Data Science Personal Statement



  data science personal statement: The Professor Is In Karen Kelsky, 2015-08-04 The definitive career guide for grad students, adjuncts, post-docs and anyone else eager to get tenure or turn their Ph.D. into their ideal job Each year tens of thousands of students will, after years of hard work and enormous amounts of money, earn their Ph.D. And each year only a small percentage of them will land a job that justifies and rewards their investment. For every comfortably tenured professor or well-paid former academic, there are countless underpaid and overworked adjuncts, and many more who simply give up in frustration. Those who do make it share an important asset that separates them from the pack: they have a plan. They understand exactly what they need to do to set themselves up for success. They know what really moves the needle in academic job searches, how to avoid the all-too-common mistakes that sink so many of their peers, and how to decide when to point their Ph.D. toward other, non-academic options. Karen Kelsky has made it her mission to help readers join the select few who get the most out of their Ph.D. As a former tenured professor and department head who oversaw numerous academic job searches, she knows from experience exactly what gets an academic applicant a job. And as the creator of the popular and widely respected advice site The Professor is In, she has helped countless Ph.D.’s turn themselves into stronger applicants and land their dream careers. Now, for the first time ever, Karen has poured all her best advice into a single handy guide that addresses the most important issues facing any Ph.D., including: -When, where, and what to publish -Writing a foolproof grant application -Cultivating references and crafting the perfect CV -Acing the job talk and campus interview -Avoiding the adjunct trap -Making the leap to nonacademic work, when the time is right The Professor Is In addresses all of these issues, and many more.
  data science personal statement: How to Think about Data Science Diego Miranda-Saavedra, 2022-12-23 This book is a timely and critical introduction for those interested in what data science is (and isn’t), and how it should be applied. The language is conversational and the content is accessible for readers without a quantitative or computational background; but, at the same time, it is also a practical overview of the field for the more technical readers. The overarching goal is to demystify the field and teach the reader how to develop an analytical mindset instead of following recipes. The book takes the scientist’s approach of focusing on asking the right question at every step as this is the single most important factor contributing to the success of a data science project. Upon finishing this book, the reader should be asking more questions than I have answered. This book is, therefore, a practising scientist’s approach to explaining data science through questions and examples.
  data science personal statement: Applied Data Science Martin Braschler, Thilo Stadelmann, Kurt Stockinger, 2019-06-13 This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
  data science personal statement: Data Science for Public Policy Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall, 2021-09-01 This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst’s time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.
  data science personal statement: College Essay Essentials Ethan Sawyer, 2016-07-01 Let the College Essay Guy take the stress out of writing your college admission essay. Packed with brainstorming activities, college personal statement samples and more, this book provides a clear, stress-free roadmap to writing your best admission essay. Writing a college admission essay doesn't have to be stressful. College counselor Ethan Sawyer (aka The College Essay Guy) will show you that there are only four (really, four!) types of college admission essays. And all you have to do to figure out which type is best for you is answer two simple questions: 1. Have you experienced significant challenges in your life? 2. Do you know what you want to be or do in the future? With these questions providing the building blocks for your essay, Sawyer guides you through the rest of the process, from choosing a structure to revising your essay, and answers the big questions that have probably been keeping you up at night: How do I brag in a way that doesn't sound like bragging? and How do I make my essay, like, deep? College Essay Essentials will help you with: The best brainstorming exercises Choosing an essay structure The all-important editing and revisions Exercises and tools to help you get started or get unstuck College admission essay examples Packed with tips, tricks, exercises, and sample essays from real students who got into their dream schools, College Essay Essentials is the only college essay guide to make this complicated process logical, simple, and (dare we say it?) a little bit fun. The perfect companion to The Fiske Guide To Colleges 2020/2021. For high school counselors and college admission coaches, this is an essential book to help walk your students through writing a stellar, authentic college essay.
  data science personal statement: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2020-03-31 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.
  data science personal statement: VTAC eGuide 2016 VTAC, 2015-07-15 The VTAC eGuide is the Victorian Tertiary Admissions Centre’s annual guide to application for tertiary study, scholarships and special consideration in Victoria, Australia. The eGuide contains course listings and selection criteria for over 1,700 courses at 62 institutions including universities, TAFE institutes and independent tertiary colleges.
  data science personal statement: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  data science personal statement: Process Mining Wil M. P. van der Aalst, 2016-04-15 This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.
  data science personal statement: Data Journeys in the Sciences Sabina Leonelli, Niccolò Tempini, 2020-06-29 This groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research.
  data science personal statement: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  data science personal statement: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
  data science personal statement: Essential Actions for Academic Writing Nigel A. Caplan, Ann Johns, 2022-03-09 Essential Actions for Academic Writers is a writing textbook for all novice academic students, undergraduate or graduate, to help them understand how to write effectively throughout their academic and professional careers. While these novice writers may use English as a second or additional language, this book is also intended for students who have done little writing in their prior education or who are not yet confident in their academic writing. Essential Actions combines genre research, proven pedagogical practices, and short readings to help students develop their rhetorical flexibility by exploring and practicing the key actions that will appear in academic assignments, such as explaining, summarizing, synthesizing, and arguing. Part I introduces students to rhetorical situation, genre, register, source use, and a framework for understanding how to approach any new writing task. The genre approach recognizes that all writing responds to a context that includes the writer's identity, the reader's expectations, the purpose of the text, and the conventions that shape it. Part II explores each essential action and provides examples of the genres and language that support it. Part III leads students in combining the actions in different genres and contexts, culminating in the project of writing a personal statement for a university or scholarship application.
  data science personal statement: Statistics for Data Scientists Maurits Kaptein, Edwin van den Heuvel, 2022-02-02 This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.
  data science personal statement: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
  data science personal statement: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
  data science personal statement: Practical DataOps Harvinder Atwal, 2019-12-09 Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making. Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles. This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output. What You Will LearnDevelop a data strategy for your organization to help it reach its long-term goals Recognize and eliminate barriers to delivering data to users at scale Work on the right things for the right stakeholders through agile collaboration Create trust in data via rigorous testing and effective data management Build a culture of learning and continuous improvement through monitoring deployments and measuring outcomes Create cross-functional self-organizing teams focused on goals not reporting lines Build robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data products Who This Book Is For Data science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production.
  data science personal statement: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
  data science personal statement: Statistical Foundations, Reasoning and Inference Göran Kauermann, Helmut Küchenhoff, Christian Heumann, 2021-09-30 This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
  data science personal statement: Machine Learning Peter Flach, 2012-09-20 Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.
  data science personal statement: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-21 Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. How to lead in data science shares unique leadership techniques from high-performance data teams. It's filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You'll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you'll build practical skills to grow and improve your team, your company's data culture, and yourself.
  data science personal statement: Introduction to HPC with MPI for Data Science Frank Nielsen, 2016-02-03 This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions. Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters. In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework. In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems. Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.
  data science personal statement: Beginning Mathematica and Wolfram for Data Science Jalil Villalobos Alva, 2021-03-28 Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book introduces you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages. You’ll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages. You’ll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you’ll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You’ll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out. What You Will Learn Use Mathematica to explore data and describe the concepts using Wolfram language commands Create datasets, work with data frames, and create tables Import, export, analyze, and visualize data Work with the Wolfram data repository Build reports on the analysis Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering The fundamentals of the Wolfram Neural Network Framework and how to build your neural network for different tasks How to use pre-trained models from the Wolfram Neural Net Repository Who This Book Is For Data scientists new to using Wolfram and Mathematica as a language/tool to program in. Programmers should have some prior programming experience, but can be new to the Wolfram language.
  data science personal statement: Working Effectively with Legacy Code Michael Feathers, 2004-09-22 Get more out of your legacy systems: more performance, functionality, reliability, and manageability Is your code easy to change? Can you get nearly instantaneous feedback when you do change it? Do you understand it? If the answer to any of these questions is no, you have legacy code, and it is draining time and money away from your development efforts. In this book, Michael Feathers offers start-to-finish strategies for working more effectively with large, untested legacy code bases. This book draws on material Michael created for his renowned Object Mentor seminars: techniques Michael has used in mentoring to help hundreds of developers, technical managers, and testers bring their legacy systems under control. The topics covered include Understanding the mechanics of software change: adding features, fixing bugs, improving design, optimizing performance Getting legacy code into a test harness Writing tests that protect you against introducing new problems Techniques that can be used with any language or platform—with examples in Java, C++, C, and C# Accurately identifying where code changes need to be made Coping with legacy systems that aren't object-oriented Handling applications that don't seem to have any structure This book also includes a catalog of twenty-four dependency-breaking techniques that help you work with program elements in isolation and make safer changes.
  data science personal statement: What Can Be Computed? John MacCormick, 2018-05-01 An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
  data science personal statement: Proceedings of Academia-Industry Consortium for Data Science Gaurav Gupta, Lipo Wang, Anupam Yadav, Puneet Rana, Zhenyu Wang, 2022-02-01 This book gathers high-quality papers presented at Academia-Industry Consortium for Data Science (AICDS 2020), held in Wenzhou, China during 19 – 20 December 2020. The book presents views of academicians and also how companies are approaching these challenges organizationally. The topics covered in the book are data science and analytics, natural language processing, predictive analytics, artificial intelligence, machine learning, deep learning, big data computing, cognitive computing, data visualization, image processing, and optimization techniques.
  data science personal statement: Communicating with Data Deborah Nolan, Sara Stoudt, 2021 Communicating with Data aims to help students and researchers write about their insights in a way that is both compelling and faithful to the data.
  data science personal statement: Coercive Distribution Michael Albertus, Sofia Fenner, Dan Slater, 2018-05-03 Canonical theories of political economy struggle to explain patterns of distribution in authoritarian regimes. In this Element, Albertus, Fenner, and Slater challenge existing models and introduce an alternative, supply-side, and state-centered theory of 'coercive distribution'. Authoritarian regimes proactively deploy distributive policies as advantageous strategies to consolidate their monopoly on power. These policies contribute to authoritarian durability by undercutting rival elites and enmeshing the masses in lasting relations of coercive dependence. The authors illustrate the patterns, timing, and breadth of coercive distribution with global and Latin American quantitative evidence and with a series of historical case studies from regimes in Latin America, Asia, and the Middle East. By recognizing distribution's coercive dimensions, they account for empirical patterns of distribution that do not fit with quasi-democratic understandings of distribution as quid pro quo exchange. Under authoritarian conditions, distribution is less an alternative to coercion than one of its most effective expressions.
  data science personal statement: Frontiers in Data Science Matthias Dehmer, Frank Emmert-Streib, 2017-10-16 Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis. In fact, Big Data also belongs to this universe as it comprises data gathering, data fusion and analysis when it comes to manage big data sets. A major goal of this book is to understand data science as a new scientific discipline rather than the practical aspects of data analysis alone.
  data science personal statement: The Site Reliability Workbook Betsy Beyer, Niall Richard Murphy, David K. Rensin, Kent Kawahara, Stephen Thorne, 2018-07-25 In 2016, Googleâ??s Site Reliability Engineering book ignited an industry discussion on what it means to run production services todayâ??and why reliability considerations are fundamental to service design. Now, Google engineers who worked on that bestseller introduce The Site Reliability Workbook, a hands-on companion that uses concrete examples to show you how to put SRE principles and practices to work in your environment. This new workbook not only combines practical examples from Googleâ??s experiences, but also provides case studies from Googleâ??s Cloud Platform customers who underwent this journey. Evernote, The Home Depot, The New York Times, and other companies outline hard-won experiences of what worked for them and what didnâ??t. Dive into this workbook and learn how to flesh out your own SRE practice, no matter what size your company is. Youâ??ll learn: How to run reliable services in environments you donâ??t completely controlâ??like cloud Practical applications of how to create, monitor, and run your services via Service Level Objectives How to convert existing ops teams to SREâ??including how to dig out of operational overload Methods for starting SRE from either greenfield or brownfield
  data science personal statement: Site Reliability Engineering Niall Richard Murphy, Betsy Beyer, Chris Jones, Jennifer Petoff, 2016-03-23 The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use
  data science personal statement: The Pattern On The Stone W. Daniel Hillis, 2014-12-09 Most people are baffled by how computers work and assume that they will never understand them. What they don't realize -- and what Daniel Hillis's short book brilliantly demonstrates -- is that computers' seemingly complex operations can be broken down into a few simple parts that perform the same simple procedures over and over again. Computer wizard Hillis offers an easy-to-follow explanation of how data is processed that makes the operations of a computer seem as straightforward as those of a bicycle. Avoiding technobabble or discussions of advanced hardware, the lucid explanations and colorful anecdotes in The Pattern on the Stone go straight to the heart of what computers really do. Hillis proceeds from an outline of basic logic to clear descriptions of programming languages, algorithms, and memory. He then takes readers in simple steps up to the most exciting developments in computing today -- quantum computing, parallel computing, neural networks, and self-organizing systems. Written clearly and succinctly by one of the world's leading computer scientists, The Pattern on the Stone is an indispensable guide to understanding the workings of that most ubiquitous and important of machines: the computer.
  data science personal statement: Research Handbook in Data Science and Law Vanessa Mak, Eric Tjong Tjin Tai, Anna Berlee, 2018-12-28 The use of data in society has seen an exponential growth in recent years. Data science, the field of research concerned with understanding and analyzing data, aims to find ways to operationalize data so that it can be beneficially used in society, for example in health applications, urban governance or smart household devices. The legal questions that accompany the rise of new, data-driven technologies however are underexplored. This book is the first volume that seeks to map the legal implications of the emergence of data science. It discusses the possibilities and limitations imposed by the current legal framework, considers whether regulation is needed to respond to problems raised by data science, and which ethical problems occur in relation to the use of data. It also considers the emergence of Data Science and Law as a new legal discipline.
  data science personal statement: The Economic Singularity Calum Chace, 2016-07-18 Read The Economic Singularity if you want to think intelligently about the future. Aubrey de Grey Artificial intelligence (AI) is overtaking our human ability to absorb and process information. Robots are becoming increasingly dextrous, flexible, and safe to be around (except the military ones). It is our most powerful technology, and you need to understand it. This new book from best-selling AI writer Calum Chace argues that within a few decades, most humans will not be able to work for money. Self-driving cars will probably be the canary in the coal mine, providing a wake-up call for everyone who isn't yet paying attention. All jobs will be affected, from fast food McJobs to lawyers and journalists. This is the single most important development facing humanity in the first half of the 21st century. The fashionable belief that Universal Basic Income is the solution is only partly correct. We are probably going to need an entirely new economic system, and we better start planning soon - for the Economic Singularity! The outcome can be very good - a world in which machines do all the boring jobs and humans do pretty much what they please. But there are major risks, which we can only avoid by being alert to the possible futures and planning how to avoid the negative ones.
  data science personal statement: Data Science for Entrepreneurship Werner Liebregts, Willem-Jan van den Heuvel, Arjan van den Born, 2023-03-23 The fast-paced technological development and the plethora of data create numerous opportunities waiting to be exploited by entrepreneurs. This book provides a detailed, yet practical, introduction to the fundamental principles of data science and how entrepreneurs and would-be entrepreneurs can take advantage of it. It walks the reader through sections on data engineering, and data analytics as well as sections on data entrepreneurship and data use in relation to society. The book also offers ways to close the research and practice gaps between data science and entrepreneurship. By having read this book, students of entrepreneurship courses will be better able to commercialize data-driven ideas that may be solutions to real-life problems. Chapters contain detailed examples and cases for a better understanding. Discussion points or questions at the end of each chapter help to deeply reflect on the learning material.
  data science personal statement: Visual Analytics for Data Scientists Natalia Andrienko, Gennady Andrienko, Georg Fuchs, Aidan Slingsby, Cagatay Turkay, Stefan Wrobel, 2020-08-30 This textbook presents the main principles of visual analytics and describes techniques and approaches that have proven their utility and can be readily reproduced. Special emphasis is placed on various instructive examples of analyses, in which the need for and the use of visualisations are explained in detail. The book begins by introducing the main ideas and concepts of visual analytics and explaining why it should be considered an essential part of data science methodology and practices. It then describes the general principles underlying the visual analytics approaches, including those on appropriate visual representation, the use of interactive techniques, and classes of computational methods. It continues with discussing how to use visualisations for getting aware of data properties that need to be taken into account and for detecting possible data quality issues that may impair the analysis. The second part of the book describes visual analytics methods and workflows, organised by various data types including multidimensional data, data with spatial and temporal components, data describing binary relationships, texts, images and video. For each data type, the specific properties and issues are explained, the relevant analysis tasks are discussed, and appropriate methods and procedures are introduced. The focus here is not on the micro-level details of how the methods work, but on how the methods can be used and how they can be applied to data. The limitations of the methods are also discussed and possible pitfalls are identified. The textbook is intended for students in data science and, more generally, anyone doing or planning to do practical data analysis. It includes numerous examples demonstrating how visual analytics techniques are used and how they can help analysts to understand the properties of data, gain insights into the subject reflected in the data, and build good models that can be trusted. Based on several years of teaching related courses at the City, University of London, the University of Bonn and TU Munich, as well as industry training at the Fraunhofer Institute IAIS and numerous summer schools, the main content is complemented by sample datasets and detailed, illustrated descriptions of exercises to practice applying visual analytics methods and workflows.
  data science personal statement: Effective Data Science Infrastructure Ville Tuulos, 2022-08-16 Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you'll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You'll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python.
  data science personal statement: Mastering Marketing Data Science Iain Brown, 2024-04-29 Unlock the Power of Data: Transform Your Marketing Strategies with Data Science In the digital age, understanding the symbiosis between marketing and data science is not just an advantage; it's a necessity. In Mastering Marketing Data Science: A Comprehensive Guide for Today's Marketers, Dr. Iain Brown, a leading expert in data science and marketing analytics, offers a comprehensive journey through the cutting-edge methodologies and applications that are defining the future of marketing. This book bridges the gap between theoretical data science concepts and their practical applications in marketing, providing readers with the tools and insights needed to elevate their strategies in a data-driven world. Whether you're a master's student, a marketing professional, or a data scientist keen on applying your skills in a marketing context, this guide will empower you with a deep understanding of marketing data science principles and the competence to apply these principles effectively. Comprehensive Coverage: From data collection to predictive analytics, NLP, and beyond, explore every facet of marketing data science. Practical Applications: Engage with real-world examples, hands-on exercises in both Python & SAS, and actionable insights to apply in your marketing campaigns. Expert Guidance: Benefit from Dr. Iain Brown's decade of experience as he shares cutting-edge techniques and ethical considerations in marketing data science. Future-Ready Skills: Learn about the latest advancements, including generative AI, to stay ahead in the rapidly evolving marketing landscape. Accessible Learning: Tailored for both beginners and seasoned professionals, this book ensures a smooth learning curve with a clear, engaging narrative. Mastering Marketing Data Science is designed as a comprehensive how-to guide, weaving together theory and practice to offer a dynamic, workbook-style learning experience. Dr. Brown's voice and expertise guide you through the complexities of marketing data science, making sophisticated concepts accessible and actionable.
  data science personal statement: High-Dimensional Data Analysis with Low-Dimensional Models John Wright, Yi Ma, 2022-01-13 Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.
  data science personal statement: Predictive Analytics Eric Siegel, 2016-01-12 Mesmerizing & fascinating... —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …