Data Management Financial Services

Advertisement



  data management financial services: A Primer in Financial Data Management Martijn Groot, 2017-05-10 A Primer in Financial Data Management describes concepts and methods, considering financial data management, not as a technological challenge, but as a key asset that underpins effective business management. This broad survey of data management in financial services discusses the data and process needs from the business user, client and regulatory perspectives. Its non-technical descriptions and insights can be used by readers with diverse interests across the financial services industry. The need has never been greater for skills, systems, and methodologies to manage information in financial markets. The volume of data, the diversity of sources, and the power of the tools to process it massively increased. Demands from business, customers, and regulators on transparency, safety, and above all, timely availability of high quality information for decision-making and reporting have grown in tandem, making this book a must read for those working in, or interested in, financial management. - Focuses on ways information management can fuel financial institutions' processes, including regulatory reporting, trade lifecycle management, and customer interaction - Covers recent regulatory and technological developments and their implications for optimal financial information management - Views data management from a supply chain perspective and discusses challenges and opportunities, including big data technologies and regulatory scrutiny
  data management financial services: New Horizons for a Data-Driven Economy José María Cavanillas, Edward Curry, Wolfgang Wahlster, 2016-04-04 In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
  data management financial services: Legal Data for Banking Akber Datoo, 2019-06-17 A practical, informative guide to banks’ major weakness Legal Data for Banking defines the legal data domain in the context of financial institutions, and describes how banks can leverage these assets to optimise business lines and effectively manage risk. Legal data is at the heart of post-2009 regulatory reform, and practitioners need to deepen their grasp of legal data management in order to remain compliant with new rules focusing on transparency in trade and risk reporting. This book provides essential information for IT, project management and data governance leaders, with detailed discussion of current and best practices. Many banks are experiencing recurrent pain points related to legal data management issues, so clear explanations of the required processes, systems and strategic governance provide immediately-relevant relief. The recent financial crisis following the collapse of major banks had roots in poor risk data management, and the regulators’ unawareness of accumulated systemic risk stemming from contractual obligations between firms. To avoid repeating history, today’s banks must be proactive in legal data management; this book provides the critical knowledge practitioners need to put the necessary systems and practices in place. Learn how current legal data management practices are hurting banks Understand the systems, structures and strategies required to manage risk and optimise business lines Delve into the regulations surrounding risk aggregation, netting, collateral enforceability and more Gain practical insight on legal data technology, systems and migration The legal contracts between firms contain significant obligations that underpin the financial markets; failing to recognise these terms as valuable data assets means increased risk exposure and untapped business lines. Legal Data for Banking provides critical information for the banking industry, with actionable guidance for implementation.
  data management financial services: Operations in Financial Services Michael Pinedo, Yuqian Xu, 2017-12-21 Operations in Financial Services establishes a framework for this research area from an operations management perspective. The first section presents an introduction and provides an overview of the topic. The second section establishes links between the current state of the art in relevant areas of operations management and operations research and three of the more important aspects of operations in financial services - (i) financial product design and testing, (ii) process delivery design, and (iii) process delivery management. The third section focuses on the current issues that are important in the financial services operations area. These issues center primarily on mobile online banking and trading in a global environment. The fourth section discusses operational risk aspects of financial services. The final section concludes with a discussion on research directions that may become of interest in the future.
  data management financial services: Handbook of Financial Data and Risk Information II Margarita S. Brose, Mark D. Flood, Dilip Krishna, Bill Nichols, 2014-01-09 A comprehensive resource for understanding the issues involved in collecting, measuring and managing data in the financial services industry.
  data management financial services: Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance El Bachir Boukherouaa, Mr. Ghiath Shabsigh, Khaled AlAjmi, Jose Deodoro, Aquiles Farias, Ebru S Iskender, Mr. Alin T Mirestean, Rangachary Ravikumar, 2021-10-22 This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
  data management financial services: CRM in Financial Services Bryan Foss, Merlin Stone, 2002 Packed with international case studies and examples, the book begins with a detailed analysis of the state of CRM and e-business in the financial services globally, and then goes on to provide comprehensive and practical guidance on: making the most of your customer base; systems and data management; risk and compliance; channels and value chain issues; implementation; strategic implications.
  data management financial services: Digital Transformation in Financial Services Claudio Scardovi, 2017-09-04 This book analyzes the set of forces driving the global financial system toward a period of radical transformation and explores the transformational challenges that lie ahead for global and regional or local banks and other financial intermediaries. It is explained how these challenges derive from the newly emerging post-crisis structure of the market and from shadow and digital players across all banking operations. Detailed attention is focused on the impacts of digitalization on the main functions of the financial system, and particularly the banking sector. The author elaborates how an alternative model of banking will enable banks to predict, understand, navigate, and change the external ecosystem in which they compete. The five critical components of this model are data and information mastering; effective use of applied analytics; interconnectivity and “junction playing”; development of new business solutions; and trust and credibility assurance. The analysis is supported by a number of informative case studies. The book will be of interest especially to top and middle managers and employees of banks and financial institutions but also to FinTech players and their advisers and others.
  data management financial services: MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E Alex Berson, Larry Dubov, 2010-12-06 The latest techniques for building a customer-focused enterprise environment The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works. -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance
  data management financial services: Enterprise Compliance Risk Management Saloni Ramakrishna, 2015-09-04 The tools and information that build effective compliance programs Enterprise Compliance Risk Management: An Essential Toolkit for Banks and Financial Services is a comprehensive narrative on managing compliance and compliance risk that enables value creation for financial services firms. Compliance risk management, a young, evolving yet intricate discipline, is occupying center stage owing to the interplay between the ever increasing complexity of financial services and the environmental effort to rein it in. The book examines the various facets of this layered and nuanced subject. Enterprise Compliance Risk Management elevates the context of compliance from its current reactive stance to how a proactive strategy can create a clear differentiator in a largely undifferentiated market and become a powerful competitive weapon for organizations. It presents a strong case as to why it makes immense business sense to weave active compliance into business model and strategy through an objective view of the cost benefit analysis. Written from a real-world perspective, the book moves the conversation from mere evangelizing to the operationalizing a positive and active compliance management program in financial services. The book is relevant to the different stakeholders of the compliance universe - financial services firms, regulators, industry bodies, consultants, customers and compliance professionals owing to its coverage of the varied aspects of compliance. Enterprise Compliance Risk Management includes a direct examination of compliance risk, including identification, measurement, mitigation, monitoring, remediation, and regulatory dialogue. With unique hands-on tools including processes, templates, checklists, models, formats and scorecards, the book provides the essential toolkit required by the practitioners to jumpstart their compliance initiatives. Financial services professionals seeking a handle on this vital and growing discipline can find the information they need in Enterprise Compliance Risk Management. Enterprise Compliance Risk Management: An Essential Toolkit for Banks and Financial Services is a comprehensive narrative on managing compliance and compliance risk that enables value creation for financial services firms. Compliance risk management, a young, evolving yet intricate discipline, is occupying center stage owing to the interplay between the ever increasing complexity of financial services and the environmental effort to rein it in. The book examines the various facets of this layered and nuanced subject. Enterprise Compliance Risk Management elevates the context of compliance from its current reactive stance to how a proactive strategy can create a clear differentiator in a largely undifferentiated market and become a powerful competitive weapon for organizations. It presents a strong case as to why it makes immense business sense to weave active compliance into business model and strategy through an objective view of the cost benefit analysis. Written from a real-world perspective, the book moves the conversation from mere evangelizing to the operationalizing a positive and active compliance management program in financial services. The book is relevant to the different stakeholders of the compliance universe - financial services firms, regulators, industry bodies, consultants, customers and compliance professionals owing to its coverage of the varied aspects of compliance. Enterprise Compliance Risk Management includes a direct examination of compliance risk, including identification, measurement, mitigation, monitoring, remediation, and regulatory dialogue. With unique hands-on tools including processes, templates, checklists, models, formats and scorecards, the book provides the essential toolkit required by the practitioners to jumpstart their compliance initiatives. Financial services professionals seeking a handle on this vital and growing discipline can find the information they need in Enterprise Compliance Risk Management.
  data management financial services: BIAN 2nd Edition – A framework for the financial services industry BIAN eV, 2021-07-09 The Banking Industry Architecture Network (BIAN) is a global, not-for-profit association of banks, solution providers, consultancy companies, integrators and academic partners, with the shared aim of defining a semantic standard for the banking industry covering all banking activity and almost all of the well-known architectural layers. BIAN’s Reference Architecture for the Financial Industry provides its users with a set of building blocks that, when used in different combinations, can support all of the functionality and information a bank needs for both its internal functioning and its collaboration with partners in an Open Finance and Open API economy. BIAN’s Reference Architecture for the Financial Industry is freely available on the BIAN website. This website also provides a wealth of information on both the theory and practice of the standard. So why this book? Importantly, it summarizes all of the above information and guides the reader through it on a step-by-step basis. It provides the reader with a thorough understanding of BIAN’s architecture and how it can be used to support an organization on its journey to becoming an agile business organization and developing an application platform. BIAN is a semantic standard. It provides business building blocks and defines them in business terms. It provides a business view on both the business and application architectures. This second edition not only includes the more recent deliverables, it also takes a stepped approach through the different topics. It aims to be more appealing to a business audience by addressing the building blocks of BIAN and their possible use in business terms, whilst also including many real-life examples of BIAN’s usage. As such, it should not only appeal to application and business architects, but also to their managers, their business partners and other stakeholders who work closely with them. The first part of the book focuses on the theory: BIAN’s organization, the principles and patterns on which its architecture is based, and its building blocks. The second part of the book explains – in methodology-independent terms – how BIAN can be applied in different architectural layers by different disciplines, in co-operation with architects. This part of the book includes a number of practical examples intended to improve the reader’s understanding of the building blocks of the BIAN architecture and encourage them to apply it for the benefit of their own organization. The final part of the book should inspire the reader even further by clearly illustrating the synergy between the content that BIAN delivers and the architecture methodology provided by TOGAF.
  data management financial services: Advanced Data Management Lena Wiese, 2015-10-29 Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
  data management financial services: Price Management in Financial Services Georg Wuebker, 2008 Price Management in Financial Services shows how to incorporate the modern techniques of value based pricing in both product design and pricing. You are given an overview of basic pricing techniques and introduced to strategic pricing issues such as: strategic market segmentation, product bundling, multi-channel pricing and non linear pricing. As exemplified by a large number of Simon-Kucher & Partners' international case studies, the book illustrates how such professional pricing techniques hold the key to enormous profit potential.
  data management financial services: Data Model Scorecard Steve Hoberman, 2015-11-01 Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).
  data management financial services: Straight Through Processing for Financial Services Ayesha Khanna, 2010-08-03 As economic and regulatory pressures drive financial institutions to seek efficiency gains by improving the quality of their trading processes and systems, firms are devoting increasing amounts of capital to maintaining their competitive edge. Straight-Through Processing (STP), which automates every step in the trading system, is the most effective way for firms to remain competitive. According to the Securities Industry Association, the US securities industry will spend $8 billion to implement STP initiatives, and 99% percent of this investment will be made in systems internal to the firm. Straight-Through Processing for Financial Services: The Complete Guide provides the knowledge and tools required by operations managers and systems architects to develop and implement STP processing systems that streamline business processes to maintain competitiveness in the market.* Learn the tools and techniques for developing software systems and for streamlining business processes* Keep up to date and well informed in this highly regulated and ever changing market* Gain the knowledge and experience for a leading consultant in the field
  data management financial services: Management of Banking and Financial Services: Padmalatha Suresh, Justin Paul, Management of Banking and Financial Services focuses on the basic concepts of banking and financial services, and how these concepts are applied in the global banking environment as well as in India. In addition to presenting the big picture of the
  data management financial services: OECD Sovereign Borrowing Outlook 2021 OECD, 2021-05-20 This edition of the OECD Sovereign Borrowing Outlook reviews developments in response to the COVID-19 pandemic for government borrowing needs, funding conditions and funding strategies in the OECD area.
  data management financial services: Financial Management in Academic Libraries Robert E. Dugan, Peter Hernon, 2018 Financial Management in Academic Libraries explores the connection between financial management and accountability, effectiveness, efficiency, and sustainability, and demonstrates how to capture them in a realistic, data-supported budget. Among the different units of an academic institution, the library has an advantage in that its managers can link these concepts to the library's infrastructure, its staffing, collections, services, and technology. Focusing on these components can enable everyone in the library to work to achieve organizational sustainability over time and advocate for their place in the institution--Provided by Amazon.com.
  data management financial services: Big Data Analytics for Internet of Things Tausifa Jan Saleem, Mohammad Ahsan Chishti, 2021-04-20 BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.
  data management financial services: Artificial Intelligence in Banking Introbooks, 2020-04-07 In these highly competitive times and with so many technological advancements, it is impossible for any industry to remain isolated and untouched by innovations. In this era of digital economy, the banking sector cannot exist and operate without the various digital tools offered by the ever new innovations happening in the field of Artificial Intelligence (AI) and its sub-set technologies. New technologies have enabled incredible progression in the finance industry. Artificial Intelligence (AI) and Machine Learning (ML) have provided the investors and customers with more innovative tools, new types of financial products and a new potential for growth.According to Cathy Bessant (the Chief Operations and Technology Officer, Bank of America), AI is not just a technology discussion. It is also a discussion about data and how it is used and protected. She says, In a world focused on using AI in new ways, we're focused on using it wisely and responsibly.
  data management financial services: Event- and Data-Centric Enterprise Risk-Adjusted Return Management Kannan Subramanian R, Dr. Sudheesh Kumar Kattumannil, 2022-01-06 Take a holistic view of enterprise risk-adjusted return management in banking. This book recommends that a bank transform its siloed operating model into an agile enterprise model. It offers an event-driven, process-based, data-centric approach to help banks plan and implement an enterprise risk-adjusted return model (ERRM), keeping the focus on business events, processes, and a loosely coupled enterprise service architecture. Most banks suffer from a lack of good quality data for risk-adjusted return management. This book provides an enterprise data management methodology that improves data quality by defining and using data ontology and taxonomy. It extends the data narrative with an explanation of the characteristics of risk data, the usage of machine learning, and provides an enterprise knowledge management methodology for risk-return optimization. The book provides numerous examples for process automation, data analytics, event management, knowledge management, and improvements to risk quantification. The book provides guidance on the underlying knowledge areas of banking, enterprise risk management, enterprise architecture, technology, event management, processes, and data science. The first part of the book explains the current state of banking architecture and its limitations. After defining a target model, it explains an approach to determine the gap and the second part of the book guides banks on how to implement the enterprise risk-adjusted return model. What You Will Learn Know what causes siloed architecture, and its impact Implement an enterprise risk-adjusted return model (ERRM) Choose enterprise architecture and technology Define a reference enterprise architecture Understand enterprise data management methodology Define and use an enterprise data ontology and taxonomy Create a multi-dimensional enterprise risk data model Understand the relevance of event-driven architecture from business generation and risk management perspectives Implement advanced analytics and knowledge management capabilities Who This Book Is For The global banking community, including: senior management of a bank, such as the Chief Risk Officer, Head of Treasury/Corporate Banking/Retail Banking, Chief Data Officer, and Chief Technology Officer. It is also relevant for banking software vendors, banking consultants, auditors, risk management consultants, banking supervisors, and government finance professionals.
  data management financial services: Big Data Concepts, Theories, and Applications Shui Yu, Song Guo, 2016-03-03 This book covers three major parts of Big Data: concepts, theories and applications. Written by world-renowned leaders in Big Data, this book explores the problems, possible solutions and directions for Big Data in research and practice. It also focuses on high level concepts such as definitions of Big Data from different angles; surveys in research and applications; and existing tools, mechanisms, and systems in practice. Each chapter is independent from the other chapters, allowing users to read any chapter directly. After examining the practical side of Big Data, this book presents theoretical perspectives. The theoretical research ranges from Big Data representation, modeling and topology to distribution and dimension reducing. Chapters also investigate the many disciplines that involve Big Data, such as statistics, data mining, machine learning, networking, algorithms, security and differential geometry. The last section of this book introduces Big Data applications from different communities, such as business, engineering and science. Big Data Concepts, Theories and Applications is designed as a reference for researchers and advanced level students in computer science, electrical engineering and mathematics. Practitioners who focus on information systems, big data, data mining, business analysis and other related fields will also find this material valuable.
  data management financial services: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
  data management financial services: Financial Management in Human Services Marvin D Feit, Peter K Li, 2013-10-08 Rather than treating financial management as an independent administrative practice, Financial Management in Human Services provides students and social service administrators with a conceptual framework in which financial management is the major responsibility of an administration, not just a separate practice. This text describes how the integration of administrative practice with fiscal responsibility and accountability will help you plan better programs, account for all fiscal transactions, and coordinate and evaluate services more effectively. Containing many different approaches on how to determine costs, obtain information, and collect data, this text will help you clearly evaluate your organization’s progress and determine if your program goals are being reached. Financial Management in Human Services also discusses other topics related to efficient management, including: applying financial management techniques to the areas of program planning, service monitoring, estimating service and unit costs, and setting future service priorities in order to make better business decisions utilizing the information generated from the Financial Management System (FMS) to improve administrative functions, such as forecasting and goal determination, activity flow and service provision monitoring, and service planning according to program policy examining the importance of the four administrative subsystems-- budgeting and accounting, service coordination, program planning, and program evaluation choosing a FMS with consideration to certain factors, such as availability of information and identifying informational needs of the administration listing of reactive and proactive types of financial reports that help administrators evaluate the costs of services provided and identify problems in balancing the fiscal budget using methods such as a line item analysis to accurately compute the costs of staff involvement in a program This organized, straightforward text will help you evaluate all costs-- from salaries, travel time, and office supplies to direct costs to make your office more organized and productive. Complete with questions and answers about starting and maintaining a FMS, Financial Management in Human Services will enable you to manage finances more efficiently, making it easier for you to reach and set goals that better serve your clients.
  data management financial services: Master Data Management and Customer Data Integration for a Global Enterprise Alex Berson, Larry Dubov, 2007-05-22 Transform your business into a customer-centric enterprise Gain a complete and timely understanding of your customers using MDM-CDI and the real-world information contained in this comprehensive volume. Master Data Management and Customer Data Integration for a Global Enterprise explains how to grow revenue, reduce administrative costs, and improve client retention by adopting a customer-focused business framework. Learn to build and use customer hubs and associated technologies, secure and protect confidential corporate and customer information, provide personalized services, and set up an effective data governance team. You'll also get full details on regulatory compliance and the latest pre-packaged MDM-CDI software solutions. Design and implement a dynamic MDM-CDI architecture that fits the needs of your business Implement MDM-CDI holistically as an integrated multi-disciplinary set of technologies, services, and processes Improve solution agility and flexibility using SOA and Web services Recognize customers and their relationships with the enterprise across channels and lines of business Ensure compliance with local, state, federal, and international regulations Deploy network, perimeter, platform, application, data, and user-level security Protect against identity and data theft, worm infection, and phishing and pharming scams Create an Enterprise Information Governance Group Perform development, QA, and business acceptance testing and data verification
  data management financial services: Operational Risk Management Ariane Chapelle, 2019-02-04 OpRisk Awards 2020 Book of the Year Winner! The Authoritative Guide to the Best Practices in Operational Risk Management Operational Risk Management offers a comprehensive guide that contains a review of the most up-to-date and effective operational risk management practices in the financial services industry. The book provides an essential overview of the current methods and best practices applied in financial companies and also contains advanced tools and techniques developed by the most mature firms in the field. The author explores the range of operational risks such as information security, fraud or reputation damage and details how to put in place an effective program based on the four main risk management activities: risk identification, risk assessment, risk mitigation and risk monitoring. The book also examines some specific types of operational risks that rank high on many firms' risk registers. Drawing on the author's extensive experience working with and advising financial companies, Operational Risk Management is written both for those new to the discipline and for experienced operational risk managers who want to strengthen and consolidate their knowledge.
  data management financial services: Big Data Analytics: Systems, Algorithms, Applications C.S.R. Prabhu, Aneesh Sreevallabh Chivukula, Aditya Mogadala, Rohit Ghosh, L.M. Jenila Livingston, 2019-10-14 This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.
  data management financial services: Basic Python for Data Management, Finance, and Marketing Art Yudin, 2021-09-07 Learn how to gather, manipulate, and analyze data with Python. This book is a practical guide to help you get started with Python from ground zero and to the point where you can use coding for everyday tasks. Python, the most in-demand skill by employers, can be learned in a matter of months and a working knowledge will help you to advance your career. This book will teach you to crunch numbers, analyze big-data, and switch from spreadsheets to a faster and more efficient programming language. You'll benefit from the numerous real-life examples designed to meet current world challenges and from step-by-step guidance to become a confident Python user. Python is used in all aspects of financial industry, from algo trading, reporting and risk management to building valuations models and predictive machine learning programs. Basic Python for Data Management, Finance, and Marketing highlights how this language has become a useful skill with digital marketers, allowing them to analyze data more precisely and run more successful campaigns. What You'll Learn Get started with Python from square one Extend what's possible on excel with Python Automate tasks with Python Analyze data more precisely Who This Book Is For Professionals who want to find a job in the modern world or advance their careers within field of Python programming language.
  data management financial services: Principles of Database Management Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens, 2018-07-12 Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.
  data management financial services: Data Quality Engineering in Financial Services Brian Buzzelli, 2022-10-19 Data quality will either make you or break you in the financial services industry. Missing prices, wrong market values, trading violations, client performance restatements, and incorrect regulatory filings can all lead to harsh penalties, lost clients, and financial disaster. This practical guide provides data analysts, data scientists, and data practitioners in financial services firms with the framework to apply manufacturing principles to financial data management, understand data dimensions, and engineer precise data quality tolerances at the datum level and integrate them into your data processing pipelines. You'll get invaluable advice on how to: Evaluate data dimensions and how they apply to different data types and use cases Determine data quality tolerances for your data quality specification Choose the points along the data processing pipeline where data quality should be assessed and measured Apply tailored data governance frameworks within a business or technical function or across an organization Precisely align data with applications and data processing pipelines And more
  data management financial services: Super Charge Your Data Warehouse Dan Linstedt, 2011-11-11 Do You Know If Your Data Warehouse Flexible, Scalable, Secure and Will It Stand The Test Of Time And Avoid Being Part Of The Dreaded Life Cycle? The Data Vault took the Data Warehouse world by storm when it was released in 2001. Some of the world's largest and most complex data warehouse situations understood the value it gave especially with the capabilities of unlimited scaling, flexibility and security. Here is what industry leaders say about the Data Vault The Data Vault is the optimal choice for modeling the EDW in the DW 2.0 framework - Bill Inmon, The Father of Data Warehousing The Data Vault is foundationally strong and an exceptionally scalable architecture - Stephen Brobst, CTO, Teradata The Data Vault should be considered as a potential standard for RDBMS-based analytic data management by organizations looking to achieve a high degree of flexibility, performance and openness - Doug Laney, Deloitte Analytics Institute I applaud Dan's contribution to the body of Business Intelligence and Data Warehousing knowledge and recommend this book be read by both data professionals and end users - Howard Dresner, From the Foreword - Speaker, Author, Leading Research Analyst and Advisor You have in your hands the work, experience and testing of 2 decades of building data warehouses. The Data Vault model and methodology has proven itself in hundreds (perhaps thousands) of solutions in Insurance, Crime-Fighting, Defense, Retail, Finance, Banking, Power, Energy, Education, High-Tech and many more. Learn the techniques and implement them and learn how to build your Data Warehouse faster than you have ever done before while designing it to grow and scale no matter what you throw at it. Ready to Super Charge Your Data Warehouse?
  data management financial services: Web Data Management Sourav S. Bhowmick, Sanjay K. Madria, Wee K. Ng, 2006-05-09 Existence of huge amounts of data on the Web has developed an undeferring need to locate right information at right time, as well as to integrating information effectively to provide a comprehensive source of relevant information. There is a need to develop efficient tools for analyzing and managing Web data, and efficiently managing Web information from the database perspective. The book proposes a data model called WHOM (Warehouse Object Model) to represent HTML and XML documents in the warehouse. It defines a set of web algebraic operators for building new web tables by extracting relevant data from the Web, as well as generating new tables from existing ones. These algebraic operators are used for change detection.
  data management financial services: Data Governance and Data Management Rupa Mahanti, 2021-09-08 This book delves into the concept of data as a critical enterprise asset needed for informed decision making, compliance, regulatory reporting and insights into trends, behaviors, performance and patterns. With good data being key to staying ahead in a competitive market, enterprises capture and store exponential volumes of data. Considering the business impact of data, there needs to be adequate management around it to derive the best value. Data governance is one of the core data management related functions. However, it is often overlooked, misunderstood or confused with other terminologies and data management functions. Given the pervasiveness of data and the importance of data, this book provides comprehensive understanding of the business drivers for data governance and benefits of data governance, the interactions of data governance function with other data management functions and various components and aspects of data governance that can be facilitated by technology and tools, the distinction between data management tools and data governance tools, the readiness checks to perform before exploring the market to purchase a data governance tool, the different aspects that must be considered when comparing and selecting the appropriate data governance technologies and tools from large number of options available in the marketplace and the different market players that provide tools for supporting data governance. This book combines the data and data governance knowledge that the author has gained over years of working in different industrial and research programs and projects associated with data, processes and technologies with unique perspectives gained through interviews with thought leaders and data experts. This book is highly beneficial for IT students, academicians, information management and business professionals and researchers to enhance their knowledge and get guidance on implementing data governance in their own data initiatives.
  data management financial services: Big Data Management And Analytics Brij B Gupta, Mamta, 2023-12-05 With the proliferation of information, big data management and analysis have become an indispensable part of any system to handle such amounts of data. The amount of data generated by the multitude of interconnected devices increases exponentially, making the storage and processing of these data a real challenge.Big data management and analytics have gained momentum in almost every industry, ranging from finance or healthcare. Big data can reveal key insights if handled and analyzed properly; it has great application potential to improve the working of any industry. This book covers the spectrum aspects of big data; from the preliminary level to specific case studies. It will help readers gain knowledge of the big data landscape.Highlights of the topics covered include description of the Big Data ecosystem; real-world instances of big data issues; how the Vs of Big Data (volume, velocity, variety, veracity, valence, and value) affect data collection, monitoring, storage, analysis, and reporting; structural process to get value out of Big Data and recognize the differences between a standard database management system and a big data management system.Readers will gain insights into choice of data models, data extraction, data integration to solve large data problems, data modelling using machine learning techniques, Spark's scalable machine learning techniques, modeling a big data problem into a graph database and performing scalable analytical operations over the graph and different tools and techniques for processing big data and its applications including in healthcare and finance.
  data management financial services: Data Science and Risk Analytics in Finance and Insurance Tze Leung Lai, Haipeng Xing, 2024-10-02 This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension.
  data management financial services: Bank Management & Financial Services Peter S. Rose, Sylvia Conway Hudgins, 2013 'Bank Management & Financial Services' is designed to help students master established management principles and to confront the perplexing issues of risk, regulation, technology, and competition that bankers and other financial-service managers see as their greatest challenges for the present and future.
  data management financial services: Big Data Management Peter Ghavami, 2020-11-09 Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations.
  data management financial services: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data.
  data management financial services: Data Governance John Ladley, 2012-11-07 This book is for any manager or team leader that has the green light to implement a data governance program. The problem of managing data continues to grow with issues surrounding cost of storage, exponential growth, as well as administrative, management and security concerns – the solution to being able to scale all of these issues up is data governance which provides better services to users and saves money. What you will find in this book is an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. With the provided framework and case studies you will be enabled and educated in launching your very own successful and money saving data governance program. - Provides a complete overview of the data governance lifecycle, that can help you discern technology and staff needs - Specifically aimed at managers who need to implement a data governance program at their company - Includes case studies to detail 'do's' and 'don'ts' in real-world situations
  data management financial services: Six Sigma for Financial Services: How Leading Companies Are Driving Results Using Lean, Six Sigma, and Process Management Rowland Hayler, Michael Nichols, 2007 Helping you to use Six Sigma and other tools in a wide range of financial service applications; this hands-on guide features actual experiences from frontline managers and executives in financial services firms all around the world. --
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …