Advertisement
data quality management model: Enterprise Knowledge Management David Loshin, 2001 This volume presents a methodology for defining, measuring and improving data quality. It lays out an economic framework for understanding the value of data quality, then outlines data quality rules and domain- and mapping-based approaches to consolidating enterprise knowledge. |
data quality management model: Data Quality Management with Semantic Technologies Christian Fürber, 2015-12-11 Christian Fürber investigates the useful application of semantic technologies for the area of data quality management. Based on a literature analysis of typical data quality problems and typical activities of data quality management processes, he develops the Semantic Data Quality Management framework as the major contribution of this thesis. The SDQM framework consists of three components that are evaluated in two different use cases. Moreover, this thesis compares the framework to conventional data quality software. Besides the framework, this thesis delivers important theoretical findings, namely a comprehensive typology of data quality problems, ten generic data requirement types, a requirement-centric data quality management process, and an analysis of related work. |
data quality management model: Information Quality Management Latif Al-Hakim, 2007-01-01 Technologies such as the Internet and mobile commerce bring with them ubiquitous connectivity, real-time access, and overwhelming volumes of data and information. The growth of data warehouses and communication and information technologies has increased the need for high information quality management in organizations. Information Quality Management: Theory and Applications provides solutions to information quality problems becoming increasingly prevalent.Information Quality Management: Theory and Applications provides insights and support for professionals and researchers working in the field of information and knowledge management, information quality, practitioners and managers of manufacturing, and service industries concerned with the management of information. |
data quality management model: Data Quality Thomas C. Redman, 1992 Data Quality begins with an explanation of what data is, how it is created and destroyed, then explores the true quality of data--accuracy, consistency and currentness. From there, the author covers the powerful methods of statistical quality control and process management to bear on the core processes that create, manipulate, use and store data values. Table of Contents: 1. Introduction; 2. Data and Information; 3. Dimensions of Data Quality; 4. Statistical Quality Control; 5. Process Management; 6. Process Representation and the Functions of Information Processing Approach; 7. Data Quality Requirements; 8. Measurement Systems and Data Quality; 9. Process Redesign Using Experimentation and Computer Simulation; 10. Managing Multiple Processes; 11. Perspective Prospects and Implications; 12. Summaries. |
data quality management model: Data Quality Rupa Mahanti, 2019-03-18 This is not the kind of book that youll read one time and be done with. So scan it quickly the first time through to get an idea of its breadth. Then dig in on one topic of special importance to your work. Finally, use it as a reference to guide your next steps, learn details, and broaden your perspective. from the foreword by Thomas C. Redman, Ph.D., the Data Doc Good data is a source of myriad opportunities, while bad data is a tremendous burden. Companies that manage their data effectively are able to achieve a competitive advantage in the marketplace, while bad data, like cancer, can weaken and kill an organization. In this comprehensive book, Rupa Mahanti provides guidance on the different aspects of data quality with the aim to be able to improve data quality. Specifically, the book addresses: -Causes of bad data quality, bad data quality impacts, and importance of data quality to justify the case for data quality-Butterfly effect of data quality-A detailed description of data quality dimensions and their measurement-Data quality strategy approach-Six Sigma - DMAIC approach to data quality-Data quality management techniques-Data quality in relation to data initiatives like data migration, MDM, data governance, etc.-Data quality myths, challenges, and critical success factorsStudents, academicians, professionals, and researchers can all use the content in this book to further their knowledge and get guidance on their own specific projects. It balances technical details (for example, SQL statements, relational database components, data quality dimensions measurements) and higher-level qualitative discussions (cost of data quality, data quality strategy, data quality maturity, the case made for data quality, and so on) with case studies, illustrations, and real-world examples throughout. |
data quality management model: Handbook of Data Quality Shazia Sadiq, 2013-08-13 The issue of data quality is as old as data itself. However, the proliferation of diverse, large-scale and often publically available data on the Web has increased the risk of poor data quality and misleading data interpretations. On the other hand, data is now exposed at a much more strategic level e.g. through business intelligence systems, increasing manifold the stakes involved for individuals, corporations as well as government agencies. There, the lack of knowledge about data accuracy, currency or completeness can have erroneous and even catastrophic results. With these changes, traditional approaches to data management in general, and data quality control specifically, are challenged. There is an evident need to incorporate data quality considerations into the whole data cycle, encompassing managerial/governance as well as technical aspects. Data quality experts from research and industry agree that a unified framework for data quality management should bring together organizational, architectural and computational approaches. Accordingly, Sadiq structured this handbook in four parts: Part I is on organizational solutions, i.e. the development of data quality objectives for the organization, and the development of strategies to establish roles, processes, policies, and standards required to manage and ensure data quality. Part II, on architectural solutions, covers the technology landscape required to deploy developed data quality management processes, standards and policies. Part III, on computational solutions, presents effective and efficient tools and techniques related to record linkage, lineage and provenance, data uncertainty, and advanced integrity constraints. Finally, Part IV is devoted to case studies of successful data quality initiatives that highlight the various aspects of data quality in action. The individual chapters present both an overview of the respective topic in terms of historical research and/or practice and state of the art, as well as specific techniques, methodologies and frameworks developed by the individual contributors. Researchers and students of computer science, information systems, or business management as well as data professionals and practitioners will benefit most from this handbook by not only focusing on the various sections relevant to their research area or particular practical work, but by also studying chapters that they may initially consider not to be directly relevant to them, as there they will learn about new perspectives and approaches. |
data quality management model: Foundations of Data Quality Management Wenfei Fan, Floris Geerts, 2012 Provides an overview of fundamental issues underlying central aspects of data quality - data consistency, data deduplication, data accuracy, data currency, and information completeness. The book promotes a uniform logical framework for dealing with these issues, based on data quality rules. |
data quality management model: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. |
data quality management model: Executing Data Quality Projects Danette McGilvray, 2021-05-27 Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online |
data quality management model: How to Establish a Data Quality Management Framework Accurity, 2022-05-17 A significant amount of money is lost every year to bad data. This includes time spent on correcting bad data, evaluating data sources that are not trusted, or simply the costs of mistakes due to incorrect customer identification. Why not improve your business in an area that you can directly influence? Our whitepaper helps you understand the purpose and added value of Data Quality Management, what types of common data quality issues exist, and guides you through the steps needed to establish a good Data Quality Management framework as a part of your overall data governance. In this whitepaper, you will: • Learn what data quality management is and how it helps your business • Understand what data quality is and how you can categorize data issues as data quality dimensions • Discover how bad data is produced in the first place and how to improve data quality • See what position data quality management takes in data governance • Get a step-by-step guide to the data quality management process |
data quality management model: Multi-Domain Master Data Management Mark Allen, Dalton Cervo, 2015-03-21 Multi-Domain Master Data Management delivers practical guidance and specific instruction to help guide planners and practitioners through the challenges of a multi-domain master data management (MDM) implementation. Authors Mark Allen and Dalton Cervo bring their expertise to you in the only reference you need to help your organization take master data management to the next level by incorporating it across multiple domains. Written in a business friendly style with sufficient program planning guidance, this book covers a comprehensive set of topics and advanced strategies centered on the key MDM disciplines of Data Governance, Data Stewardship, Data Quality Management, Metadata Management, and Data Integration. - Provides a logical order toward planning, implementation, and ongoing management of multi-domain MDM from a program manager and data steward perspective. - Provides detailed guidance, examples and illustrations for MDM practitioners to apply these insights to their strategies, plans, and processes. - Covers advanced MDM strategy and instruction aimed at improving data quality management, lowering data maintenance costs, and reducing corporate risks by applying consistent enterprise-wide practices for the management and control of master data. |
data quality management model: Registries for Evaluating Patient Outcomes Agency for Healthcare Research and Quality/AHRQ, 2014-04-01 This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. |
data quality management model: Measuring Data Quality for Ongoing Improvement Laura Sebastian-Coleman, 2012-12-31 The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. - Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges - Enables discussions between business and IT with a non-technical vocabulary for data quality measurement - Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation |
data quality management model: Data Quality Carlo Batini, Monica Scannapieco, 2006-09-27 Poor data quality can seriously hinder or damage the efficiency and effectiveness of organizations and businesses. The growing awareness of such repercussions has led to major public initiatives like the Data Quality Act in the USA and the European 2003/98 directive of the European Parliament. Batini and Scannapieco present a comprehensive and systematic introduction to the wide set of issues related to data quality. They start with a detailed description of different data quality dimensions, like accuracy, completeness, and consistency, and their importance in different types of data, like federated data, web data, or time-dependent data, and in different data categories classified according to frequency of change, like stable, long-term, and frequently changing data. The book's extensive description of techniques and methodologies from core data quality research as well as from related fields like data mining, probability theory, statistical data analysis, and machine learning gives an excellent overview of the current state of the art. The presentation is completed by a short description and critical comparison of tools and practical methodologies, which will help readers to resolve their own quality problems. This book is an ideal combination of the soundness of theoretical foundations and the applicability of practical approaches. It is ideally suited for everyone – researchers, students, or professionals – interested in a comprehensive overview of data quality issues. In addition, it will serve as the basis for an introductory course or for self-study on this topic. |
data quality management model: Building a Scalable Data Warehouse with Data Vault 2.0 Daniel Linstedt, Michael Olschimke, 2015-09-15 The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. Building a Scalable Data Warehouse covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0 |
data quality management model: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure |
data quality management model: Executing Data Quality Projects Danette McGilvray, 2008-09-01 Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations.* Includes numerous templates, detailed examples, and practical advice for executing every step of the Ten Steps approach.* Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices.* A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online. |
data quality management model: Managing Data Quality Tim King, Julian Schwarzenbach, 2020-04-27 This book explains data quality management in practical terms, focusing on three key areas - the nature of data in enterprises, the purpose and scope of data quality management, and implementing a data quality management system, in line with ISO 8000-61. Examples of good practice in data quality management are also included. |
data quality management model: Scientometrics Recent Advances Suad Kunosic, Enver Zerem, 2019-12-11 In recent years, academic advancement and access to funds that stimulate scientific research have been conditioned by the scientific production of individual scientists as well as the production of scientific centers, institutes and universities. This has led to an increase in interest in the accelerated assessment and ranking of scientists and scientific institutions. Scientometry is a sub-discipline of information sciences that measures achievement in science. This book provides the reader with a detailed insight into relevant scientometric methods and criteria, their individual strengths and weaknesses in the process of ranking scientists, scientific centers and institutions, as well as their application to the process of planning scientific projects and isolated medical specialties. |
data quality management model: Journey to Data Quality Yang W. Lee, 2006 All organizations today confront data quality problems, both systemic and structural. Neither ad hoc approaches nor fixes at the systems level--installing the latest software or developing an expensive data warehouse--solve the basic problem of bad data quality practices. Journey to Data Qualityoffers a roadmap that can be used by practitioners, executives, and students for planning and implementing a viable data and information quality management program. This practical guide, based on rigorous research and informed by real-world examples, describes the challenges of data management and provides the principles, strategies, tools, and techniques necessary to meet them. The authors, all leaders in the data quality field for many years, discuss how to make the economic case for data quality and the importance of getting an organization's leaders on board. They outline different approaches for assessing data, both subjectively (by users) and objectively (using sampling and other techniques). They describe real problems and solutions, including efforts to find the root causes of data quality problems at a healthcare organization and data quality initiatives taken by a large teaching hospital. They address setting company policy on data quality and, finally, they consider future challenges on the journey to data quality. |
data quality management model: Data Quality Jack E. Olson, 2003-01-09 Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality.* Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets. |
