Advertisement
data science for geoscience: Data Science for the Geosciences Lijing Wang, David Zhen Yin, Jef Caers, 2023-08-17 Data Science for the Geosciences provides students and instructors with the statistical and machine learning foundations to address Earth science questions using real-world case studies in natural hazards, climate change, environmental contamination and Earth resources. It focuses on techniques that address common characteristics of geoscientific data, including extremes, multivariate, compositional, geospatial and space-time methods. Step-by-step instructions are provided, enabling readers to easily follow the protocols for each method, solve their geoscientific problems and make interpretations. With an emphasis on intuitive reasoning throughout, students are encouraged to develop their understanding without the need for complex mathematics, making this the perfect text for those with limited mathematical or coding experience. Students can test their skills with homework exercises that focus on data scientific analysis, modeling, and prediction problems, and through the use of supplemental Python notebooks that can be applied to real datasets worldwide. |
data science for geoscience: Data Science for the Geosciences Lijing Wang, David Zhen Yin, Jef Caers, 2023-07-31 Data Science for the Geosciences provides students and instructors with the statistical and machine learning foundations to address Earth science questions using real-world case studies in natural hazards, climate change, environmental contamination and Earth resources. It focuses on techniques that address common characteristics of geoscientific data, including extremes, multivariate, compositional, geospatial and space-time methods. Step-by-step instructions are provided, enabling readers to easily follow the protocols for each method, solve their geoscientific problems and make interpretations. With an emphasis on intuitive reasoning throughout, students are encouraged to develop their understanding without the need for complex mathematics, making this the perfect text for those with limited mathematical or coding experience. Students can test their skills with homework exercises that focus on data scientific analysis, modeling, and prediction problems, and through the use of supplemental Python notebooks that can be applied to real datasets worldwide. |
data science for geoscience: Introduction to Python in Earth Science Data Analysis Maurizio Petrelli, 2021-09-16 This textbook introduces the use of Python programming for exploring and modelling data in the field of Earth Sciences. It drives the reader from his very first steps with Python, like setting up the environment and starting writing the first lines of codes, to proficient use in visualizing, analyzing, and modelling data in the field of Earth Science. Each chapter contains explicative examples of code, and each script is commented in detail. The book is minded for very beginners in Python programming, and it can be used in teaching courses at master or PhD levels. Also, Early careers and experienced researchers who would like to start learning Python programming for the solution of geological problems will benefit the reading of the book. |
data science for geoscience: Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling Y. Z. Ma, 2019-07-15 Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development. |
data science for geoscience: Deep Learning for the Earth Sciences Gustau Camps-Valls, Devis Tuia, Xiao Xiang Zhu, Markus Reichstein, 2021-08-18 DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists. |
data science for geoscience: MATLAB® Recipes for Earth Sciences Martin H. Trauth, Robin Gebbers, Norbert Marwan, 2007 Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences. |
data science for geoscience: Statistics of Earth Science Data Graham J. Borradaile, 2013-11-11 From the reviews: All in all, Graham Borradaile has written and interesting and idiosyncratic book on statistics for geoscientists that will be welcome among students, researchers, and practitioners dealing with orientation data. That should include engineering geologists who work with things like rock fracture orientation measurements or clast alignment in paleoseismic trenches. It won’t replace the collection of statistics and geostatistics texts in my library, but it will have a place among them and will likely be one of several references to which I turn when working with orientation data.... The text is easy to follow and illustrations are generally clear and easy to read...(William C. Haneberg, Haneberg Geoscience) |
data science for geoscience: Integrating Data Science and Earth Science Laurens M. Bouwer, Doris Dransch, Roland Ruhnke, Diana Rechid, Stephan Frickenhaus, Jens Greinert, 2022-07-14 This open access book presents the results of three years collaboration between earth scientists and data scientist, in developing and applying data science methods for scientific discovery. The book will be highly beneficial for other researchers at senior and graduate level, interested in applying visual data exploration, computational approaches and scientifc workflows. |
data science for geoscience: Machine Learning for Subsurface Characterization Siddharth Misra, Hao Li, Jiabo He, 2019-10-12 Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the big data. Deep learning (DL) is a subset of machine learning that processes big data to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface. - Learn from 13 practical case studies using field, laboratory, and simulation data - Become knowledgeable with data science and analytics terminology relevant to subsurface characterization - Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support |
data science for geoscience: Data Assimilation for the Geosciences Steven J. Fletcher, 2017-03-10 Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used |
data science for geoscience: Machine Learning and Artificial Intelligence in Geosciences , 2020-09-22 Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics |
data science for geoscience: Compositional Data Analysis in the Geosciences Antonella Buccianti, G. Mateu-Figueras, Vera Pawlowsky-Glahn, 2006 Since Karl Pearson wrote his paper on spurious correlation in 1897, a lot has been said about the statistical analysis of compositional data, mainly by geologists such as Felix Chayes. The solution appeared in the 1980s, when John Aitchison proposed to use Iogratios. Since then, the approach has seen a great expansion, mainly building on the idea of the `natural geometry' of the sample space. Statistics is expected to give sense to our perception of the natural scale of the data, and this is made possible for compositional data using Iogratios. This publication will be a milestone in this process. |
data science for geoscience: The Changing Role of Geological Surveys P.R. Hill, D. Lebel, M. Hitzman, M. Smelror, H. Thorleifson, 2020-12-07 Senior managers and Heads of Geological Survey Organizations (GSOs) from around the world have contributed a collection of papers to provide a benchmark on how GSOs are responding to national and international needs in a rapidly changing world. GSOs continue to provide key scientific information about Earth systems, natural hazards and climate change. As countries adopt sustainable development principles and the public increasingly turns to social media to find information about resource and environmental issues, the generation and communication of Earth science knowledge become increasingly important. This volume provides a snapshot of how GSOs are adapting their activities to this changing world. The different national perspectives presented converge around several common themes related to resources, environment and big data. Climate change and the UN’s Sustainable Development Goals provide an increased incentive for GSOs of the world to work in harmony, to generate knowledge of Earth systems and to provide solutions for sustainable management of the planet. |
data science for geoscience: Knowledge Discovery in Big Data from Astronomy and Earth Observation Petr Skoda, Fathalrahman Adam, 2020-04-10 Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants. - Addresses both astronomy and geosciences in parallel, from a big data perspective - Includes introductory information, key principles, applications and the latest techniques - Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields |
data science for geoscience: Collecting, Processing and Presenting Geoscientific Information Martin H. Trauth, Elisabeth Sillmann, 2018-03-26 This second edition is an intensively revised and updated version of the book MATLAB® and Design Recipes for Earth Sciences. It aims to introduce students to the typical course followed by a data analysis project in earth sciences. A project usually involves searching relevant literature, reviewing and ranking published books and journal articles, extracting relevant information from the literature in the form of text, data, or graphs, searching and processing the relevant original data using MATLAB, and compiling and presenting the results as posters, abstracts, and oral presentations using graphics design software. The text of this book includes numerous examples on the use of internet resources, on the visualization of data with MATLAB, and on preparing scientific presentations. As with the book MATLAB Recipes for Earth Sciences–4rd Edition (2015), which demonstrates the use of statistical and numerical methods on earth science data, this book uses state-of-the art software packages, including MATLAB and the Adobe Creative Suite, to process and present geoscientific information collected during the course of an earth science project. The book's supplementary electronic material (available online through the publisher's website) includes color versions of all figures, recipes with all the MATLAB commands featured in the book, the example data, exported MATLAB graphics, and screenshots of the most important steps involved in processing the graphics. |
data science for geoscience: Statistics for Geoscientists D. Marsal, D. F. Merriam, 2014-06-28 Presents nearly all the important elementary and analytical methods of statistics, designed for the needs of the geoscientist and completely free from higher mathematics. Translated from the second German edition. |
data science for geoscience: Signal and Noise in Geosciences Martin H. Trauth, 2021-11-06 This textbook introduces methods of geoscientific data acquisition using MATLAB in combination with inexpensive data acquisition hardware such as sensors in smartphones, sensors that come with the LEGO MINDSTORMS set, webcams with stereo microphones, and affordable spectral and thermal cameras. The text includes 35 exercises in data acquisition, such as using a smartphone to acquire stereo images of rock specimens from which to calculate point clouds, using visible and near-infrared spectral cameras to classify the minerals in rocks, using thermal cameras to differentiate between different types of surface such as between soil and vegetation, localizing a sound source using travel time differences between pairs of microphones to localize a sound source, quantifying the total harmonic distortion and signal-to-noise ratio of acoustic and elastic signals, acquiring and streaming meteorological data using application programming interfaces, wireless networks, and internet of things platforms, determining the spatial resolution of ultrasonic and optical sensors, and detecting magnetic anomalies using a smartphone magnetometer mounted on a LEGO MINDSTORMS scanner. The book’s electronic supplementary material (available online through Springer Link) contains recipes that include all the MATLAB commands featured in the book, the example data, the LEGO construction plans, photos and videos of the measurement procedures. |
data science for geoscience: Recent Advancement in Geoinformatics and Data Science Xiaogang Ma, Matty Mookerjee, Leslie Hsu, Denise Hills, 2023-04-11 |
data science for geoscience: A Primer on Machine Learning in Subsurface Geosciences Shuvajit Bhattacharya, 2021-06-07 This book provides readers with a timely review and discussion of the success, promise, and perils of machine learning in geosciences. It explores the fundamentals of data science and machine learning, and how their advances have disrupted the traditional workflows used in the industry and academia, including geology, geophysics, petrophysics, geomechanics, and geochemistry. It then presents the real-world applications and explains that, while this disruption has affected the top-level executives, geoscientists as well as field operators in the industry and academia, machine learning will ultimately benefit these users. The book is written by a practitioner of machine learning and statistics, keeping geoscientists in mind. It highlights the need to go beyond concepts covered in STAT 101 courses and embrace new computational tools to solve complex problems in geosciences. It also offers practitioners, researchers, and academics insights into how to identify, develop, deploy, and recommend fit-for-purpose machine learning models to solve real-world problems in subsurface geosciences. |
data science for geoscience: The Cambridge Handbook of Earth Science Data Paul Henderson, Gideon M. Henderson, 2009-06-11 This handbook presents an indispensable compilation of fundamental facts and figures about the Earth. It brings together reliable physical, chemical, biological and historical data in a series of 145 easy to read tables, supplemented by maps, charts and color plates. Eleven sections cover topics spanning the Earth's geosphere, hydrosphere, atmosphere and biosphere, with one section focusing on other bodies in the Solar System. Full references for the original data sources are provided to enable users to access further detail, and the appendix provides practical information on units and conversion factors. Compact and easy to use, this handy book provides a time-saving first point of reference for researchers, students and practitioners in the Earth and Environmental Sciences. It allows scientists easy access to basic information on topics outside their specialization, and is also a convenient resource for non-scientists such as economists, policy makers and journalists. |
data science for geoscience: Statistics and Data Analysis in Geology , 1986 |
data science for geoscience: Data Analysis in the Earth Sciences Using Matlab® Gerard V. Middleton, 2000 Exploring the application of MATLAB to the various earth sciences, this text presents an integrated, step-by-step introduction to data analysis and the use of MATLAB. |
data science for geoscience: Large-Scale Machine Learning in the Earth Sciences Ashok N. Srivastava, Ramakrishna Nemani, Karsten Steinhaeuser, 2017-08-01 From the Foreword: While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences. --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book. |
data science for geoscience: Careers in Geology Institute For Institute For Career Research, 2018-04-22 GEOLOGY IS THE SCIENTIFIC STUDY OF THE EARTH, its composition, its processes, and the forces that act upon it. It is a broad subject that covers very specific aspects from glaciers and volcanoes, to gem stones and energy resources, to changing land formations and mass extinctions. It includes every area - the earth's core, ocean floor, deep canyons, mountaintops, and even the atmosphere. Geologists spend most of their time outdoors, often in remote areas. They dig up fossils, take soil samples, create maps, and gather lots of photographic evidence. They study the weather and investigate potential geological activity in order to predict natural disasters and potentially save people from the ravages of tornadoes, earthquakes, tsunamis, or volcanic eruptions. There are dozens of different jobs that a geologist can hold. Each utilizes the knowledge and skills acquired from the same basic training and education. What any one geologist does depends on the job title or area of specialization. For example, environmental geologists are concerned with the safe use of natural resources. They test soil and water for signs of toxins after accidents, help create plans for cleanup, and make sure areas are safe for residents. Hydrogeologists work primarily with water. They study how water moves, how and where it becomes available to communities, ways to increase water supplies, and how to minimize possible pollution. Petroleum geologists search for sources of oil and gas, and develop methods for safe extraction. The minimum educational requirement to become a geologist is a bachelor's degree in geology, though many employers prefer a master's degree. In either case, those entering the field can expect to find jobs waiting for them. In fact, industry leaders predict that some areas will experience shortages of trained professionals as the demand for renewable and safe energy, more accurate hazard weather plans, global environmental safety, and answers to the threat of climate change grows in importance. |
data science for geoscience: Women in the Geosciences Mary Anne Holmes, Suzanne OConnell, Kuheli Dutt, 2015-05-26 Read an interview with the author: Working Toward Gender Parity in the Geosciences The geoscience workforce has a lower proportion of women compared to the general population of the United States and compared to many other STEM fields. This volume explores issues pertaining to gender parity in the geosciences, and sheds light on some of the best practices that increase participation by women and promote parity. Volume highlights include: • Lessons learned from NSF-ADVANCE • Data on gender composition of faculty at top earth science institutions in the US • Implicit bias and gender as a social structure • Strategies for institutional change • Dual career couples • Family friendly policies • Role of mentoring • Career advancement for women • Recruiting diverse faculty • Models of institutional transformation Women in the Geosciences is a valuable contribution to the existing literature on gender issues in STEM disciplines. It focuses specifically on the geosciences, with a goal to spreading awareness on the best practices for gender parity in academic geoscience departments. Geoscientists, policymakers, educators and administrators could all greatly benefit from the contents of this volume. |
data science for geoscience: Geospatial Data Science Techniques and Applications Hassan A. Karimi, Bobak Karimi, 2017-10-24 Data science has recently gained much attention for a number of reasons, and among them is Big Data. Scientists (from almost all disciplines including physics, chemistry, biology, sociology, among others) and engineers (from all fields including civil, environmental, chemical, mechanical, among others) are faced with challenges posed by data volume, variety, and velocity, or Big Data. This book is designed to highlight the unique characteristics of geospatial data, demonstrate the need to different approaches and techniques for obtaining new knowledge from raw geospatial data, and present select state-of-the-art geospatial data science techniques and how they are applied to various geoscience problems. |
data science for geoscience: Compositional Data Analysis Vera Pawlowsky-Glahn, Antonella Buccianti, 2011-09-19 It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data. |
data science for geoscience: Geographical Data Science and Spatial Data Analysis Lex Comber, Chris Brunsdon, 2020-12-02 We are in an age of big data where all of our everyday interactions and transactions generate data. Much of this data is spatial – it is collected some-where – and identifying analytical insight from trends and patterns in these increasing rich digital footprints presents a number of challenges. Whilst other books describe different flavours of Data Analytics in R and other programming languages, there are none that consider Spatial Data (i.e. the location attached to data), or that consider issues of inference, linking Big Data, Geography, GIS, Mapping and Spatial Analytics. This is a ‘learning by doing’ textbook, building on the previous book by the same authors, An Introduction to R for Spatial Analysis and Mapping. It details the theoretical issues in analyses of Big Spatial Data and developing practical skills in the reader for addressing these with confidence. |
data science for geoscience: Encyclopedia of Mathematical Geosciences B. S. Daya Sagar, Qiuming Cheng, Jennifer McKinley, Frits Agterberg, 2023-07-13 The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive. |
data science for geoscience: Applied Spatial Data Analysis with R Roger S. Bivand, Edzer Pebesma, Virgilio Gómez-Rubio, 2013-06-21 Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003. |
data science for geoscience: Introduction to Geological Data Analysis ARH Swan, MH Sandilands, 1995-03-29 Unlike most other sciences, geology does not have a strong tradition of numerical analysis. It is, however, increasingly common for primary geological information to be quantitative rather than descriptive, and analysis of numerical data is now a skill of immense value to any earth scientist. The authors of this book have set out to provide students at undergraduate and graduate level with a thorough grounding in the statistical techniques required in the earth sciences. All the modern statistical methods employed by geologists and geophysicists are covered, with clear worked examples using the type of data the reader is likely to encounter. |
data science for geoscience: Applied Statistical Modeling and Data Analytics Srikanta Mishra, Akhil Datta-Gupta, 2017-10-27 Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a how to reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications |
data science for geoscience: Geoscience Education Clara Vasconcelos, 2016-11-14 This book presents research in Geoscience Education focusing on indoor and outdoor environments in which teaching geoscience gains particular relevance, significance and contextualization. The research areas that are presented throughout the thirteen chapters cover a wide variety of subjects ranging from educational resources and fieldwork to science models. Chapters discuss specific geoscience topics such as earthquakes, rocks, fossils and minerals. Other chapters present a more interdisciplinary approach addressing topics that aren’t usually examined, such as geomedicine and geoethics, with a specific focus on sustainable development and their alignment with the school curricula. Throughout the book readers can find research-based arguments illustrated with practical examples, which will help them to innovate in their curriculum development area, classroom practices and pre and in-service teachers’ education. The book challenges readers to improve Geoscience Education by changing the ways of teaching, by enabling students to exploit their natural curiosity, and by spurring a learning process that should not be confined to the classroom but rather maintained throughout life. |
data science for geoscience: Fundamentals of Computational Geoscience Chongbin Zhao, Bruce E. Hobbs, Alison Ord, 2009-04-21 Geoscience is a fundamental natural science discipline dealing with the origin, evolutionary history and behaviour of the planet Earth. As a result of its complicated and complex nature, the Earth system not only provides the necessary materials and environment for mankind to live, but also brings many types of natural disasters, such as earthquakes, volcanic eruptions, tsunamis, ?oods and tornadoes, to mention just a few. With the ever-increasing demand for improving our living standards, it has been recognized that the existing natural resources will be exhausted in the near future and that our living environments are, in fact, deteriorating. To maintain the sustainable development of our living standards and the further improvement of our living environments, an inevitable and challenging task that geoscientists are now confronting is how accurately to predict not only the occurrences of these natural disasters, but also the locations of large concealed natural resources in the deep Earth. For this reason, geoscientists must study the processes, rules and laws, by which the Earth system operates, instead of simply describing and observing g- science phenomena. |
data science for geoscience: Modeling Uncertainty in the Earth Sciences Jef Caers, 2011-05-25 Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences. |
data science for geoscience: Google Earth and Virtual Visualizations in Geoscience Education and Research Steven J. Whitmeyer, 2012-01-01 GSA Special Paper 492 consists of 35 papers that collectively synthesize the development and current uses of Google Earth and associated visualization media in geoscience education and research. Chapters focus on Google Earth and related tools, such as SketchUp, Google Fusion Tables, GigaPan, and LiDAR. Many of these papers include digital media that illustrate and highlight important themes of the texts. This volume is intended to document the state of the art for geoscience applications of geobrowsers, such as Google Earth, along with providing provocative examples of where this technology is headed in the future. |
data science for geoscience: A Primer on Fourier Analysis for the Geosciences Robin Crockett, 2019-02-14 An intuitive introduction to basic Fourier theory, with numerous practical applications from the geosciences and worked examples in R. |
data science for geoscience: A Vision for NSF Earth Sciences 2020-2030 National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Board on Earth Sciences and Resources, Committee on Catalyzing Opportunities for Research in the Earth Sciences (CORES): A Decadal Survey for NSFâ¬"s Division of Earth Sciences, 2020-08-31 The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research. |
data science for geoscience: 52 Things You Should Know about Geophysics Matt Hall, 2012 There is something for every subsurface professional in these fifty-two short essays by more than three dozen petroleum geoscientists. The roster includes some of the most prolific geophysicists of our time, as well as some recently qualified scientists. The topics are even more diverse, ranging from anisotropic media to pre-stack interpretation, and from stories of early seismic workstations to career advice for the future. |
data science for geoscience: An Introduction to R for Spatial Analysis and Mapping Chris Brunsdon, Lex Comber, 2014-04-30 In an age of big data, data journalism and with a wealth of quantitative information around us, it is not enough for students to be taught only 100 year old statistical methods using ′out of the box′ software. They need to have 21st-century analytical skills too. This is an excellent and student-friendly text from two of the world leaders in the teaching and development of spatial analysis. It shows clearly why the open source software R is not just an alternative to commercial GIS, it may actually be the better choice for mapping, analysis and for replicable research. Providing practical tips as well as fully working code, this is a practical ′how to′ guide ideal for undergraduates as well as those using R for the first time. It will be required reading on my own courses. - Richard Harris, Professor of Quantitative Social Science, University of Bristol R is a powerful open source computing tool that supports geographical analysis and mapping for the many geography and ‘non-geography’ students and researchers interested in spatial analysis and mapping. This book provides an introduction to the use of R for spatial statistical analysis, geocomputation and the analysis of geographical information for researchers collecting and using data with location attached, largely through increased GPS functionality. Brunsdon and Comber take readers from ‘zero to hero’ in spatial analysis and mapping through functions they have developed and compiled into R packages. This enables practical R applications in GIS, spatial analyses, spatial statistics, mapping, and web-scraping. Each chapter includes: Example data and commands for exploring it Scripts and coding to exemplify specific functionality Advice for developing greater understanding - through functions such as locator(), View(), and alternative coding to achieve the same ends Self-contained exercises for students to work through Embedded code within the descriptive text. This is a definitive ′how to′ that takes students - of any discipline - from coding to actual applications and uses of R. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …