Advertisement
data science without degree: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
data science without degree: Pro T-SQL 2012 Programmer's Guide Michael Coles, Scott Shaw, Jay Natarajan, Rudi Bruchez, 2012-11-29 Pro T–SQL 2012 Programmer’s Guide is every developer’s key to making full use of SQL Server 2012’s powerful, built–in Transact–SQL language. Discussing new and existing features, the book takes you on an expert guided tour of Transact–SQL functionality. Fully functioning examples and downloadable source code bring technically accurate and engaging treatment of Transact–SQL into your own hands. Step–by–step explanations ensure clarity, and an advocacy of best–practices will steer you down the road to success. Transact–SQL is the language developers and DBAs use to interact with SQL Server. It’s used for everything from querying data, to writing stored procedures, to managing the database. New features in T-SQL 2012 include full support for window functions, stored sequences, the ability to throw errors, data paging, and more. All these important new features are covered in this book. Developers and DBAs alike can benefit from the expressive power of Transact-SQL, and Pro T-SQL 2012 Programmer's Guide provides the gateway to success in applying this increasingly important database language to everyday business and technical tasks. |
data science without degree: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science without degree: Building Data Science Teams DJ Patil, 2011-09-15 As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be data driven. The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team. |
data science without degree: Developing Analytic Talent Vincent Granville, 2014-03-24 Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates. |
data science without degree: Getting Started with Data Science Murtaza Haider, 2015-12-14 Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon. |
data science without degree: Learning Apache Drill Charles Givre, Paul Rogers, 2018-11-02 Get up to speed with Apache Drill, an extensible distributed SQL query engine that reads massive datasets in many popular file formats such as Parquet, JSON, and CSV. Drill reads data in HDFS or in cloud-native storage such as S3 and works with Hive metastores along with distributed databases such as HBase, MongoDB, and relational databases. Drill works everywhere: on your laptop or in your largest cluster. In this practical book, Drill committers Charles Givre and Paul Rogers show analysts and data scientists how to query and analyze raw data using this powerful tool. Data scientists today spend about 80% of their time just gathering and cleaning data. With this book, you’ll learn how Drill helps you analyze data more effectively to drive down time to insight. Use Drill to clean, prepare, and summarize delimited data for further analysis Query file types including logfiles, Parquet, JSON, and other complex formats Query Hadoop, relational databases, MongoDB, and Kafka with standard SQL Connect to Drill programmatically using a variety of languages Use Drill even with challenging or ambiguous file formats Perform sophisticated analysis by extending Drill’s functionality with user-defined functions Facilitate data analysis for network security, image metadata, and machine learning |
data science without degree: Conceptual Statistics for Beginners Isadore Newman, Carole Newman, 1994 This new edition emphasizes and facilitates the conceptual understanding of statistics and statistical concepts for the purpose of reading and accurately interpreting research literature. The use of hand calculators is deemphasized. Instead, computer example setups are supplied for SPSS and SAS. |
data science without degree: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data science without degree: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code |
data science without degree: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. |
data science without degree: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
data science without degree: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
data science without degree: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
data science without degree: Mining of Massive Datasets Jure Leskovec, Jurij Leskovec, Anand Rajaraman, Jeffrey David Ullman, 2014-11-13 Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets. |
data science without degree: Multivariable Calculus James Stewart, 2011-09-27 Success in your calculus course starts here! James Stewart's CALCULUS, 7e, International Metric texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With MULTIVARIABLE CALCULUS, 7e, International Metric Edition Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course! |
data science without degree: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today. |
data science without degree: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course. |
data science without degree: The Art of Learning Josh Waitzkin, 2008-05-27 An eight-time national chess champion and world champion martial artist shares the lessons he has learned from two very different competitive arenas, identifying key principles about learning and performance that readers can apply to their life goals. Reprint. 35,000 first printing. |
data science without degree: The Self-Taught Programmer Cory Althoff, 2022-01-13 |
data science without degree: Be the Outlier Shrilata Murthy, 2020-07-27 According to LinkedIn's third annual U.S. Emerging Jobs Report, the data scientist role is ranked third among the top-15 emerging jobs in the U.S. Though the field of data science has been exploding, there didn't appear to be a comprehensive resource to help data scientists navigate the interview process... until now. In Be the Outlier: How to Ace Data Science Interviews, data scientist Shrilata Murthy covers all aspects of a data science interview in today's industry. Murthy combines her own experience in the job market with expert insight from data scientists with Google, Facebook, Amazon, NASA, Aetna, MBB & Big 4 consulting firms, and many more. In this book, you'll learn... the foundational knowledge that is key to any data science interview the 100-Word Story framework for writing a stellar resume what to expect from a variety of interview styles (take-home, presentation, case study, etc.), and actionable ways to differentiate yourself from your peers. By using real-world examples, practice questions, and sample interviews, Murthy has created an easy-to-follow guide that will help you crack any data science interview. After reading Be the Outlier, get ready to land your dream job in data science. |
data science without degree: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
data science without degree: Head First SQL Lynn Beighley, 2007-08-28 With its visually rich format designed for the way the brain works, this series of engaging narrative lessons that build on each other gives readers hands-on experience working with the SQL database language. |
data science without degree: Artificial Intelligence and the Future of Defense Stephan De Spiegeleire, Matthijs Maas, Tim Sweijs, 2017-05-17 Artificial intelligence (AI) is on everybody’s minds these days. Most of the world’s leading companies are making massive investments in it. Governments are scrambling to catch up. Every single one of us who uses Google Search or any of the new digital assistants on our smartphones has witnessed first-hand how quickly these developments now go. Many analysts foresee truly disruptive changes in education, employment, health, knowledge generation, mobility, etc. But what will AI mean for defense and security? In a new study HCSS offers a unique perspective on this question. Most studies to date quickly jump from AI to autonomous (mostly weapon) systems. They anticipate future armed forces that mostly resemble today’s armed forces, engaging in fairly similar types of activities with a still primarily industrial-kinetic capability bundle that would increasingly be AI-augmented. The authors of this study argue that AI may have a far more transformational impact on defense and security whereby new incarnations of ‘armed force’ start doing different things in novel ways. The report sketches a much broader option space within which defense and security organizations (DSOs) may wish to invest in successive generations of AI technologies. It suggests that some of the most promising investment opportunities to start generating the sustainable security effects that our polities, societies and economies expect may lie in in the realms of prevention and resilience. Also in those areas any large-scale application of AI will have to result from a preliminary open-minded (on all sides) public debate on its legal, ethical and privacy implications. The authors submit, however, that such a debate would be more fruitful than the current heated discussions about ‘killer drones’ or robots. Finally, the study suggests that the advent of artificial super-intelligence (i.e. AI that is superior across the board to human intelligence), which many experts now put firmly within the longer-term planning horizons of our DSOs, presents us with unprecedented risks but also opportunities that we have to start to explore. The report contains an overview of the role that ‘intelligence’ - the computational part of the ability to achieve goals in the world - has played in defense and security throughout human history; a primer on AI (what it is, where it comes from and where it stands today - in both civilian and military contexts); a discussion of the broad option space for DSOs it opens up; 12 illustrative use cases across that option space; and a set of recommendations for - especially - small- and medium sized defense and security organizations. |
data science without degree: Data Scientist Zacharias Voulgaris, 2014 Learn what a data scientist is and how to become one. As our society transforms into a data-driven one, the role of the Data Scientist is becoming more and more important. If you want to be on the leading edge of what is sure to become a major profession in the not-too-distant future, this book can show you how. Each chapter is filled with practical information that will help you reap the fruits of big data and become a successful Data Scientist: Learn what big data is and how it differs from traditional data through its main characteristics: volume, variety, velocity, and veracity. Explore the different types of Data Scientists and the skillset each one has. Dig into what the role of the Data Scientist requires in terms of the relevant mindset, technical skills, experience, and how the Data Scientist connects with other people. Be a Data Scientist for a day, examining the problems you may encounter and how you tackle them, what programs you use, and how you expand your knowledge and know-how. See how you can become a Data Scientist, based on where you are starting from: a programming, machine learning, or data-related background. Follow step-by-step through the process of landing a Data Scientist job: where you need to look, how you would present yourself to a potential employer, and what it takes to follow a freelancer path. Read the case studies of experienced, senior-level Data Scientists, in an attempt to get a better perspective of what this role is, in practice. At the end of the book, there is a glossary of the most important terms that have been introduced, as well as three appendices - a list of useful sites, some relevant articles on the web, and a list of offline resources for further reading. |
data science without degree: Learn Python 3 the Hard Way Zed A. Shaw, 2017-06-26 You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3 |
data science without degree: Data Science for Mathematicians Nathan Carter, 2020-09-15 Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them. |
data science without degree: Learning How to Learn Barbara Oakley, PhD, Terrence Sejnowski, PhD, Alistair McConville, 2018-08-07 A surprisingly simple way for students to master any subject--based on one of the world's most popular online courses and the bestselling book A Mind for Numbers A Mind for Numbers and its wildly popular online companion course Learning How to Learn have empowered more than two million learners of all ages from around the world to master subjects that they once struggled with. Fans often wish they'd discovered these learning strategies earlier and ask how they can help their kids master these skills as well. Now in this new book for kids and teens, the authors reveal how to make the most of time spent studying. We all have the tools to learn what might not seem to come naturally to us at first--the secret is to understand how the brain works so we can unlock its power. This book explains: Why sometimes letting your mind wander is an important part of the learning process How to avoid rut think in order to think outside the box Why having a poor memory can be a good thing The value of metaphors in developing understanding A simple, yet powerful, way to stop procrastinating Filled with illustrations, application questions, and exercises, this book makes learning easy and fun. |
data science without degree: Spurious Correlations Tyler Vigen, 2015-05-12 Spurious Correlations ... is the most fun you'll ever have with graphs. -- Bustle Military intelligence analyst and Harvard Law student Tyler Vigen illustrates the golden rule that correlation does not equal causation through hilarious graphs inspired by his viral website. Is there a correlation between Nic Cage films and swimming pool accidents? What about beef consumption and people getting struck by lightning? Absolutely not. But that hasn't stopped millions of people from going to tylervigen.com and asking, Wait, what? Vigen has designed software that scours enormous data sets to find unlikely statistical correlations. He began pulling the funniest ones for his website and has since gained millions of views, hundreds of thousands of likes, and tons of media coverage. Subversive and clever, Spurious Correlations is geek humor at its finest, nailing our obsession with data and conspiracy theory. |
data science without degree: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
data science without degree: Data Analysis Using SQL and Excel Gordon S. Linoff, 2010-09-16 Useful business analysis requires you to effectively transform data into actionable information. This book helps you use SQL and Excel to extract business information from relational databases and use that data to define business dimensions, store transactions about customers, produce results, and more. Each chapter explains when and why to perform a particular type of business analysis in order to obtain useful results, how to design and perform the analysis using SQL and Excel, and what the results should look like. |
data science without degree: Bioinformatics For Dummies Jean-Michel Claverie, Cedric Notredame, 2011-02-10 Were you always curious about biology but were afraid to sit through long hours of dense reading? Did you like the subject when you were in high school but had other plans after you graduated? Now you can explore the human genome and analyze DNA without ever leaving your desktop! Bioinformatics For Dummies is packed with valuable information that introduces you to this exciting new discipline. This easy-to-follow guide leads you step by step through every bioinformatics task that can be done over the Internet. Forget long equations, computer-geek gibberish, and installing bulky programs that slow down your computer. You’ll be amazed at all the things you can accomplish just by logging on and following these trusty directions. You get the tools you need to: Analyze all types of sequences Use all types of databases Work with DNA and protein sequences Conduct similarity searches Build a multiple sequence alignment Edit and publish alignments Visualize protein 3-D structures Construct phylogenetic trees This up-to-date second edition includes newly created and popular databases and Internet programs as well as multiple new genomes. It provides tips for using servers and places to seek resources to find out about what’s going on in the bioinformatics world. Bioinformatics For Dummies will show you how to get the most out of your PC and the right Web tools so you'll be searching databases and analyzing sequences like a pro! |
data science without degree: Building a Career in Software Daniel Heller, 2020-09-27 Software engineering education has a problem: universities and bootcamps teach aspiring engineers to write code, but they leave graduates to teach themselves the countless supporting tools required to thrive in real software companies. Building a Career in Software is the solution, a comprehensive guide to the essential skills that instructors don't need and professionals never think to teach: landing jobs, choosing teams and projects, asking good questions, running meetings, going on-call, debugging production problems, technical writing, making the most of a mentor, and much more. In over a decade building software at companies such as Apple and Uber, Daniel Heller has mentored and managed tens of engineers from a variety of training backgrounds, and those engineers inspired this book with their hundreds of questions about career issues and day-to-day problems. Designed for either random access or cover-to-cover reading, it offers concise treatments of virtually every non-technical challenge you will face in the first five years of your career—as well as a selection of industry-focused technical topics rarely covered in training. Whatever your education or technical specialty, Building a Career in Software can save you years of trial and error and help you succeed as a real-world software professional. What You Will Learn Discover every important nontechnical facet of professional programming as well as several key technical practices essential to the transition from student to professional Build relationships with your employer Improve your communication, including technical writing, asking good questions, and public speaking Who This Book is For Software engineers either early in their careers or about to transition to the professional world; that is, all graduates of computer science or software engineering university programs and all software engineering boot camp participants. |
data science without degree: Introduction to Bioinformatics Arthur M. Lesk, 2019 Lesk provides an accessible and thorough introduction to a subject which is becoming a fundamental part of biological science today. The text generates an understanding of the biological background of bioinformatics. |
data science without degree: Head First Statistics Dawn Griffiths, 2008-08-26 A comprehensive introduction to statistics that teaches the fundamentals with real-life scenarios, and covers histograms, quartiles, probability, Bayes' theorem, predictions, approximations, random samples, and related topics. |
data science without degree: Numsense! Data Science for the Layman Annalyn Ng, 2017-03-24 Used in Stanford's CS102 Big Data (Spring 2017) course. Want to get started on data science? Our promise: no math added. This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly. Popular concepts covered include: A/B Testing Anomaly Detection Association Rules Clustering Decision Trees and Random Forests Regression Analysis Social Network Analysis Neural Networks Features: Intuitive explanations and visuals Real-world applications to illustrate each algorithm Point summaries at the end of each chapter Reference sheets comparing the pros and cons of algorithms Glossary list of commonly-used terms With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions. |
data science without degree: Bioinformatics Algorithms Phillip Compeau, Pavel Pevzner, 1986-06 Bioinformatics Algorithms: an Active Learning Approach is one of the first textbooks to emerge from the recent Massive Online Open Course (MOOC) revolution. A light-hearted and analogy-filled companion to the authors' acclaimed online course (http://coursera.org/course/bioinformatics), this book presents students with a dynamic approach to learning bioinformatics. It strikes a unique balance between practical challenges in modern biology and fundamental algorithmic ideas, thus capturing the interest of students of biology and computer science students alike.Each chapter begins with a central biological question, such as Are There Fragile Regions in the Human Genome? or Which DNA Patterns Play the Role of Molecular Clocks? and then steadily develops the algorithmic sophistication required to answer this question. Hundreds of exercises are incorporated directly into the text as soon as they are needed; readers can test their knowledge through automated coding challenges on Rosalind (http://rosalind.info), an online platform for learning bioinformatics.The textbook website (http://bioinformaticsalgorithms.org) directs readers toward additional educational materials, including video lectures and PowerPoint slides. |
data science without degree: IQ Stephen Murdoch, 2007-06-15 Advance praise for IQ A Smart History of a Failed Idea An up-to-date, reader-friendly account of the continuing saga of the mismeasure of women and men. —Howard Gardner, author of Frames of Mind and Multiple Intelligences: New Horizons The good news is that you won't be tested after you've read Stephen Murdoch's important new book. The better news is that IQ: A Smart History of a Failed Idea is compelling from its first pages, and by its conclusion, Murdoch has deftly demonstrated that in our zeal to quantify intelligence, we have needlessly scarred—if not destroyed—the lives of millions of people who did not need an IQ score to prove their worth in the world. IQ is first-rate narrative journalism, a book that I hope leads to necessary change. —Russell Martin, author of Beethoven's Hair, Picasso's War, and Out of Silence With fast-paced storytelling, freelance journalist Murdoch traces now ubiquitous but still controversial attempts to measure intelligence to its origins in the late nineteenth and early twentieth centuries. . . . Murdoch concludes that IQ testing provides neither a reliable nor a helpful tool in understanding people's behavior, nor can it predict their future success or failure. . . . A thoughtful overview and a welcome reminder of the dangers of relying on such standardized tests. —Publishers Weekly Stephen Murdoch delivers a lucid and engaging chronicle of the ubiquitous and sometimes insidious use of IQ tests. This is a fresh look at a century-old and still controversial idea—that our human potential can be distilled down to a single test score. Murdoch's compelling account demands a reexamination of our mania for mental measurement. —Paul A. Lombardo, author of Three Generations, No Imbeciles: Eugenics, the Supreme Court & Buck v. Bell |
data science without degree: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data science without degree: Data Science and Intelligent Systems Radek Silhavy, Petr Silhavy, Zdenka Prokopova, 2021-11-16 This book constitutes the second part of refereed proceedings of the 5th Computational Methods in Systems and Software 2021 (CoMeSySo 2021) proceedings. The real-world problems related to data science and algorithm design related to systems and software engineering are presented in this papers. Furthermore, the basic research’ papers that describe novel approaches in the data science, algorithm design and in systems and software engineering are included. The CoMeSySo 2021 conference is breaking the barriers, being held online. CoMeSySo 2021 intends to provide an international forum for the discussion of the latest high-quality research results |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …
DATA SCIENCES UNDERGRADUATE HANDBOOK
The data sciences degree is part of an inter-college initiative between the College of Information Sciences and Technology (IST), College of Engineering, and Eberly College of Science to …
BCom Statistics and Data Science (07130263) - University …
most notably in data science. This qualification trains a statistician to work in a data science environment. Additional requirements a. General Regulations G.1 to G.15 (with the exception …
Bachelor of Science, Data Management/Data Analytics
Bachelor of Science, Data Management/Data Analytics The B.S. in Data Management/Data Analytics is designed to prepare science professionals who can set up a database …
Frequently Asked Questions (FAQ) for the M.Sc. Data
study course programme, i.e., a completed B.Sc. degree in Mathematics, Industrial Mathematics, Mathematical Economy, Computer Science, Data Science, or Physics from FAU or another …
Nursing Education and Training: Data from the 2022 NSSRN
Data from the 2022 NSSRN . March 2024 . Nursing is the nation’s largest health care profession, with an ... a Bachelor of Science in Nursing (BSN) degree, an accelerated-second-bachelor’s …
Can i study computer science without maths
Can i study computer science without maths in jamb. Can i study science without maths. Can i study bsc computer science without maths. Is maths compulsory for computer science. Can i …
TheDataScienceMachine: …
well-reputed data science conferences have become venues for organizing predictive analytics competitions. For example, during the course of writing this thesis, three
Federal Data Strategy Data Ethics Framework
• About the Data Ethics Framework outlines the intended purpose and audience of this document. • Data Ethics Defined explores the meaning of the term “data ethics,” as background to the …
What’s Keeping Women out of Data Science? - Boston …
data science without addressing the practical and cultural issues that women in particular highlight as critical ... Only students pursuing a data-science-related degree 2. with employees seen to …
Introduction to Data Science - GitHub Pages
1 Big Data and Data Science 5 ... programming examples, should be understandable without programming knowledge. •Mathematical notations commonly used in higher mathematics. …
SRI VENKATESWARA UNIVERSITY B.Sc. (DATA SCIENCE) – …
B.Sc. (DATA SCIENCE) – W.E.F. 2023-24 SEMESTER – II COURSE 3: INTRODUCTION TO DATA SCIENCE AND R PROGRAMMING Theory Credits: 3 3 hrs/week Aim and objectives of …
NAME OF UNIVERSITY/INSTITUTE : Sharda University Agra …
2 Under Graduate €B. Tech.- (CSE)- Data Science General Aptitude Test 10+2 Senior Secondary with minimum 60% marks (PCM/PCB) without gap between 10th & 12th 3 Under Graduate B. …
PROPOSAL MASTER OF SCIENCE IN DATA SCIENCE
Dec 11, 2017 · The Master of Science in Data Science is an interdisciplinary graduate program that combines the teaching of domain-specific and technical skills for analyzing large data sets. …
M.Tech. in Data Science (MDS) Information Brochure (Year …
The Need for M.Tech. in Data Science Program . There are many applications, such as social media, healthcare, e-commerce, weather forecast, traffic monitoring, etc., that are producing …
CURRICULUM FOR THE MASTER’S PROGRAM IN STATISTICS …
admitted to the Master’s program “Statistics and Data Science” without any restrictions. (3) Graduates of different programs at recognized national or international post-secondary ...
Foundations of Data Science - Department of Computer …
4.4 Convergence of Random Walks on Undirected Graphs . . . . . . . . . . . .88 4.4.1 Using Normalized Conductance to Prove Convergence . . . . . . . .94
Description - College of Sciences
The Data Science B.S. is an interdisciplinary degree that is offered jointly by the departments of Computer Science, Statistics and Data Science, Mathematics, and Industrial Engineering and …
Appendix requirement profile MSc Data Science - ETH Zürich
Master’s Degree Programme in Data Science Appendix 4/7 . 3 Applicants to the degree programme who hold a Bachelor’s degree from a university of applied sciences must, …
M.S. Data Analytics Program Guide - Western Governors …
The Degree Plan is a detailed blueprint of the courses you will need to complete in order to earn your degree. The Degree Plan also lays out the accompanying learning resources and …
2023-24 PG PROGRAMME M.Tech./M.Arch./M.U.R.P. - IIT …
Bachelor’s degree in Civil Engg./Electronics Engg./Electrical Engg./Computer Science/ Information Technology/Marine Engg./Mining Engg./Environmental Engg/Agricultural Engg/ …
AFRICAN CENTRE OF EXCELLENCE IN DATA SCIENCE
IN DATA SCIENCE Prediction of Tea Production in Rwanda using Data Mining Techniques By Clarisse UMUTONI Registration Number: 213001359 A dissertation submitted in partial …
Study program documentation Bachelor's Degree in …
production departments), data science aspects are increasingly permeating all areas of business, making it almost impossible to imagine management without data science skills in the future. …
DATA SCIENCES UNDERGRADUATE HANDBOOK
Data Sciences B.S. degree. ... The program provides students with the technical fundamentals of data science, with a focus on developing the knowledge and skills needed to manage and …
Doing Data Science Straight Talk From The Frontline
Data science is a powerful tool, but understanding the realistic day-to-day realities, soft skills, and collaboration is crucial for those seeking a fulfilling and successful career in this exciting …
INTERNSHIP IN DATA ANALYSIS USING MACHINE LEARNING
exploratory data analysis, and future engineering, with the concept of data science. The utilization of different python libraries, such as Pandas and Numpy, facilitated the efficient handling and …
Syllabus for F.Y. B.Sc. Data Science - Mulund College of …
help for the role of a Data Scientist. As a Data Science aspirant, learner will be emphasising of the knowledge to share from the quantitative analysis to programming concept and extended to …
SST Masters in Data Science 9032022 POSTR - Pan-Atlantic …
Ÿ Future opportunities in data science are without boundaries. 7 Master of Science in Data Science Programme School of Science and Technology (SST), Pan-Atlantic University. ... • At …
Clean Base Requires Your Attention There Is A Sealing …
English Mechanic and Mirror of Science ,1867 Popular Mechanics ,1990-01 Popular Mechanics inspires instructs and influences readers to help them master the modern world Whether it s …
CSCI S-101 Foundations of Data Science and Engineering
Jul 26, 2021 · • Recognize the skills required to perform data science tasks from data acquisition to storytelling with data. • Demonstrate an understanding of how data science projects are …
Policing around the Nation: Education, Philosophy, and Practice
This report does not ask, nor answer, whether officers with a college degree are better than officers without a college degree on any measure. It does not venture into the weeds of the …
Information for potential applicants M.Sc. Data Science Trier ...
data science from the three disciplines’ speci c viewpoints. As such, the programme is demanding, contains a considerable amount of self-study and ... studies yet, i.e. without …
Data Smart: Using Data Science to Transform Information …
teach) data science without big data technologies— you could just use Excel. John showed people that it wasn’t about the technology, but, rather, one had to really think through the …
Data Science, Statistics, Mathematics and Applied …
Data Science is the competency to make sense of, and find useful patterns within data to better support decision-making. The profession of data scientist is one that ... You may not really …
University of Cape Town
Applicants for the Bachelor of Science degree must meet the following subject requirements: • Mathematics at 70% or above • Physical Scienceat 60% or above (see notes2 and 3 below). • …
Applications are invited ONLINE for admission to the …
ii) Bachelor degree in Science (BS) (4 year degree) iii) M.Sc. or equivalent in any science or mathematical discipline. iv) MCA (with Physics & Mathematics at B.Sc. level) or equivalent
Doctoral Programs in Computational Science and Engineering
complete the host department's degree requirements (including qualifying exam) with some deviations relating to coursework, thesis ... Data Science 1 12 15.083 Integer Optimization 12 …
SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER …
Degree in Data Science Full time (FT) or Part time (PT) FT only Both FT and PT Both FT and PT Minimum duration 3 yrs 1 yr (FT) and 2 yrs (PT) 1 yr (FT) and 2 yrs (PT) Entry requirements …
Academic Regulations for B. Tech. with Minor program
Data Science All branches, except B. Tech. in CSE (Data Science)/ B. Tech. (Data Science) CSE ... only B. Tech. degree in the concerned branch on earning the required credits of 160. ... their …
Foundations of Data Science - TTIC
Foundations of Data Science Avrim Blum, John Hopcroft, and Ravindran Kannan Thursday 27th February, 2020 This material has been published by Cambridge University Press as …
Introduction to Data Science - Stellenbosch University
Entry qualificationBachelor’s degree Target audience Industry (graduates) who have encountered or been exposed to data science, without having proper knowledge of the field or the process …
Programme Specification 2021–2022 - UL-BDS
A Pass Degree is a degree without Honours. Specific rules for the classification of awards are given in the Programme Regulations, under Scheme of Award. Programme title Data Science …
DATA SCIENCE FOR HUMAN WELL-BEING A DISSERTATION …
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Christopher Tim Althoff August 2018. ... for granting access to their data, without which the present research would have been impossible. …
Programme Specification 2022–2023 - University of London
MSc Data Science. is a 180 UK credit degree programme (90 ECTS credits). For this MSc a student must complete: • four core modules (60 credits total) • two compulsory modules (30 …
Introduction to Data Science - Stellenbosch University
Entry quali cation Bachelor’s degree Target audience Industry (graduates) who have encountered or been exposed to data science, without having proper knowledge of the eld or the process of …
M. TECH IN DATA SCIENCE AND ARTIFICIAL INTELLIGENCE
from PES University in Data Science and 07 M.TECH DEGREE Artificial Intelligence. *This is an indicative curriculum and is subject to change. BATCH PROFILE Program participants come …
50 Years of Data Science - Taylor & Francis Online
748 D.DONOHO aboutwhatisappropriate,andholdsusbackfromdataanalysis strategiesthatwewouldotherwiseeagerlypursue. …
1.1 What is data science? - University of Arizona
Drew Conway’s popular data science Venn diagram. In Conway’s opinion (at the time of the diagram’s creation), data science fell into the intersection of math and statistical Licensed to …
Soft coral identification guide printable pdf template
repair guide 2019 printable pdf download faca. Valu gokumuhu nakohuju xaza pu data science without degree reddit gepesuce puwina tupacitiburi da. Wudedutecena weyumi dakaja …
Introduction to Data Science - Stellenbosch University
Entry quali cation Bachelor’s degree Target audience Industry (graduates) who have encountered or been exposed to data science, without having proper knowledge of the eld or the process of …
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY
Degree) in Energy Energy Science and Engineering MPP Centre for Policy Studies M.S. by Research Computer Science & Engineering, Data Science and Artificial Intelligence MA+Ph.D. …