data quality management model: Competing with High Quality Data Rajesh Jugulum, 2014-03-10 Create a competitive advantage with data quality Data is rapidly becoming the powerhouse of industry, but low-quality data can actually put a company at a disadvantage. To be used effectively, data must accurately reflect the real-world scenario it represents, and it must be in a form that is usable and accessible. Quality data involves asking the right questions, targeting the correct parameters, and having an effective internal management, organization, and access system. It must be relevant, complete, and correct, while falling in line with pervasive regulatory oversight programs. Competing with High Quality Data: Concepts, Tools and Techniques for Building a Successful Approach to Data Quality takes a holistic approach to improving data quality, from collection to usage. Author Rajesh Jugulum is globally-recognized as a major voice in the data quality arena, with high-level backgrounds in international corporate finance. In the book, Jugulum provides a roadmap to data quality innovation, covering topics such as: The four-phase approach to data quality control Methodology that produces data sets for different aspects of a business Streamlined data quality assessment and issue resolution A structured, systematic, disciplined approach to effective data gathering The book also contains real-world case studies to illustrate how companies across a broad range of sectors have employed data quality systems, whether or not they succeeded, and what lessons were learned. High-quality data increases value throughout the information supply chain, and the benefits extend to the client, employee, and shareholder. Competing with High Quality Data: Concepts, Tools and Techniques for Building a Successful Approach to Data Quality provides the information and guidance necessary to formulate and activate an effective data quality plan today. |
data quality management model: Data Quality Richard Y. Wang, Mostapha Ziad, Yang W. Lee, 2006-04-11 Data Quality provides an exposé of research and practice in the data quality field for technically oriented readers. It is based on the research conducted at the MIT Total Data Quality Management (TDQM) program and work from other leading research institutions. This book is intended primarily for researchers, practitioners, educators and graduate students in the fields of Computer Science, Information Technology, and other interdisciplinary areas. It forms a theoretical foundation that is both rigorous and relevant for dealing with advanced issues related to data quality. Written with the goal to provide an overview of the cumulated research results from the MIT TDQM research perspective as it relates to database research, this book is an excellent introduction to Ph.D. who wish to further pursue their research in the data quality area. It is also an excellent theoretical introduction to IT professionals who wish to gain insight into theoretical results in the technically-oriented data quality area, and apply some of the key concepts to their practice. |
data quality management model: Medical Quality Management Angelo P. Giardino, Lee Ann Riesenberg, Prathibha Varkey, 2020-08-31 This comprehensive medical textbook is a compendium of the latest information on healthcare quality. The text provides knowledge about the theory and practical applications for each of the core areas that comprise the field of medical quality management as well as insight and essential briefings on the impact of new healthcare technologies and innovations on medical quality and improvement. The third edition provides significant new content related to medical quality management and quality improvement, a user-friendly format, case studies, and updated learning objectives. This textbook also serves as source material for the American Board of Medical Quality in the development of its core curriculum and certification examinations. Each chapter is designed for a review of the essential background, precepts, and exemplary practices within the topical area: Basics of Quality Improvement Data Analytics for the Improvement of Healthcare Quality Utilization Management, Case Management, and Care Coordination Economics and Finance in Medical Quality Management External Quality Improvement — Accreditation, Certification, and Education The Interface Between Quality Improvement and Law Ethics and Quality Improvement With the new edition of Medical Quality Management: Theory and Practice, the American College of Medical Quality presents the experience and expertise of its contributors to provide the background necessary for healthcare professionals to assume the responsibilities of medical quality management in healthcare institutions, provide physicians in all medical specialties with a core body of knowledge related to medical quality management, and serve as a necessary guide for healthcare administrators and executives, academics, directors, medical and nursing students and residents, and physicians and other health practitioners. |
data quality management model: Crossing the Quality Chasm Institute of Medicine, Committee on Quality of Health Care in America, 2001-07-19 Second in a series of publications from the Institute of Medicine's Quality of Health Care in America project Today's health care providers have more research findings and more technology available to them than ever before. Yet recent reports have raised serious doubts about the quality of health care in America. Crossing the Quality Chasm makes an urgent call for fundamental change to close the quality gap. This book recommends a sweeping redesign of the American health care system and provides overarching principles for specific direction for policymakers, health care leaders, clinicians, regulators, purchasers, and others. In this comprehensive volume the committee offers: A set of performance expectations for the 21st century health care system. A set of 10 new rules to guide patient-clinician relationships. A suggested organizing framework to better align the incentives inherent in payment and accountability with improvements in quality. Key steps to promote evidence-based practice and strengthen clinical information systems. Analyzing health care organizations as complex systems, Crossing the Quality Chasm also documents the causes of the quality gap, identifies current practices that impede quality care, and explores how systems approaches can be used to implement change. |
data quality management model: Developing High Quality Data Models Matthew West, 2011-02-07 Developing High Quality Data Models provides an introduction to the key principles of data modeling. It explains the purpose of data models in both developing an Enterprise Architecture and in supporting Information Quality; common problems in data model development; and how to develop high quality data models, in particular conceptual, integration, and enterprise data models. The book is organized into four parts. Part 1 provides an overview of data models and data modeling including the basics of data model notation; types and uses of data models; and the place of data models in enterprise architecture. Part 2 introduces some general principles for data models, including principles for developing ontologically based data models; and applications of the principles for attributes, relationship types, and entity types. Part 3 presents an ontological framework for developing consistent data models. Part 4 provides the full data model that has been in development throughout the book. The model was created using Jotne EPM Technologys EDMVisualExpress data modeling tool. This book was designed for all types of modelers: from those who understand data modeling basics but are just starting to learn about data modeling in practice, through to experienced data modelers seeking to expand their knowledge and skills and solve some of the more challenging problems of data modeling. - Uses a number of common data model patterns to explain how to develop data models over a wide scope in a way that is consistent and of high quality - Offers generic data model templates that are reusable in many applications and are fundamental for developing more specific templates - Develops ideas for creating consistent approaches to high quality data models |
data quality management model: Corporate Data Quality Boris Otto, Hubert Österle, 2015 |
data quality management model: Entity Information Life Cycle for Big Data John R. Talburt, Yinle Zhou, 2015-04-20 Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. - Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems - Offers practical guidance to help you design and build an EIM system that will successfully handle big data - Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM - Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems - Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system - Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions |
data quality management model: Exploratory Data Mining and Data Cleaning Tamraparni Dasu, Theodore Johnson, 2003-08-01 Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining. |
data quality management model: Data Quality and its Impacts on Decision-Making Christoph Samitsch, 2014-12-01 Christoph Samitsch investigates whether decision-making efficiency is being influenced by the quality of data and information. Results of the research provide evidence that defined data quality dimensions have an effect on decision-making performance as well as the time it takes to make a decision. |
data quality management model: Foundations of Data Quality Management Wenfei Fan, Floris Geerts, 2022-05-31 Data quality is one of the most important problems in data management. A database system typically aims to support the creation, maintenance, and use of large amount of data, focusing on the quantity of data. However, real-life data are often dirty: inconsistent, duplicated, inaccurate, incomplete, or stale. Dirty data in a database routinely generate misleading or biased analytical results and decisions, and lead to loss of revenues, credibility and customers. With this comes the need for data quality management. In contrast to traditional data management tasks, data quality management enables the detection and correction of errors in the data, syntactic or semantic, in order to improve the quality of the data and hence, add value to business processes. While data quality has been a longstanding problem for decades, the prevalent use of the Web has increased the risks, on an unprecedented scale, of creating and propagating dirty data. This monograph gives an overview of fundamental issues underlying central aspects of data quality, namely, data consistency, data deduplication, data accuracy, data currency, and information completeness. We promote a uniform logical framework for dealing with these issues, based on data quality rules. The text is organized into seven chapters, focusing on relational data. Chapter One introduces data quality issues. A conditional dependency theory is developed in Chapter Two, for capturing data inconsistencies. It is followed by practical techniques in Chapter 2b for discovering conditional dependencies, and for detecting inconsistencies and repairing data based on conditional dependencies. Matching dependencies are introduced in Chapter Three, as matching rules for data deduplication. A theory of relative information completeness is studied in Chapter Four, revising the classical Closed World Assumption and the Open World Assumption, to characterize incomplete information in the real world. A data currency model is presented in Chapter Five, to identify the current values of entities in a database and to answer queries with the current values, in the absence of reliable timestamps. Finally, interactions between these data quality issues are explored in Chapter Six. Important theoretical results and practical algorithms are covered, but formal proofs are omitted. The bibliographical notes contain pointers to papers in which the results were presented and proven, as well as references to materials for further reading. This text is intended for a seminar course at the graduate level. It is also to serve as a useful resource for researchers and practitioners who are interested in the study of data quality. The fundamental research on data quality draws on several areas, including mathematical logic, computational complexity and database theory. It has raised as many questions as it has answered, and is a rich source of questions and vitality. Table of Contents: Data Quality: An Overview / Conditional Dependencies / Cleaning Data with Conditional Dependencies / Data Deduplication / Information Completeness / Data Currency / Interactions between Data Quality Issues |
data quality management model: Software Architecture for Big Data and the Cloud Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel, Bruce Maxim, 2017-06-12 Software Architecture for Big Data and the Cloud is designed to be a single resource that brings together research on how software architectures can solve the challenges imposed by building big data software systems. The challenges of big data on the software architecture can relate to scale, security, integrity, performance, concurrency, parallelism, and dependability, amongst others. Big data handling requires rethinking architectural solutions to meet functional and non-functional requirements related to volume, variety and velocity. The book's editors have varied and complementary backgrounds in requirements and architecture, specifically in software architectures for cloud and big data, as well as expertise in software engineering for cloud and big data. This book brings together work across different disciplines in software engineering, including work expanded from conference tracks and workshops led by the editors. - Discusses systematic and disciplined approaches to building software architectures for cloud and big data with state-of-the-art methods and techniques - Presents case studies involving enterprise, business, and government service deployment of big data applications - Shares guidance on theory, frameworks, methodologies, and architecture for cloud and big data |
data quality management model: Assuring Data Quality and Validity in Clinical Trials for Regulatory Decision Making Institute of Medicine, Roundtable on Research and Development of Drugs, Biologics, and Medical Devices, 1999-07-27 In an effort to increase knowledge and understanding of the process of assuring data quality and validity in clinical trials, the IOM hosted a workshop to open a dialogue on the process to identify and discuss issues of mutual concern among industry, regulators, payers, and consumers. The presenters and panelists together developed strategies that could be used to address the issues that were identified. This IOM report of the workshop summarizes the present status and highlights possible strategies for making improvements to the education of interested and affected parties as well as facilitating future planning. |
data quality management model: Quality Management Peter D. Mauch, 2009-12-17 In the past, when goods and services were simpler, measurement of quality was self-evident. As business became more complicated, so too did the implementation of quality management and our ability to measure it. Ultimately, the practice of quality strayed from being a business practice to become much more of an engineering discipline producing plen |
data quality management model: Entity Resolution and Information Quality John R. Talburt, 2011-01-14 Entity Resolution and Information Quality presents topics and definitions, and clarifies confusing terminologies regarding entity resolution and information quality. It takes a very wide view of IQ, including its six-domain framework and the skills formed by the International Association for Information and Data Quality {IAIDQ). The book includes chapters that cover the principles of entity resolution and the principles of Information Quality, in addition to their concepts and terminology. It also discusses the Fellegi-Sunter theory of record linkage, the Stanford Entity Resolution Framework, and the Algebraic Model for Entity Resolution, which are the major theoretical models that support Entity Resolution. In relation to this, the book briefly discusses entity-based data integration (EBDI) and its model, which serve as an extension of the Algebraic Model for Entity Resolution. There is also an explanation of how the three commercial ER systems operate and a description of the non-commercial open-source system known as OYSTER. The book concludes by discussing trends in entity resolution research and practice. Students taking IT courses and IT professionals will find this book invaluable. - First authoritative reference explaining entity resolution and how to use it effectively - Provides practical system design advice to help you get a competitive advantage - Includes a companion site with synthetic customer data for applicatory exercises, and access to a Java-based Entity Resolution program. |
data quality management model: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment. |
data quality management model: Healthcare Quality Management Zachary Pruitt, PhD, MHA, CPH, Candace S. Smith, PhD, RN, NEA-BC, Eddie Perez-Ruberte, 2020-02-28 Healthcare Quality Management: A Case Study Approach is the first comprehensive case-based text combining essential quality management knowledge with real-world scenarios. With in-depth healthcare quality management case studies, tools, activities, and discussion questions, the text helps build the competencies needed to succeed in quality management. Written in an easy-to-read style, Part One of the textbook introduces students to the fundamentals of quality management, including history, culture, and different quality management philosophies, such as Lean and Six Sigma. Part One additionally explains the A3 problem-solving template used to follow the Plan-Do-Study-Act (PDSA) or Define, Measure, Analyze, Improve, and Control (DMAIC) cycles, that guides your completion of the problem-solving exercises found in Part Two. The bulk of the textbook includes realistic and engaging case studies featuring common quality management problems encountered in a variety of healthcare settings. The case studies feature engaging scenarios, descriptions, opinions, charts, and data, covering such contemporary topics as provider burnout, artificial intelligence, the opioid overdose epidemic, among many more. Serving as a powerful replacement to more theory-based quality management textbooks, Healthcare Quality Management provides context to challenging situations encountered by any healthcare manager, including the health administrator, nurse, physician, social worker, or allied health professional. KEY FEATURES: 25 Realistic Case Studies–Explore challenging Process Improvement, Patient Experience, Patient Safety, and Performance Improvement quality management scenarios set in various healthcare settings Diverse Author Team–Combines the expertise and knowledge of a health management educator, a Chief Nursing Officer at a large regional hospital, and a health system-based Certified Lean Expert Podcasts–Listen to quality management experts share stories and secrets on how to succeed, work in teams, and apply tools to solve problems Quality Management Tools–Grow your quality management skill set with 25 separate quality management tools and approaches tied to the real-world case studies Competency-Based Education Support–Match case studies to professional competencies, such as analytical skills, community collaboration, and interpersonal relations, using case-to-competency crosswalks for health administration, nursing, medicine, and the interprofessional team Comprehensive Instructor’s Packet–Includes PPTs, extensive Excel data files, an Instructor’s Manual with completed A3 problem-solving solutions for each Case Application Exercise, and more! Student ancillaries–Includes data files and A3 template |
data quality management model: Data Quality Thomas C. Redman, 2001 Can any subject inspire less excitement than data quality? Yet a moment's thought reveals the ever-growing importance of quality data. From restated corporate earnings, to incorrect prices on the web, to the bombing of the Chinese Embassy, the media reports the impact of poor data quality on a daily basis. Every business operation creates or consumes huge quantities of data. If the data are wrong, time, money, and reputation are lost. In today's environment, every leader, every decision maker, every operational manager, every consumer, indeed everyone has a vested interest in data quality. Data Quality: The Field Guide provides the practical guidance needed to start and advance a data quality program. It motivates interest in data quality, describes the most important data quality problems facing the typical organization, and outlines what an organization must do to improve. It consists of 36 short chapters in an easy-to-use field guide format. Each chapter describes a single issue and how to address it. The book begins with sections that describe why leaders, whether CIOs, CFOs, or CEOs, should be concerned with data quality. It explains the pros and cons of approaches for addressing the issue. It explains what those organizations with the best data do. And it lays bare the social issues that prevent organizations from making headway. Field tips at the end of each chapter summarize the most important points. Allows readers to go directly to the topic of interest Provides web-based material so readers can cut and paste figures and tables into documents within their organizations Gives step-by-step instructions for applying most techniques and summarizes what works |
data quality management model: Management of Data Quality in Enterprise Resource Planning Systems Michael Röthlin, 2010 Originally presented as the author's thesis (doctoral)--Universiteat Bern, 2010. |
data quality management model: Enterprise Master Data Management Allen Dreibelbis, Eberhard Hechler, Ivan Milman, Martin Oberhofer, Paul van Run, Dan Wolfson, 2008-06-05 The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …