Advertisement
data science intern job description: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
data science intern job description: The Great Cloud Migration Michael C. Daconta, 2013 - Learn how to migrate your applications to the cloud! - Learn how to overcome your senior management's concerns about Cloud Security and Interoperability! - Learn how to explain cloud computing, big data and linked data to your organization! - Learn how to develop a robust Cloud Implementation Strategy! - Learn how a Technical Cloud Broker can ease your migration to the cloud! This book will answer the key questions that every organization is asking about emerging technologies like Cloud Computing, Big Data and Linked Data. Written by a seasoned expert and author/co-author of 11 other technical books, this book deftly guides you with real-world experience, case studies, illustrative diagrams and in-depth analysis. * How do you migrate your software applications to the cloud? This book is your definitive guide to migrating applications to the cloud! It explains all the options, tradeoffs, challenges and obstacles to the migration. It provides a migration lifecycle and process you can follow to migrate each application. It provides in-depth case studies: an Infrastructure-as-a-Service case study and a Platform-as-a-Service case study. It covers the difference between application migration and data migration to the cloud and walks you through how to do both well. It covers migration to all the major cloud providers to include Amazon Web Services (AWS), Google AppEngine and Microsoft Azure. * How do you develop a sound implementation strategy for the migration to the cloud? This book leverages Mr. Daconta's 25 years of leadership experience, from the Military to Corporate Executive teams to the Office of the CIO in the Department of Homeland Security, to guide you through the development of a practical and sound implementation strategy. The book's Triple-A Strategy: Assessment, Architecture then Action is must reading for every project lead and IT manager! * This book covers twenty migration scenarios! Application and data migration to the cloud |
data science intern job description: Hadoop For Dummies Dirk deRoos, 2014-04-14 Let Hadoop For Dummies help harness the power of your data and rein in the information overload Big data has become big business, and companies and organizations of all sizes are struggling to find ways to retrieve valuable information from their massive data sets with becoming overwhelmed. Enter Hadoop and this easy-to-understand For Dummies guide. Hadoop For Dummies helps readers understand the value of big data, make a business case for using Hadoop, navigate the Hadoop ecosystem, and build and manage Hadoop applications and clusters. Explains the origins of Hadoop, its economic benefits, and its functionality and practical applications Helps you find your way around the Hadoop ecosystem, program MapReduce, utilize design patterns, and get your Hadoop cluster up and running quickly and easily Details how to use Hadoop applications for data mining, web analytics and personalization, large-scale text processing, data science, and problem-solving Shows you how to improve the value of your Hadoop cluster, maximize your investment in Hadoop, and avoid common pitfalls when building your Hadoop cluster From programmers challenged with building and maintaining affordable, scaleable data systems to administrators who must deal with huge volumes of information effectively and efficiently, this how-to has something to help you with Hadoop. |
data science intern job description: Fifty Challenging Problems in Probability with Solutions Frederick Mosteller, 2012-04-26 Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions. |
data science intern job description: Data Mining and Predictive Analytics Daniel T. Larose, 2015-02-19 Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives. |
data science intern job description: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science. |
data science intern job description: Getting Your First Job For Dummies Roberto Angulo, 2017-12-07 Find—and land—your first job! Finding a job can seem daunting, especially when it's a brand new experience. There's a lot to know, and often a lot of pressure. Written by the founder of AfterCollege.com, Getting Your First Job For Dummies is designed to take the stress out of the job search process and help you get an offer. In this book, you'll discover how to identify your talents and strengths, use your network to your advantage, interview with confidence, and evaluate an offer. Written in plain English and packed with step-by-step instructions, it'll have you writing customized resumes, conducting company research, and utilizing online job search sites, faster than you can say 'I got the job!' Determine what kind of job suits your interests and skills Write a compelling cover letter Know what to expect in an interview Effectively negotiate an offer Whether you're still in school or navigating the world as a recent graduate, Getting Your First Job For Dummies arms you with the skills and confidence to make getting your first job an exciting and enjoyable process. |
data science intern job description: Advice To A Young Scientist P. B. Medawar, 2008-08-01 To those interested in a life in science, Sir Peter Medawar, Nobel laureate, deflates the myths of invincibility, superiority, and genius; instead, he demonstrates it is common sense and an inquiring mind that are essential to the scientist's calling. He deflates the myths surrounding scientists -- invincibility, superiority, and genius; instead, he argues that it is common sense and an inquiring mind that are essential to the makeup of a scientist. He delivers many wry observations on how to choose a research topic, how to get along wih collaborators and older scientists and administrators, how (and how not) to present a scientific paper, and how to cope with culturally superior specialists in the arts and humanities. |
data science intern job description: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
data science intern job description: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
data science intern job description: Multivariable Calculus James Stewart, 2011-09-27 Success in your calculus course starts here! James Stewart's CALCULUS, 7e, International Metric texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With MULTIVARIABLE CALCULUS, 7e, International Metric Edition Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course! |
data science intern job description: The Signal and the Noise Nate Silver, 2015-02-03 One of the more momentous books of the decade. —The New York Times Book Review Nate Silver built an innovative system for predicting baseball performance, predicted the 2008 election within a hair’s breadth, and became a national sensation as a blogger—all by the time he was thirty. He solidified his standing as the nation's foremost political forecaster with his near perfect prediction of the 2012 election. Silver is the founder and editor in chief of the website FiveThirtyEight. Drawing on his own groundbreaking work, Silver examines the world of prediction, investigating how we can distinguish a true signal from a universe of noisy data. Most predictions fail, often at great cost to society, because most of us have a poor understanding of probability and uncertainty. Both experts and laypeople mistake more confident predictions for more accurate ones. But overconfidence is often the reason for failure. If our appreciation of uncertainty improves, our predictions can get better too. This is the “prediction paradox”: The more humility we have about our ability to make predictions, the more successful we can be in planning for the future. In keeping with his own aim to seek truth from data, Silver visits the most successful forecasters in a range of areas, from hurricanes to baseball to global pandemics, from the poker table to the stock market, from Capitol Hill to the NBA. He explains and evaluates how these forecasters think and what bonds they share. What lies behind their success? Are they good—or just lucky? What patterns have they unraveled? And are their forecasts really right? He explores unanticipated commonalities and exposes unexpected juxtapositions. And sometimes, it is not so much how good a prediction is in an absolute sense that matters but how good it is relative to the competition. In other cases, prediction is still a very rudimentary—and dangerous—science. Silver observes that the most accurate forecasters tend to have a superior command of probability, and they tend to be both humble and hardworking. They distinguish the predictable from the unpredictable, and they notice a thousand little details that lead them closer to the truth. Because of their appreciation of probability, they can distinguish the signal from the noise. With everything from the health of the global economy to our ability to fight terrorism dependent on the quality of our predictions, Nate Silver’s insights are an essential read. |
data science intern job description: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
data science intern job description: Pristine Seas Enric Sala, Leonardo DiCaprio, 2015 National Geographic Explorer-in-Residence Enric Sala takes readers on an unforgettable journey to 10 places where the ocean is virtually untouched by man, offering a fascinating glimpse into our past and an inspiring vision for the future. From the shark-rich waters surrounding Coco Island, Costa Rica, to the iceberg-studded sea off Franz Josef Land, Russia, this incredible photographic collection showcases the thriving marine ecosystems that Sala is working to protect. Offering a rare glimpse into the world's underwater Edens, more than 200 images take you to the frontier of the Pristine Seas expeditions, where Sala's teams explore the breathtaking wildlife and habitats from the depths to the surface--thriving ecosystems with healthy corals and a kaleidoscopic variety of colorful fish and stunning creatures that have been protected from human interference. With this dazzling array of photographs that capture the beauty of the water and the incredible wildlife within it, this book shows us the brilliance of the sea in its natural state.-- |
data science intern job description: BIG Jobs Guide Rachel Levy, Richard Laugesen, Fadil Santosa, 2018-06-29 Jobs using mathematics, statistics, and operations research are projected to grow by almost 30% over the next decade. BIG Jobs Guide helps job seekers at every stage of their careers in these fields explore opportunities in business, industry, and government (BIG). Written in a conversational and practical tone, BIG Jobs Guide offers insight on topics such as: - What skills can I offer employers? - How do I write a high-impact r?esume? - Where can I find a rewarding internship? - What kinds of jobs are out there for me? The Guide also offers insights to advisors and mentors on topics such as how departments can help students get BIG jobs and how faculty members and internship mentors can build institutional relationships. Whether you're an undergraduate or graduate student or a job seeker in mathematics, statistics, or operations research, this hands-on book will help you reach your goal?landing an internship, getting your first job or transitioning to a new one. |
data science intern job description: Data Science Bookcamp Leonard Apeltsin, 2021-11-30 Learn data science with Python by building five real-world projects! In Data Science Bookcamp you''ll test and build your knowledge of Python and learn to handle the kind of open-ended problems that professional data scientists work on daily. Downloadable data sets and thoroughly-explained solutions help you lock in what you''ve learned, building your confidence and making you ready for an exciting new data science career. about the technology In real-world practice, data scientists create innovative solutions to novel open ended problems. Easy to learn and use, the Python language has become the de facto language for data science amongst researchers, developers, and business users. But knowing a few basic algorithms is not enough to tackle a vague and thorny problem. It takes relentless practice at cracking difficult data tasks to achieve mastery in the field. That''s just what this book delivers. about the book Data Science Bookcamp is a comprehensive set of challenging projects carefully designed to grow your data science skills from novice to master. Veteran data scientist Leonard Apeltsin sets five increasingly difficult exercises that test your abilities against the kind of problems you''d encounter in the real world. As you solve each challenge, you''ll acquire and expand the data science and Python skills you''ll use as a professional data scientist. Ranging from text processing to machine learning, each project comes complete with a unique downloadable data set and a fully-explained step-by-step solution. Because these projects come from Dr. Apeltsin''s vast experience, each solution highlights the most likely failure points along with practical advice for getting past unexpected pitfalls. When you wrap up these five awesome exercises, you''ll have a diverse relevant skill set that''s transferable to working in industry. what''s inside Five in-depth Python exercises with full downloadable data sets Web scraping for text and images Organise datasets with clustering algorithms Visualize complex multi-variable datasets Train a decision tree machine learning algorithm about the reader For readers who know the basics of Python. No prior data science or machine learning skills required. about the author Leonard Apeltsin is a senior data scientist and engineering lead at Primer AI, a startup that specializes in using advanced Natural Language Processing techniques to extract insight from terabytes of unstructured text data. His PhD research focused on bioinformatics that required analyzing millions of sequenced DNA patterns to uncover genetic links in deadly diseases. |
data science intern job description: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data science intern job description: Analytics and Knowledge Management Suliman Hawamdeh, Hsia-Ching Chang, 2018-08-06 The process of transforming data into actionable knowledge is a complex process that requires the use of powerful machines and advanced analytics technique. Analytics and Knowledge Management examines the role of analytics in knowledge management and the integration of big data theories, methods, and techniques into an organizational knowledge management framework. Its chapters written by researchers and professionals provide insight into theories, models, techniques, and applications with case studies examining the use of analytics in organizations. The process of transforming data into actionable knowledge is a complex process that requires the use of powerful machines and advanced analytics techniques. Analytics, on the other hand, is the examination, interpretation, and discovery of meaningful patterns, trends, and knowledge from data and textual information. It provides the basis for knowledge discovery and completes the cycle in which knowledge management and knowledge utilization happen. Organizations should develop knowledge focuses on data quality, application domain, selecting analytics techniques, and on how to take actions based on patterns and insights derived from analytics. Case studies in the book explore how to perform analytics on social networking and user-based data to develop knowledge. One case explores analyze data from Twitter feeds. Another examines the analysis of data obtained through user feedback. One chapter introduces the definitions and processes of social media analytics from different perspectives as well as focuses on techniques and tools used for social media analytics. Data visualization has a critical role in the advancement of modern data analytics, particularly in the field of business intelligence and analytics. It can guide managers in understanding market trends and customer purchasing patterns over time. The book illustrates various data visualization tools that can support answering different types of business questions to improve profits and customer relationships. This insightful reference concludes with a chapter on the critical issue of cybersecurity. It examines the process of collecting and organizing data as well as reviewing various tools for text analysis and data analytics and discusses dealing with collections of large datasets and a great deal of diverse data types from legacy system to social networks platforms. |
data science intern job description: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
data science intern job description: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course. |
data science intern job description: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
data science intern job description: Intern Nation Ross Perlin, 2011-05-09 The first no-holds-barred expos of the exploitative and divisive world of internships. |
data science intern job description: Head First SQL Lynn Beighley, 2007-08-28 With its visually rich format designed for the way the brain works, this series of engaging narrative lessons that build on each other gives readers hands-on experience working with the SQL database language. |
data science intern job description: 50 Ways to Get a Job Dev Aujla, 2018-04-03 A new personalized way to find the perfect job—while staying calm during the process. You are so much more than a resume or job application, but how can you communicate that to your potential employer? You need to learn to ask the right questions, stop using job sites, and start doing the work that actually counts. Based on information gained from over 400,000 individuals who have used these exercises, this book reveals career expert Dev Aujla’s tried-and-tested method for job seekers at every stage of their career. Filled with anecdotes and advice from professionals ranging from a wilderness guide to an architect, it includes quick-step exercises that help you avoid the common pitfalls of navigating a modern career. Whether you've just decided to start the hunt or you're gearing up for a big interview, 50 Ways to Get a Job will keep you poised, on-track, and motivated right up to landing your dream career. |
data science intern job description: Data Science in Practice Alan Said, Vicenç Torra, 2018-09-19 This book approaches big data, artificial intelligence, machine learning, and business intelligence through the lens of Data Science. We have grown accustomed to seeing these terms mentioned time and time again in the mainstream media. However, our understanding of what they actually mean often remains limited. This book provides a general overview of the terms and approaches used broadly in data science, and provides detailed information on the underlying theories, models, and application scenarios. Divided into three main parts, it addresses what data science is; how and where it is used; and how it can be implemented using modern open source software. The book offers an essential guide to modern data science for all students, practitioners, developers and managers seeking a deeper understanding of how various aspects of data science work, and of how they can be employed to gain a competitive advantage. |
data science intern job description: Data Points Nathan Yau, 2013-03-25 A fresh look at visualization from the author of Visualize This Whether it's statistical charts, geographic maps, or the snappy graphical statistics you see on your favorite news sites, the art of data graphics or visualization is fast becoming a movement of its own. In Data Points: Visualization That Means Something, author Nathan Yau presents an intriguing complement to his bestseller Visualize This, this time focusing on the graphics side of data analysis. Using examples from art, design, business, statistics, cartography, and online media, he explores both standard-and not so standard-concepts and ideas about illustrating data. Shares intriguing ideas from Nathan Yau, author of Visualize This and creator of flowingdata.com, with over 66,000 subscribers Focuses on visualization, data graphics that help viewers see trends and patterns they might not otherwise see in a table Includes examples from the author's own illustrations, as well as from professionals in statistics, art, design, business, computer science, cartography, and more Examines standard rules across all visualization applications, then explores when and where you can break those rules Create visualizations that register at all levels, with Data Points: Visualization That Means Something. |
data science intern job description: College Success Amy Baldwin, 2020-03 |
data science intern job description: The Ethical Algorithm Michael Kearns, Aaron Roth, 2020 Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design. |
data science intern job description: InternQube Michael True, 2013-04-15 Version 2.0 |
data science intern job description: Textual Data Science with R Mónica Bécue-Bertaut, 2019-03-11 Textual Statistics with R comprehensively covers the main multidimensional methods in textual statistics supported by a specially-written package in R. Methods discussed include correspondence analysis, clustering, and multiple factor analysis for contigency tables. Each method is illuminated by applications. The book is aimed at researchers and students in statistics, social sciences, hiistory, literature and linguistics. The book will be of interest to anyone from practitioners needing to extract information from texts to students in the field of massive data, where the ability to process textual data is becoming essential. |
data science intern job description: Optimization by GRASP Mauricio G.C. Resende, Celso C. Ribeiro, 2016-10-26 This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems. |
data science intern job description: Accelerating Discoveries in Data Science and Artificial Intelligence II Frank M. Lin, |
data science intern job description: Data Science and Digital Business Fausto Pedro García Márquez, Benjamin Lev, 2019-01-04 This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business. |
data science intern job description: Quant Job Interview Questions and Answers Mark Joshi, Nick Denson, Nicholas Denson, Andrew Downes, 2013 The quant job market has never been tougher. Extensive preparation is essential. Expanding on the successful first edition, this second edition has been updated to reflect the latest questions asked. It now provides over 300 interview questions taken from actual interviews in the City and Wall Street. Each question comes with a full detailed solution, discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the interview process and the non-technical interview. All three authors have worked as quants and they have done many interviews from both sides of the desk. Mark Joshi has written many papers and books including the very successful introductory textbook, The Concepts and Practice of Mathematical Finance. |
data science intern job description: Machine Learning Peter Flach, 2012-09-20 Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook. |
data science intern job description: Data Science Job: How to become a Data Scientist Przemek Chojecki, 2020-01-31 We’re living in a digital world. Most of our global economy is digital and the sheer volume of data is stupendous. It’s 2020 and we’re living in the future. Data Scientist is one of the hottest job on the market right now. Demand for data science is huge and will only grow, and it seems like it will grow much faster than the actual number of data scientists. So if you want to make a career change and become a data scientist, now is the time. This book will guide you through the process. From my experience of working with multiple companies as a project manager, a data science consultant or a CTO, I was able to see the process of hiring data scientists and building data science teams. I know what’s important to land your first job as a data scientist, what skills you should acquire, what you should show during a job interview. |
data science intern job description: Practical Data Science for Information Professionals David Stuart, 2020-07-24 Practical Data Science for Information Professionals provides an accessible introduction to a potentially complex field, providing readers with an overview of data science and a framework for its application. It provides detailed examples and analysis on real data sets to explore the basics of the subject in three principle areas: clustering and social network analysis; predictions and forecasts; and text analysis and mining. As well as highlighting a wealth of user-friendly data science tools, the book also includes some example code in two of the most popular programming languages (R and Python) to demonstrate the ease with which the information professional can move beyond the graphical user interface and achieve significant analysis with just a few lines of code. After reading, readers will understand: · the growing importance of data science · the role of the information professional in data science · some of the most important tools and methods that information professionals can use. Bringing together the growing importance of data science and the increasing role of information professionals in the management and use of data, Practical Data Science for Information Professionals will provide a practical introduction to the topic specifically designed for the information community. It will appeal to librarians and information professionals all around the world, from large academic libraries to small research libraries. By focusing on the application of open source software, it aims to reduce barriers for readers to use the lessons learned within. |
data science intern job description: Coaching Agile Teams Lyssa Adkins, 2010-05-18 The Provocative and Practical Guide to Coaching Agile Teams As an agile coach, you can help project teams become outstanding at agile, creating products that make them proud and helping organizations reap the powerful benefits of teams that deliver both innovation and excellence. More and more frequently, ScrumMasters and project managers are being asked to coach agile teams. But it’s a challenging role. It requires new skills—as well as a subtle understanding of when to step in and when to step back. Migrating from “command and control” to agile coaching requires a whole new mind-set. In Coaching Agile Teams, Lyssa Adkins gives agile coaches the insights they need to adopt this new mind-set and to guide teams to extraordinary performance in a re-energized work environment. You’ll gain a deep view into the role of the agile coach, discover what works and what doesn’t, and learn how to adapt powerful skills from many allied disciplines, including the fields of professional coaching and mentoring. Coverage includes Understanding what it takes to be a great agile coach Mastering all of the agile coach’s roles: teacher, mentor, problem solver, conflict navigator, and performance coach Creating an environment where self-organized, high-performance teams can emerge Coaching teams past cooperation and into full collaboration Evolving your leadership style as your team grows and changes Staying actively engaged without dominating your team and stunting its growth Recognizing failure, recovery, and success modes in your coaching Getting the most out of your own personal agile coaching journey Whether you’re an agile coach, leader, trainer, mentor, facilitator, ScrumMaster, project manager, product owner, or team member, this book will help you become skilled at helping others become truly great. What could possibly be more rewarding? |
data science intern job description: Hacking the Electorate Eitan Hersh, 2015-06-09 Hacking the Electorate focuses on the consequences of campaigns using microtargeting databases to mobilize voters in elections. Eitan Hersh shows that most of what campaigns know about voters comes from a core set of public records, and the content of public records varies from state to state. This variation accounts for differences in campaign strategies and voter coalitions across the nation. |
data science intern job description: Theoretical Statistics Robert W. Keener, 2010-09-08 Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …