design data science infrastructure that boosts productivity Handle compute and orchestration in the cloud Deploy machine learning to production Monitor and manage performance and results Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, Conda, and Docker Architect complex applications for multiple teams and large datasets Customize and grow data science infrastructure Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. The author is donating proceeds from this book to charities that support women and underrepresented groups in data science. About the technology Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises. About the book Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems. What's inside Handle compute and orchestration in the cloud Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem Architect complex applications that require large datasets and models, and a team of data scientists About the reader For infrastructure engineers and engineering-minded data scientists who are familiar with Python. About the author At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure. Table of Contents 1 Introducing data science infrastructure 2 The toolchain of data science 3 Introducing Metaflow 4 Scaling with the compute layer 5 Practicing scalability and performance 6 Going to production 7 Processing data 8 Using and operating models 9 Machine learning with the full stack |
data engineering technology stack: High Performance Spark Holden Karau, Rachel Warren, 2017-05-25 Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues in Spark’s key/value pair paradigm Writing high-performance Spark code without Scala or the JVM How to test for functionality and performance when applying suggested improvements Using Spark MLlib and Spark ML machine learning libraries Spark’s Streaming components and external community packages |
data engineering technology stack: Creating a Data-Driven Organization Carl Anderson, 2015-07-23 What do you need to become a data-driven organization? Far more than having big data or a crack team of unicorn data scientists, it requires establishing an effective, deeply-ingrained data culture. This practical book shows you how true data-drivenness involves processes that require genuine buy-in across your company ... Through interviews and examples from data scientists and analytics leaders in a variety of industries ... Anderson explains the analytics value chain you need to adopt when building predictive business models--Publisher's description. |
data engineering technology stack: Software and Data Engineering Wenying Feng, |
data engineering technology stack: Intelligent Data Engineering and Automated Learning – IDEAL 2019 Hujun Yin, David Camacho, Peter Tino, Antonio J. Tallón-Ballesteros, Ronaldo Menezes, Richard Allmendinger, 2019-11-07 This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI. |
data engineering technology stack: Agile Data Science 2.0 Russell Jurney, 2017-06-07 Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track |
data engineering technology stack: Software Engineering at Google Titus Winters, Tom Manshreck, Hyrum Wright, 2020-02-28 Today, software engineers need to know not only how to program effectively but also how to develop proper engineering practices to make their codebase sustainable and healthy. This book emphasizes this difference between programming and software engineering. How can software engineers manage a living codebase that evolves and responds to changing requirements and demands over the length of its life? Based on their experience at Google, software engineers Titus Winters and Hyrum Wright, along with technical writer Tom Manshreck, present a candid and insightful look at how some of the worldâ??s leading practitioners construct and maintain software. This book covers Googleâ??s unique engineering culture, processes, and tools and how these aspects contribute to the effectiveness of an engineering organization. Youâ??ll explore three fundamental principles that software organizations should keep in mind when designing, architecting, writing, and maintaining code: How time affects the sustainability of software and how to make your code resilient over time How scale affects the viability of software practices within an engineering organization What trade-offs a typical engineer needs to make when evaluating design and development decisions |
data engineering technology stack: Large-Scale Machine Learning in the Earth Sciences Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser, 2017-08-01 From the Foreword: While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences. --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book. |
data engineering technology stack: Intelligent Data Engineering and Analytics Vikrant Bhateja, Fiona Carroll, João Manuel R. S. Tavares, Sandeep Singh Sengar, Peter Peer, 2023-11-25 The book presents the proceedings of the 11th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2023), held at Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, UK, during April 11–12, 2023. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. This book is divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols, and architectures. This book is a valuable resource for postgraduate students in various engineering disciplines. |
data engineering technology stack: Pragmatic Machine Learning with Python Avishek Nag, 2020-04-30 An easy-to-understand guide to learn practical Machine Learning techniques with Mathematical foundations KEY FEATURESÊ - A balanced combination of underlying mathematical theories & practical examples with Python code - Coverage of latest topics like multi-label classification, Text Mining, Doc2Vec, Word2Vec, XMeans clustering, unsupervised outlier detection, techniques to deploy ML models in production-grade systemsÊ with PMML, etc - Coverage of sufficient & relevant visualization techniques specific to any topic DESCRIPTIONÊ This book will be ideal for working professionals who want to learn Machine Learning from scratch. The first chapter will be an introductory chapter to make readers comfortable with the idea of Machine Learning and the required mathematical theories. There will be a balanced combination of underlying mathematical theories corresponding to any Machine Learning topic and its implementation using Python. Most of the implementations will be based on Ôscikit-learn,Õ but other Python libraries like ÔGensimÕ or ÔPyTorchÕ will also be used for some topics like text analytics or deep learning. The book will be divided into chapters based on primary Machine Learning topics like Classification, Regression, Clustering, Deep Learning, Text Mining, etc. The book will also explain different techniques of putting Machine Learning models into production-grade systems using Big Data or Non-Big Data flavors and standards for exporting models.Ê WHAT WILL YOU LEARNÊ - Get familiar with practical concepts of Machine Learning from ground zero - Learn how to deploy Machine Learning models in production - Understand how to do ÒData Science StorytellingÓÊ - Explore the latest topics in the current industry about Machine Learning WHO THIS BOOK IS FORÊÊ This book would be ideal for experienced Software Professionals who are trying to get into the field of Machine Learning. Anyone who wishes to Learn Machine Learning concepts and models in the production lifecycle. TABLE OF CONTENTS 1. Introduction to Machine Learning & Mathematical preliminaries 2. Classification 3. Regression 4. Clustering 5. Deep Learning & Neural Networks 6. Miscellaneous Unsupervised Learning 7. Text Mining 8. Machine Learning models in production 9. Case Studies & Data Science Storytelling |
data engineering technology stack: Advances in Artificial Intelligence and Data Engineering Niranjan N. Chiplunkar, Takanori Fukao, 2020-08-13 This book presents selected peer-reviewed papers from the International Conference on Artificial Intelligence and Data Engineering (AIDE 2019). The topics covered are broadly divided into four groups: artificial intelligence, machine vision and robotics, ambient intelligence, and data engineering. The book discusses recent technological advances in the emerging fields of artificial intelligence, machine learning, robotics, virtual reality, augmented reality, bioinformatics, intelligent systems, cognitive systems, computational intelligence, neural networks, evolutionary computation, speech processing, Internet of Things, big data challenges, data mining, information retrieval, and natural language processing. Given its scope, this book can be useful for students, researchers, and professionals interested in the growing applications of artificial intelligence and data engineering. |
data engineering technology stack: Data Pipelines with Apache Airflow Bas P. Harenslak, Julian de Ruiter, 2021-04-27 This book teaches you how to build and maintain effective data pipelines. Youll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. -- |
data engineering technology stack: Data Management Strategy at Microsoft Aleksejs Plotnikovs, 2024-07-19 Leverage your data as a business asset, from readiness to actionable insights, and drive exceptional performance Key Features Learn strategies to create a data-driven culture and align data initiatives with business goals Navigate the ever-evolving business landscape with a modern data platform and unique Data IP Surpass competitors by harnessing the true value of data and fostering data literacy in your organization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMicrosoft pioneered data innovation and investment ahead of many in the industry, setting a remarkable standard for data maturity. Written by a data leader with over 15 years of experience following Microsoft’s data journey, this book delves into every crucial aspect of this journey, including change management, aligning with business needs, enhancing data value, and cultivating a data-driven culture. This book emphasizes that success in a data-driven enterprise goes beyond relying solely on modern technology and highlights the importance of prioritizing genuine business needs to propel necessary modernizations through change management practices. You’ll see how data-driven innovation does not solely reside within central IT engineering teams but also among the data's business owners who rely on data daily for their operational needs. This guide empower these professionals with clean, easily discoverable, and business-ready data, marking a significant breakthrough in how data is perceived and utilized throughout an enterprise. You’ll also discover advanced techniques to nurture the value of data as unique intellectual property, and differentiate your organization with the power of data. Its storytelling approach and summary of essential insights at the end of each chapter make this book invaluable for business and data leaders to advocate for crucial data investments.What you will learn Develop a data-driven roadmap to achieve significant and quantifiable business goals Discover the ties between data management and change management Explore the data maturity curve with essential technology investments Build, safeguard, and amplify your organization's unique Data Intellectual Property Equip business leaders with trustworthy and high value data for informed decision-making Unleash the value of data management and data governance to uplift your data investments Who this book is for This book is for data leaders, CDOs, CDAOs, data practitioners, data stewards, and enthusiasts, as well as modern business leaders intrigued by the transformative potential of data. While a technical background isn't essential, a basic understanding of data management and quality concepts will be helpful. The book avoids twisted technical, engineering, or data science aspects, making it accessible and insightful for data engineers and data scientists to gain a wider understanding of enterprise data needs and challenges. |
data engineering technology stack: Operating AI Ulrika Jagare, 2022-04-19 A holistic and real-world approach to operationalizing artificial intelligence in your company In Operating AI, Director of Technology and Architecture at Ericsson AB, Ulrika Jägare, delivers an eye-opening new discussion of how to introduce your organization to artificial intelligence by balancing data engineering, model development, and AI operations. You'll learn the importance of embracing an AI operational mindset to successfully operate AI and lead AI initiatives through the entire lifecycle, including key areas such as; data mesh, data fabric, aspects of security, data privacy, data rights and IPR related to data and AI models. In the book, you’ll also discover: How to reduce the risk of entering bias in our artificial intelligence solutions and how to approach explainable AI (XAI) The importance of efficient and reproduceable data pipelines, including how to manage your company's data An operational perspective on the development of AI models using the MLOps (Machine Learning Operations) approach, including how to deploy, run and monitor models and ML pipelines in production using CI/CD/CT techniques, that generates value in the real world Key competences and toolsets in AI development, deployment and operations What to consider when operating different types of AI business models With a strong emphasis on deployment and operations of trustworthy and reliable AI solutions that operate well in the real world—and not just the lab—Operating AI is a must-read for business leaders looking for ways to operationalize an AI business model that actually makes money, from the concept phase to running in a live production environment. |
data engineering technology stack: Model and Data Engineering Christian Attiogbé, Sadok Ben Yahia, 2021-06-14 This book constitutes the refereed proceedings of the 10th International Conference on Model and Data Engineering, MEDI 2021, held in Tallinn, Estonia, in June 2021. The 16 full papers and 8 short papers presented in this book were carefully reviewed and selected from 47 submissions. Additionally, the volume includes 3 abstracts of invited talks. The papers cover broad research areas on both theoretical, systems and practical aspects. Some papers include mining complex databases, concurrent systems, machine learning, swarm optimization, query processing, semantic web, graph databases, formal methods, model-driven engineering, blockchain, cyber physical systems, IoT applications, and smart systems. Due to the Corona pandemic the conference was held virtually. |
data engineering technology stack: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today. |
data engineering technology stack: Financial Data Engineering Tamer Khraisha, 2024-10-09 Today, investment in financial technology and digital transformation is reshaping the financial landscape and generating many opportunities. Too often, however, engineers and professionals in financial institutions lack a practical and comprehensive understanding of the concepts, problems, techniques, and technologies necessary to build a modern, reliable, and scalable financial data infrastructure. This is where financial data engineering is needed. A data engineer developing a data infrastructure for a financial product possesses not only technical data engineering skills but also a solid understanding of financial domain-specific challenges, methodologies, data ecosystems, providers, formats, technological constraints, identifiers, entities, standards, regulatory requirements, and governance. This book offers a comprehensive, practical, domain-driven approach to financial data engineering, featuring real-world use cases, industry practices, and hands-on projects. You'll learn: The data engineering landscape in the financial sector Specific problems encountered in financial data engineering The structure, players, and particularities of the financial data domain Approaches to designing financial data identification and entity systems Financial data governance frameworks, concepts, and best practices The financial data engineering lifecycle from ingestion to production The varieties and main characteristics of financial data workflows How to build financial data pipelines using open source tools and APIs Tamer Khraisha, PhD, is a senior data engineer and scientific author with more than a decade of experience in the financial sector. |
data engineering technology stack: Data Science on AWS Chris Fregly, Antje Barth, 2021-04-07 With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more |
data engineering technology stack: An Elegant Puzzle Will Larson, 2019-05-20 A human-centric guide to solving complex problems in engineering management, from sizing teams to handling technical debt. There’s a saying that people don’t leave companies, they leave managers. Management is a key part of any organization, yet the discipline is often self-taught and unstructured. Getting to the good solutions for complex management challenges can make the difference between fulfillment and frustration for teams—and, ultimately, between the success and failure of companies. Will Larson’s An Elegant Puzzle focuses on the particular challenges of engineering management—from sizing teams to handling technical debt to performing succession planning—and provides a path to the good solutions. Drawing from his experience at Digg, Uber, and Stripe, Larson has developed a thoughtful approach to engineering management for leaders of all levels at companies of all sizes. An Elegant Puzzle balances structured principles and human-centric thinking to help any leader create more effective and rewarding organizations for engineers to thrive in. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
PROCESS DESIGN OF FURNACES (PROJECT STANDARDS …
KLM Technology Group Project Engineering Standard PROCESS DESIGN OF FURNACES (PROJECT STANDARDS AND SPECIFICATIONS) Page 6 of 33 Rev: 01 April 2011 CCR …
Department of CSE (Emerging Technologies) - MRCET
Jan 6, 2023 · Full Stack Development (AUTONOMOUS INSTITUTION – UGC, GOVT. OF INDIA) Department of CSE (Emerging Technologies) (DATA SCIENCE, CYBER SECURITY & IOT) …
Journal of Computer Engineering & Information …
Jul 16, 2015 · Engineering & Information Technology ... “big data technology stack” will be presented as theoretical solution framework for the challenges of the Big Data. Each layer will
A Plumbing Engineer’s Guide to System Design and
The Society disseminates technical data and information, sponsors activities that facilitate interaction with fellow professionals, and, through research and education programs, expands …
OfferZen Coding Bootcamps in SA
Full-Stack Web Development, Data Science, Data Engineering, Java Systems, UI Design, UX Strategy, Copywriting, Business Analysis. Cost or payment model: MICT SETA Accreditation: …
Bridging the IT/OT Gap in Industrials and Manufacturing to …
of existing OT data were not created with these requirements in mind. The sources exist across multiple systems and environments with inconsistent database structures, labeling formats, …
ANNA UNIVERSITY, CHENNAI NON- AUTONOMOUS …
2 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. 9 Individual and team work: Function effectively as an …
1 Introduction to seismic data and processing
and fold, stacking, pre-stack versus post-stack data, and pre-processing versus advanced processing. The relationship between acquisition, processing, and interpretation of seismic ...
Bluetooth Basics - University of Washington
n Wireless technology for short-range voice and data communication n Low-cost and low-power n Provides a communication platform between a wide range of “smart” ... Protocol Stack . 5 …
PSN College of Engineering and Technology
PSN COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) Distribution of Courses - M.E (R22) Sl. No Course code Course Name Classification L T P C SEMESTER I ...
Modern Data Analytics Reference Architecture on AWS
May 31, 2022 · Data is collected from multiple data sources across the enterprise, SaaS applications, edge devices, logs, streaming media, flat files, and social networks. 2. Based …
FULL STACK DEVELOPMENT LAB - MRCET
FULL STACK DEVELOPMENT LAB ... and interpretation of data, and synthesis of the information to provide valid conclusions. 5. Modern tool usage: Create, ... MALLA REDDY COLLEGE OF …
1.8 STACK SAMPLING AND ANALYSIS OF PARTICULATE AND …
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 3. The EPA has established ambient air monitoring methods for the criteria pollutants, as well as for Toxic Organic (TO) compounds …
JNTUH SCHOOL OF INFORMATION TECHNOLOGY MASTER …
JNTUH SCHOOL OF INFORMATION TECHNOLOGY (Autonomous) MASTER OF COMPUTER APPLICATIONS I YEAR I SEMESTER – COURSE STRUCTURE (R22) S. No. Category …
Department of COMPUTATIONAL INTELLIGENCE B.TECH …
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY Autonomous Institution – UGC, Govt. of India Department of COMPUTATIONAL INTELLIGENCE B.TECH (AI&DS) B.TECH(R …
COURSE STRUCTURE(R19) AND DETAILED SYLLABUS (III …
LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY An Autonomous Institution Approved by AICTE & Permanently Affiliated to JNTUK, Kakinada ... 1 R19CSS-PC3101 Data …
The fuel cell- electric drive - Bosch Engineering
Fuel-cell stack 3. Sensors 4. Anode circulation blower 5. Hydrogen gas injector ... Technical data: System power output: from 40 kW Power density: individual package based on FCPM ... 6,000 …
CS8391-DATA STRUCTURES QUESTION BANK UNIT I - DSCET
In recursive algorithms, stack data structures is used to store the return address when a recursive call is encountered and also to store the values of all the parameters essential to the current …
Real-time Data Infrastructure at Uber - arXiv.org
dashboards require data to be consistent across all regions. This includes zero data loss in the inter-region and intra-region dispersal and processing mechanisms, de-duplication as well as …
GST System Architecture and Rollout Strategy
Data driven decision making: System should aid data driven decision making by providing various dashboard and analytics to stakeholders. k. Reconstruction of Truth: In case of any corruption …
Aadhaar Technology Architecture Whitepaper - Internet …
technology backbone using open standards. Aadhaar technology system was able to succeed due to its core principles – openness, vendor-neutrality, security, and data analytics. In the …
COURSE STRUCTURE - GLA
Data Structures and Algorithms/ Applied Data Structures and Algorithms 3/4 1 Programming0 0 4/5 4/5 6. BCSC0007 ... Full Stack Using Scripting Technologies 3 0 0 0 3 3 2. BCSE0252 Full …
Governing AI: A Blueprint for the Future - microsoft.com
three layers of the technology stack: the applications layer, the model layer, and the infrastructure layer. This should first apply existing legal protections at the applications layer to the use of AI. …
Data Science Technology Stack
data lake because schema on read increase the speed of generating new data for the better analysis and implementation. o Data Vault store a single version of data and does not …
Inside Citadel’s exclusive engineering program that’s helped …
of an enterprise data platform, an initiative kicked off by an NXT alum. The program fuses technology and business The typical NXT candidate has already worked as an engineer for a …
Lecture 1 - University of Tennessee at Chattanooga
The sociotechnicalsystems stack Chapter 10 Sociotechnical Systems 4 ²Equipment: Hardware devices, embedded system ²Operating system ²Communications and data management …
B. Sc. Computer Science - VIT
To provide sound fundamentals, and advances in Information Technology, Software Engineering, Digital Communications and Computer ... 7 UCSC104L Data Structures and Algorithms 3 0 0 …
Bluetooth Networks Architecture and Protocols
9/9/2002 2 OUTLINE n The Bluetooth Usage Models n The General Bluetooth Architecture: n Range and Power n Network Topology: Piconets and Scatternets n The Bluetooth Protocol …
Towards AI-Native Software Engineering (SE 3.0): A Vision …
Engineering 3.0 (SE 3.0), an AI-native approach characterized by intent-first, conversation-oriented develop- ... We outline the key components of the SE 3.0 technology stack, which …
Comprehensive Data Quality with Oracle Data Integrator and …
that data is adequately verified, validated, and cleansed at every point of the integration process. Oracle Data Integrator has both standard and advanced data quality capabilities, which feature …
Practitioners guide to MLOps: - Google Search
Building an ML-enabled system is a multifaceted undertaking that combines data engineering, ML engineering, and application engineering tasks, as shown in figure 1. Data engineering …
Artificial-intelligence hardware: New opportunities for …
The technology stack for artificial intelligence (AI) contains nine layers. Memory Electronic data repository for short-term storage during processing Memory typically consists of DRAM1 …
Leveraging industrial software stack advancement for digital ...
The industrial software stack is the complete set of software products and tools required to gather data from an industrial end point (a machine), extract some useful information from the data, …
R22 M.Tech WT/IT JNTUH - Jawaharlal Nehru Technological …
Advanced Data Structures 3 0 0 3 Professional Elective - I 1. Database Programming with PL/SQL 2. Full Stack Development 3. Mobile Application Development 3 0 0 3 Professional …
INTERNSHIP REPORT - JUIT
Department of Computer Science & Engineering and Information Technology Jaypee University of Information Technology Waknaghat, Solan- 173234, Himachal Pradesh . ... completely …
Digital Product Support Artifacts - DAU
Engineering Design Data and Associated Lists • DI-SESS-80776B, TDP • DI-SESS-81008F, Special Tooling ... Technology (IT) Systems Continuous ... Digital Engineering Ecosystem …
DIGITAL NOTES ON DATA STRUCTURES USING C++ …
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II Year B.Tech. CSE – I Sem (CS302ES)DATA STRUCTURES THROUGH C++ Course Objectives: • To understand …
[R20A0589] B.TECH III YEAR II SEM [A.Y:2022-2023] - MRCET
FULL STACK DEVELOPMENT LABORATORY MANUAL [R20A0589] B.TECH III YEAR – II SEM [A.Y:2022-2023] MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY …
SCHOOL OF DATA SCIENCE Data Engineering with AWS
Data Engineering with AWS 4 Course 1 Data Modeling Learners will create relational and NoSQL data models to fit the diverse needs of data consumers. They’ll also use ETL to build …
CHATBOT: DESIGN, ARCHITECUTRE, AND APPLICATIONS
can imitate a conversation with a user [61]. In the past decade, chatbot technology has evolved tremendously, thanks to the growing popularity of artificial intelligence and machine learning. …
Comparative Analysis of Web Development Stacks - IJCRT
1Department of Computer Science and Engineering 1SSIPMT, Raipur, India ... platforms. It gives an idea about how to choose a technology stack for web application development. The right …
FULL STACK DEVELOPMENT - MRCET
full stack development (r20a0516) lecture notes b.tech iii year – ii sem (r20) (2022-2023) department of computational intelligence (cse-aiml,aiml,ai&ds) malla reddy college of …
ACTIVATION FUNCTIONS IN NEURAL NETWORKS - IJEAST
Engineering, Global Institute of Technology, Jaipur Anidhya Athaiya Assistant Professor, Dept. of Computer Science and Engineering, Global Institute of Technology, Jaipur Abstract—Artificial …
Basic Terminology: Elementary Data Organization - Deepak D.
Some of the data structures are briefly described below. 1. Stack: A stack, also called a fast-in first-out (LIFO) system, is a linear list in which insertions and deletions can take place only at …
Performance Optimization using MERN stack on Web …
Information Technology Department VCET Vasai, Palghar, India . Archana Ekbote . Information Technology Department VCET . Vasai, Palghar, India . has always been a land of tremendous …
Lecture 21: Networking & Protocol Stacks - Yale University
Data Link Network Transport Session Presentation Application Layer Name Description Specific application (file transfer, remote login, etc.) Data formatting and conversion (e.g. byte …
DATA STRUCTURES USING - Odisha University of …
College of Engineering and Technology, Bhubaneswar Biju Patnaik University of Technology, Odisha. ... “Data structure in C” by Tanenbaum, PHI publication / Pearson publication. 3. Pai: …
Accelerate Data Engineering Pipelines for AI & Analytics
Gain complete visibility into how your data is moving through your data stack. With data lineage capabilities understand where your data comes from and how it is being used. Informatica …
Web Application for College using MERN stack - IJIRT
MERN Stack, International Journal of Scientific Research in Computer Science, Engineering and Information Technology ISSN: 2456-3307 (www.ijsrcseit.com) [5] Sanchit Aggarwal, Jyoti …
ENGINEERING TECHNOLOGY - DeVry University
value of data and troubleshooting • Install and configure operating systems using ... Engineering Technology Engineering Technology - General Option 16 CREDIT HOURS 12 CREDIT …