Data Science And Management

Advertisement



  data science and management: Advances in Data Science and Management Samarjeet Borah, Valentina Emilia Balas, Zdzislaw Polkowski, 2020-01-13 This book includes high-quality papers presented at the International Conference on Data Science and Management (ICDSM 2019), organised by the Gandhi Institute for Education and Technology, Bhubaneswar, from 22 to 23 February 2019. It features research in which data science is used to facilitate the decision-making process in various application areas, and also covers a wide range of learning methods and their applications in a number of learning problems. The empirical studies, theoretical analyses and comparisons to psychological phenomena described contribute to the development of products to meet market demands.
  data science and management: Managing Data Science Kirill Dubovikov, 2019-11-12 Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.
  data science and management: Data Science in Engineering and Management Zdzislaw Polkowski, Sambit Kumar Mishra, Julian Vasilev, 2021-12-31 This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
  data science and management: Healthcare Data Analytics and Management Nilanjan Dey, Amira S. Ashour, Simon James Fong, Chintan Bhatt, 2018-11-15 Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges
  data science and management: Data Science in Agriculture and Natural Resource Management G. P. Obi Reddy, Mehul S. Raval, J. Adinarayana, Sanjay Chaudhary, 2021-10-11 This book aims to address emerging challenges in the field of agriculture and natural resource management using the principles and applications of data science (DS). The book is organized in three sections, and it has fourteen chapters dealing with specialized areas. The chapters are written by experts sharing their experiences very lucidly through case studies, suitable illustrations and tables. The contents have been designed to fulfil the needs of geospatial, data science, agricultural, natural resources and environmental sciences of traditional universities, agricultural universities, technological universities, research institutes and academic colleges worldwide. It will help the planners, policymakers and extension scientists in planning and sustainable management of agriculture and natural resources. The authors believe that with its uniqueness the book is one of the important efforts in the contemporary cyber-physical systems.
  data science and management: Machine Learning and Data Science Blueprints for Finance Hariom Tatsat, Sahil Puri, Brad Lookabaugh, 2020-10-01 Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations
  data science and management: Data Science Advancements in Pandemic and Outbreak Management Asimakopoulou, Eleana, Bessis, Nik, 2021-04-09 Pandemics are disruptive. Thus, there is a need to prepare and plan actions in advance for identifying, assessing, and responding to such events to manage uncertainty and support sustainable livelihood and wellbeing. A detailed assessment of a continuously evolving situation needs to take place, and several aspects must be brought together and examined before the declaration of a pandemic even happens. Various health organizations; crisis management bodies; and authorities at local, national, and international levels are involved in the management of pandemics. There is no better time to revisit current approaches to cope with these new and unforeseen threats. As countries must strike a fine balance between protecting health, minimizing economic and social disruption, and respecting human rights, there has been an emerging interest in lessons learned and specifically in revisiting past and current pandemic approaches. Such approaches involve strategies and practices from several disciplines and fields including healthcare, management, IT, mathematical modeling, and data science. Using data science to advance in-situ practices and prompt future directions could help alleviate or even prevent human, financial, and environmental compromise, and loss and social interruption via state-of-the-art technologies and frameworks. Data Science Advancements in Pandemic and Outbreak Management demonstrates how strategies and state-of-the-art IT have and/or could be applied to serve as the vehicle to advance pandemic and outbreak management. The chapters will introduce both technical and non-technical details of management strategies and advanced IT, data science, and mathematical modelling and demonstrate their applications and their potential utilization within the identification and management of pandemics and outbreaks. It also prompts revisiting and critically reviewing past and current approaches, identifying good and bad practices, and further developing the area for future adaptation. This book is ideal for data scientists, data analysts, infectious disease experts, researchers studying pandemics and outbreaks, IT, crisis and disaster management, academics, practitioners, government officials, and students interested in applicable theories and practices in data science to mitigate, prepare for, respond to, and recover from future pandemics and outbreaks.
  data science and management: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.
  data science and management: Data Science Applied to Sustainability Analysis Jennifer Dunn, Prasanna Balaprakash, 2021-05-11 Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
  data science and management: Big Data Analytics for Intelligent Healthcare Management Nilanjan Dey, Himansu Das, Bighnaraj Naik, H S Behera, 2019-04-15 Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data. - Examines the methodology and requirements for development of big data architecture, big data modeling, big data as a service, big data analytics, and more - Discusses big data applications for intelligent healthcare management, such as revenue management and pricing, predictive analytics/forecasting, big data integration for medical data, algorithms and techniques, etc. - Covers the development of big data tools, such as data, web and text mining, data mining, optimization, machine learning, cloud in big data with Hadoop, big data in IoT, and more
  data science and management: Data Science John D. Kelleher, Brendan Tierney, 2018-04-13 A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
  data science and management: An Introduction to Data Science Jeffrey S. Saltz, Jeffrey M. Stanton, 2017-08-25 An Introduction to Data Science is an easy-to-read data science textbook for those with no prior coding knowledge. It features exercises at the end of each chapter, author-generated tables and visualizations, and R code examples throughout.
  data science and management: Data Science and Digital Business Fausto Pedro García Márquez, Benjamin Lev, 2019-01-04 This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
  data science and management: Agile Data Warehouse Design Lawrence Corr, Jim Stagnitto, 2011-11 Agile Data Warehouse Design is a step-by-step guide for capturing data warehousing/business intelligence (DW/BI) requirements and turning them into high performance dimensional models in the most direct way: by modelstorming (data modeling + brainstorming) with BI stakeholders. This book describes BEAM✲, an agile approach to dimensional modeling, for improving communication between data warehouse designers, BI stakeholders and the whole DW/BI development team. BEAM✲ provides tools and techniques that will encourage DW/BI designers and developers to move away from their keyboards and entity relationship based tools and model interactively with their colleagues. The result is everyone thinks dimensionally from the outset! Developers understand how to efficiently implement dimensional modeling solutions. Business stakeholders feel ownership of the data warehouse they have created, and can already imagine how they will use it to answer their business questions. Within this book, you will learn: ✲ Agile dimensional modeling using Business Event Analysis & Modeling (BEAM✲) ✲ Modelstorming: data modeling that is quicker, more inclusive, more productive, and frankly more fun! ✲ Telling dimensional data stories using the 7Ws (who, what, when, where, how many, why and how) ✲ Modeling by example not abstraction; using data story themes, not crow's feet, to describe detail ✲ Storyboarding the data warehouse to discover conformed dimensions and plan iterative development ✲ Visual modeling: sketching timelines, charts and grids to model complex process measurement - simply ✲ Agile design documentation: enhancing star schemas with BEAM✲ dimensional shorthand notation ✲ Solving difficult DW/BI performance and usability problems with proven dimensional design patterns Lawrence Corr is a data warehouse designer and educator. As Principal of DecisionOne Consulting, he helps clients to review and simplify their data warehouse designs, and advises vendors on visual data modeling techniques. He regularly teaches agile dimensional modeling courses worldwide and has taught dimensional DW/BI skills to thousands of students. Jim Stagnitto is a data warehouse and master data management architect specializing in the healthcare, financial services, and information service industries. He is the founder of the data warehousing and data mining consulting firm Llumino.
  data science and management: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
  data science and management: The Manager's Path Camille Fournier, 2017-03-13 Managing people is difficult wherever you work. But in the tech industry, where management is also a technical discipline, the learning curve can be brutal—especially when there are few tools, texts, and frameworks to help you. In this practical guide, author Camille Fournier (tech lead turned CTO) takes you through each stage in the journey from engineer to technical manager. From mentoring interns to working with senior staff, you’ll get actionable advice for approaching various obstacles in your path. This book is ideal whether you’re a new manager, a mentor, or a more experienced leader looking for fresh advice. Pick up this book and learn how to become a better manager and leader in your organization. Begin by exploring what you expect from a manager Understand what it takes to be a good mentor, and a good tech lead Learn how to manage individual members while remaining focused on the entire team Understand how to manage yourself and avoid common pitfalls that challenge many leaders Manage multiple teams and learn how to manage managers Learn how to build and bootstrap a unifying culture in teams
  data science and management: Scientific Data Management Arie Shoshani, Doron Rotem, 2019-08-30 Dealing with the volume, complexity, and diversity of data currently being generated by scientific experiments and simulations often causes scientists to waste productive time. Scientific Data Management: Challenges, Technology, and Deployment describes cutting-edge technologies and solutions for managing and analyzing vast amounts of data, helping scientists focus on their scientific goals. The book begins with coverage of efficient storage systems, discussing how to write and read large volumes of data without slowing the simulation, analysis, or visualization processes. It then focuses on the efficient data movement and management of storage spaces and explores emerging database systems for scientific data. The book also addresses how to best organize data for analysis purposes, how to effectively conduct searches over large datasets, how to successfully automate multistep scientific process workflows, and how to automatically collect metadata and lineage information. This book provides a comprehensive understanding of the latest techniques for managing data during scientific exploration processes, from data generation to data analysis. Enhanced by numerous detailed color images, it includes real-world examples of applications drawn from biology, ecology, geology, climatology, and more. Check out Dr. Shoshani discuss the book during an interview with International Science Grid This Week (iSGTW): http: //www.isgtw.org/?pid=1002259
  data science and management: Big Data Analytics in Supply Chain Management Iman Rahimi, Amir H. Gandomi, Simon James Fong, M. Ali Ülkü, 2020-12-20 In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
  data science and management: Data Preparation for Analytics Using SAS Gerhard Svolba, 2006-11-27 Written for anyone involved in the data preparation process for analytics, Gerhard Svolba's Data Preparation for Analytics Using SAS offers practical advice in the form of SAS coding tips and tricks, and provides the reader with a conceptual background on data structures and considerations from a business point of view. The tasks addressed include viewing analytic data preparation in the context of its business environment, identifying the specifics of predictive modeling for data mart creation, understanding the concepts and considerations of data preparation for time series analysis, using various SAS procedures and SAS Enterprise Miner for scoring, creating meaningful derived variables for all data mart types, using powerful SAS macros to make changes among the various data mart structures, and more!
  data science and management: Integrating Disaster Science and Management Pijush Samui, Dookie Kim, Chandan Ghosh, 2018-05-04 Integrated Disaster Science and Management: Global Case Studies in Mitigation and Recovery bridges the gap between scientific research on natural disasters and the practice of disaster management. It examines natural hazards, including earthquakes, landslides and tsunamis, and uses integrated disaster management techniques, quantitative methods and big data analytics to create early warning models to mitigate impacts of these hazards and reduce the risk of disaster. It also looks at mitigation as part of the recovery process after a disaster, as in the case of the Nepal earthquake. Edited by global experts in disaster management and engineering, the book offers case studies that focus on the critical phases of disaster management. - Identifies advanced techniques and models based on natural disaster science for forecasting disasters and analyzing risk - Offers a holistic approach to the problem of disaster management, including preparation, recovery, and resilience - Includes coverage of social, economic, and environmental impacts on disasters
  data science and management: Handbook of Data Science Approaches for Biomedical Engineering Valentina Emilia Balas, Vijender Kumar Solanki, Manju Khari, Raghvendra Kumar, 2019-11-13 Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
  data science and management: Data Analytics in Project Management Seweryn Spalek, J. Davidson Frame, Yanping Chen, Carl Pritchard, Alfonso Bucero, Werner Meyer, Ryan Legard, Michael Bragen, Klas Skogmar, Deanne Larson, Bert Brijs, 2019-01-01 Data Analytics in Project Management. Data analytics plays a crucial role in business analytics. Without a rigid approach to analyzing data, there is no way to glean insights from it. Business analytics ensures the expected value of change while that change is implemented by projects in the business environment. Due to the significant increase in the number of projects and the amount of data associated with them, it is crucial to understand the areas in which data analytics can be applied in project management. This book addresses data analytics in relation to key areas, approaches, and methods in project management. It examines: • Risk management • The role of the project management office (PMO) • Planning and resource management • Project portfolio management • Earned value method (EVM) • Big Data • Software support • Data mining • Decision-making • Agile project management Data analytics in project management is of increasing importance and extremely challenging. There is rapid multiplication of data volumes, and, at the same time, the structure of the data is more complex. Digging through exabytes and zettabytes of data is a technological challenge in and of itself. How project management creates value through data analytics is crucial. Data Analytics in Project Management addresses the most common issues of applying data analytics in project management. The book supports theory with numerous examples and case studies and is a resource for academics and practitioners alike. It is a thought-provoking examination of data analytics applications that is valuable for projects today and those in the future.
  data science and management: Process Mining Wil M. P. van der Aalst, 2016-04-15 This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.
  data science and management: Big Data Management Peter Ghavami, 2020-11-09 Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations.
  data science and management: Human-Centered Data Science Cecilia Aragon, Shion Guha, Marina Kogan, Michael Muller, Gina Neff, 2022-03-01 Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.
  data science and management: Applied Data Science Martin Braschler, Thilo Stadelmann, Kurt Stockinger, 2019-06-13 This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
  data science and management: Data Science in the Library Joel Herndon, 2022 This book considers the current environment for data driven research, instruction, and consultation from a variety of faculty and library perspectives and suggests strategies for engaging with the tools and methods of data driven research.
  data science and management: Machine Learning and Data Science in the Power Generation Industry Patrick Bangert, 2021-01-14 Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. - Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful - Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them - Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems - Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls
  data science and management: Data Analytics for Engineering and Construction Project Risk Management Ivan Damnjanovic, Kenneth Reinschmidt, 2019-05-23 This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
  data science and management: Principles of Strategic Data Science Dr Peter Prevos, 2019-06-03 Take the strategic and systematic approach to analyze data to solve business problems Key FeaturesGain detailed information about the theory of data scienceAugment your coding knowledge with practical data science techniques for efficient data analysis Learn practical ways to strategically and systematically use dataBook Description Principles of Strategic Data Science is created to help you join the dots between mathematics, programming, and business analysis. With a unique approach that bridges the gap between mathematics and computer science, this book takes you through the entire data science pipeline. The book begins by explaining what data science is and how organizations can use it to revolutionize the way they use their data. It then discusses the criteria for the soundness of data products and how to best visualize information. As you progress, you’ll discover the strategic aspects of data science by learning the five-phase framework that enables you to enhance the value you extract from data. The final chapter of the book discusses the role of a data science manager in helping an organization take the data-driven approach. By the end of this book, you’ll have a good understanding of data science and how it can enable you to extract value from your data. What you will learnGet familiar with the five most important steps of data scienceUse the Conway diagram to visualize the technical skills of the data science teamUnderstand the limitations of data science from a mathematical and ethical perspectiveGet a quick overview of machine learningGain insight into the purpose of using data science in your workUnderstand the role of data science managers and their expectationsWho this book is for This book is ideal for data scientists and data analysts who are looking for a practical guide to strategically and systematically use data. This book is also useful for those who want to understand in detail what is data science and how can an organization take the data-driven approach. Prior programming knowledge of Python and R is assumed.
  data science and management: Managing Your Data Science Projects Robert de Graaf, 2019-06-07 At first glance, the skills required to work in the data science field appear to be self-explanatory. Do not be fooled. Impactful data science demands an interdisciplinary knowledge of business philosophy, project management, salesmanship, presentation, and more. In Managing Your Data Science Projects, author Robert de Graaf explores important concepts that are frequently overlooked in much of the instructional literature that is available to data scientists new to the field. If your completed models are to be used and maintained most effectively, you must be able to present and sell them within your organization in a compelling way. The value of data science within an organization cannot be overstated. Thus, it is vital that strategies and communication between teams are dexterously managed. Three main ways that data science strategy is used in a company is to research its customers, assess risk analytics, and log operational measurements. These all require different managerial instincts, backgrounds, and experiences, and de Graaf cogently breaks down the unique reasons behind each. They must align seamlessly to eventually be adopted as dynamic models. Data science is a relatively new discipline, and as such, internal processes for it are not as well-developed within an operational business as others. With Managing Your Data Science Projects, you will learn how to create products that solve important problems for your customers and ensure that the initial success is sustained throughout the product’s intended life. Your users will trust you and your models, and most importantly, you will be a more well-rounded and effectual data scientist throughout your career. Who This Book Is For Early-career data scientists, managers of data scientists, and those interested in entering the field of data science
  data science and management: Big Data Driven Supply Chain Management Nada R. Sanders, 2014-05-07 Master a complete, five-step roadmap for leveraging Big Data and analytics to gain unprecedented competitive advantage from your supply chain. Using Big Data, pioneers such as Amazon, UPS, and Wal-Mart are gaining unprecedented mastery over their supply chains. They are achieving greater visibility into inventory levels, order fulfillment rates, material and product delivery… using predictive data analytics to match supply with demand; leveraging new planning strengths to optimize their sales channel strategies; optimizing supply chain strategy and competitive priorities; even launching powerful new ventures. Despite these opportunities, many supply chain operations are gaining limited or no value from Big Data. In Big Data Driven Supply Chain Management, Nada Sanders presents a systematic five-step framework for using Big Data in supply chains. You'll learn best practices for segmenting and analyzing customers, defining competitive priorities for each segment, aligning functions behind strategy, dissolving organizational boundaries to sense demand and make better decisions, and choose the right metrics to support all of this. Using these techniques, you can overcome the widespread obstacles to making the most of Big Data in your supply chain — and earn big profits from the data you're already generating. For all executives, managers, and analysts interested in using Big Data technologies to improve supply chain performance.
  data science and management: Business Intelligence Strategy and Big Data Analytics Steve Williams, 2016-04-08 Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like big data and big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans
  data science and management: Data Science for Business and Decision Making Luiz Paulo Favero, Patricia Belfiore, 2019-04-11 Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs
  data science and management: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
  data science and management: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  data science and management: Data Mining: Concepts and Techniques Jiawei Han, Micheline Kamber, Jian Pei, 2011-06-09 Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
  data science and management: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  data science and management: Machine Learning and Data Science in the Oil and Gas Industry Patrick Bangert, 2021-03-04 Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)
  data science and management: Research Data Management and Data Literacies Koltay Tibor, 2021-10-31 Research Data Management and Data Literacies help researchers familiarize themselves with RDM, and with the services increasingly offered by libraries. This new volume looks at data-intensive science, or 'Science 2.0' as it is sometimes termed in commentary, from a number of perspectives, including the tasks academic libraries need to fulfil, new services that will come online in the near future, data literacy and its relation to other literacies, research support and the need to connect researchers across the academy, and other key issues, such as 'data deluge,' the importance of citations, metadata and data repositories. This book presents a solid resource that contextualizes RDM, including good theory and practice for researchers and professionals who find themselves tasked with managing research data. - Gives guidance on organizing, storing, preserving and sharing research data using Research Data Management (RDM) - Contextualizes RDM within the global shift to data-intensive research - Helps researchers and information professionals understand and optimize data-intensive ways of working - Considers RDM in relation to varying needs of researchers across the sciences and humanities - Presents key issues surrounding RDM, including data literacy, citations, metadata and data repositories
INTRODUCTION TO DATA SCIENCE LECTURE NOTES UNIT - 1 …
Data science is the domain of study that deals with vast volumes of data using modern tools and techniques to find unseen patterns, derive meaningful information, and make business …

Bachelor of Science, Data Management/Data Analytics
The B.S. in Data Management/Data Analytics is designed to prepare science professionals who can set up a database environment, design databases, acquiredata, wrangle it, analyze it, and …

Project Management for Data Science - NYU Stern
Scienti c evaluation compares the actual performance of the system to its potential maximum performance. It is fair, because it takes into account what is actually possible in the best case, …

NIH STRATEGIC PLAN FOR DATA SCIENCE 2023-2028
Strategic Plan for Data Science articulates the NIH’s strategic views, goals, and objectives to advance data science in the next five years. By addressing these challenges, NIH will pioneer …

Introduction to Data Management - GitHub Pages
Data are collected from sensors, sensor networks, remote sensing, observations, and more. This calls for increased attention to data management and stewardship. The amount of available …

The Data Life Cycle
Oct 4, 2019 · To put data science in context, we present phases of the data life cycle, from data generation to data interpretation. These phases transform raw bits into value for the end user.

Key Concepts of Data Management – an Empirical Approach
In order to provide a comprehensive overview of the key concepts of data management and to bring relevant parts of this field to school, we describe and use an empirical approach to …

1. Principles of Data Management 2020 - UMass
“Data Management is the process of providing the appropriate labeling, storage, and access for data at all stages of a research project. Here you can find best practices, resources, and …

Introduction to Data Management - University of Washington
A Data Model is a mathematical formalism to describe data. It is how we can talk about data conceptually without having to think about implementation.

Essentials of data management: an overview - Nature
WHAT IS DATA MANAGEMENT? Data management is a multistep process that involves obtaining, cleaning, and storing data to allow accurate analysis and produce meaningful results.

BIG DATA AND DATA SCIENCE METHODS FOR MANAGEMENT
Neverthe derstand and explain how we can generate analytical less, this primer can guide management scholars who insights and prediction models from structured wish and to use …

Data, Models, and Decisions: The Fundamentals of …
The course aims to introduce the fundamentals of data models tools and methods and related topics. Business applications of the topics covered will be highlighted.

Data Management for Data Science Towards Embedded …
To solve these issues, we propose a new class of data management systems: embedded analytical systems. These systems are tightly integrated with analytical tools, and provide fast …

An Introduction to Data Management - GFBio
Handbook on data management for researchers. Follows ten steps of the Data Life Cycle (propose, collect, assure, describe, submit, preserve, discover, integrate, analyse, publish). …

CERTIFICATE PROGRAMME IN DATA SCIENCE & MACHINE …
Become industry-ready with an in-depth understanding of in-demand data science and machine learning tools and techniques with Python. WHO IS THIS PROGRAMME FOR? The …

Data Management for Data Science Computer Science 210 …
Students will also learn how to get datasets into database-ready form, and do basic analysis of such datasets using relational databases and SQL, and NoSQL databases. The course …

Study program documentation Bachelor's Degree in …
The objective of the Bachelor's degree program in Management and Data Science (BMDS) at the TUM Campus Heilbronn is to train and holistically qualify responsible graduates who can …

DATA MANAGEMENT - British Ecological Society
This guide is designed to help researchers navigate data management firstly by explaining what data and data management are and why data sharing is important, and secondly by providing …

Data Science Strategy - Centers for Disease Control and …
National Institutes of Health (NIH) recently released the NIH Strategic Plan for Data Science,10 which outlines NIH goals in five key areas: 1) data infrastructure (e.g., data storage, security, …

The Power of Data-Driven Asset Management I Accenture
Use artificial intelligence (AI), machine learning and analytics to glean critical insights from data. Manage the people and cultural dimensions of advanced data management. A strong data …

INTRODUCTION TO DATA SCIENCE LECTURE NOTES UNIT
Data science is the domain of study that deals with vast volumes of data using modern tools and techniques to find unseen patterns, derive meaningful information, and make business …

Bachelor of Science, Data Management/Data Analytics
The B.S. in Data Management/Data Analytics is designed to prepare science professionals who can set up a database environment, design databases, acquiredata, wrangle it, analyze it, and …

Project Management for Data Science - NYU Stern
Scienti c evaluation compares the actual performance of the system to its potential maximum performance. It is fair, because it takes into account what is actually possible in the best case, …

NIH STRATEGIC PLAN FOR DATA SCIENCE 2023-2028
Strategic Plan for Data Science articulates the NIH’s strategic views, goals, and objectives to advance data science in the next five years. By addressing these challenges, NIH will pioneer …

Introduction to Data Management - GitHub Pages
Data are collected from sensors, sensor networks, remote sensing, observations, and more. This calls for increased attention to data management and stewardship. The amount of available …

The Data Life Cycle
Oct 4, 2019 · To put data science in context, we present phases of the data life cycle, from data generation to data interpretation. These phases transform raw bits into value for the end user.

Key Concepts of Data Management – an Empirical Approach
In order to provide a comprehensive overview of the key concepts of data management and to bring relevant parts of this field to school, we describe and use an empirical approach to …

1. Principles of Data Management 2020 - UMass
“Data Management is the process of providing the appropriate labeling, storage, and access for data at all stages of a research project. Here you can find best practices, resources, and …

Introduction to Data Management - University of Washington
A Data Model is a mathematical formalism to describe data. It is how we can talk about data conceptually without having to think about implementation.

Essentials of data management: an overview - Nature
WHAT IS DATA MANAGEMENT? Data management is a multistep process that involves obtaining, cleaning, and storing data to allow accurate analysis and produce meaningful results.

BIG DATA AND DATA SCIENCE METHODS FOR …
Neverthe derstand and explain how we can generate analytical less, this primer can guide management scholars who insights and prediction models from structured wish and to use …

Data, Models, and Decisions: The Fundamentals of …
The course aims to introduce the fundamentals of data models tools and methods and related topics. Business applications of the topics covered will be highlighted.

Data Management for Data Science Towards Embedded …
To solve these issues, we propose a new class of data management systems: embedded analytical systems. These systems are tightly integrated with analytical tools, and provide fast …

An Introduction to Data Management - GFBio
Handbook on data management for researchers. Follows ten steps of the Data Life Cycle (propose, collect, assure, describe, submit, preserve, discover, integrate, analyse, publish). …

CERTIFICATE PROGRAMME IN DATA SCIENCE & MACHINE …
Become industry-ready with an in-depth understanding of in-demand data science and machine learning tools and techniques with Python. WHO IS THIS PROGRAMME FOR? The …

Data Management for Data Science Computer Science 210 …
Students will also learn how to get datasets into database-ready form, and do basic analysis of such datasets using relational databases and SQL, and NoSQL databases. The course …

Study program documentation Bachelor's Degree in …
The objective of the Bachelor's degree program in Management and Data Science (BMDS) at the TUM Campus Heilbronn is to train and holistically qualify responsible graduates who can …

DATA MANAGEMENT - British Ecological Society
This guide is designed to help researchers navigate data management firstly by explaining what data and data management are and why data sharing is important, and secondly by providing …

Data Science Strategy - Centers for Disease Control and …
National Institutes of Health (NIH) recently released the NIH Strategic Plan for Data Science,10 which outlines NIH goals in five key areas: 1) data infrastructure (e.g., data storage, security, …

The Power of Data-Driven Asset Management I Accenture
Use artificial intelligence (AI), machine learning and analytics to glean critical insights from data. Manage the people and cultural dimensions of advanced data management. A strong data …