Advertisement
data science project planning: Managing Data Science Kirill Dubovikov, 2019-11-12 Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book. |
data science project planning: Data Analytics for Engineering and Construction Project Risk Management Ivan Damnjanovic, Kenneth Reinschmidt, 2019-05-23 This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution. |
data science project planning: Data Analytics in Project Management Seweryn Spalek, J. Davidson Frame, Yanping Chen, Carl Pritchard, Alfonso Bucero, Werner Meyer, Ryan Legard, Michael Bragen, Klas Skogmar, Deanne Larson, Bert Brijs, 2019-01-01 Data Analytics in Project Management. Data analytics plays a crucial role in business analytics. Without a rigid approach to analyzing data, there is no way to glean insights from it. Business analytics ensures the expected value of change while that change is implemented by projects in the business environment. Due to the significant increase in the number of projects and the amount of data associated with them, it is crucial to understand the areas in which data analytics can be applied in project management. This book addresses data analytics in relation to key areas, approaches, and methods in project management. It examines: • Risk management • The role of the project management office (PMO) • Planning and resource management • Project portfolio management • Earned value method (EVM) • Big Data • Software support • Data mining • Decision-making • Agile project management Data analytics in project management is of increasing importance and extremely challenging. There is rapid multiplication of data volumes, and, at the same time, the structure of the data is more complex. Digging through exabytes and zettabytes of data is a technological challenge in and of itself. How project management creates value through data analytics is crucial. Data Analytics in Project Management addresses the most common issues of applying data analytics in project management. The book supports theory with numerous examples and case studies and is a resource for academics and practitioners alike. It is a thought-provoking examination of data analytics applications that is valuable for projects today and those in the future. |
data science project planning: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook |
data science project planning: Think Like a Data Scientist Brian Godsey, 2017-03-09 Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away |
data science project planning: Data Science Bookcamp Leonard Apeltsin, 2021-12-07 Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution |
data science project planning: Project Management Waterfall-Agile-It-Data Science Dr. Festus Elleh PhD PMP PMI-ACP, 2023-03-22 This book is intended to introduce learners to waterfall, agile, information technology, and data science project management methodologies. Readers will learn about the concepts, processes, tools, and techniques that are useful for executing projects in waterfall, agile information technology, and data science environments. The objective is for learners to become contributors to the field of project management and deploy a structured approach to managing projects. Learners who read this book will be able to think critically about the concepts and practices of project management and perform exceptionally well in the PMP and PMI-ACP examinations. |
data science project planning: Data Warehouse Project Management Sid Adelman, Larissa T. Moss, 2010-07-15 |
data science project planning: Practitioner’s Guide to Data Science Hui Lin, Ming Li, 2023-05-23 This book aims to increase the visibility of data science in real-world, which differs from what you learn from a typical textbook. Many aspects of day-to-day data science work are almost absent from conventional statistics, machine learning, and data science curriculum. Yet these activities account for a considerable share of the time and effort for data professionals in the industry. Based on industry experience, this book outlines real-world scenarios and discusses pitfalls that data science practitioners should avoid. It also covers the big data cloud platform and the art of data science, such as soft skills. The authors use R as the primary tool and provide code for both R and Python. This book is for readers who want to explore possible career paths and eventually become data scientists. This book comprehensively introduces various data science fields, soft and programming skills in data science projects, and potential career paths. Traditional data-related practitioners such as statisticians, business analysts, and data analysts will find this book helpful in expanding their skills for future data science careers. Undergraduate and graduate students from analytics-related areas will find this book beneficial to learn real-world data science applications. Non-mathematical readers will appreciate the reproducibility of the companion R and python codes. Key Features: • It covers both technical and soft skills. • It has a chapter dedicated to the big data cloud environment. For industry applications, the practice of data science is often in such an environment. • It is hands-on. We provide the data and repeatable R and Python code in notebooks. Readers can repeat the analysis in the book using the data and code provided. We also suggest that readers modify the notebook to perform analyses with their data and problems, if possible. The best way to learn data science is to do it! |
data science project planning: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data science project planning: Why AI/Data Science Projects Fail Joyce Weiner, 2022-06-01 Recent data shows that 87% of Artificial Intelligence/Big Data projects don’t make it into production (VB Staff, 2019), meaning that most projects are never deployed. This book addresses five common pitfalls that prevent projects from reaching deployment and provides tools and methods to avoid those pitfalls. Along the way, stories from actual experience in building and deploying data science projects are shared to illustrate the methods and tools. While the book is primarily for data science practitioners, information for managers of data science practitioners is included in the Tips for Managers sections. |
data science project planning: Analytics Phil Simon, 2017-07-03 For years, organizations have struggled to make sense out of their data. IT projects designed to provide employees with dashboards, KPIs, and business-intelligence tools often take a year or more to reach the finish line...if they get there at all. This has always been a problem. Today, though, it's downright unacceptable. The world changes faster than ever. Speed has never been more important. By adhering to antiquated methods, firms lose the ability to see nascent trends—and act upon them until it's too late. But what if the process of turning raw data into meaningful insights didn't have to be so painful, time-consuming, and frustrating? What if there were a better way to do analytics? Fortunately, you're in luck... Analytics: The Agile Way is the eighth book from award-winning author and Arizona State University professor Phil Simon. Analytics: The Agile Way demonstrates how progressive organizations such as Google, Nextdoor, and others approach analytics in a fundamentally different way. They are applying the same Agile techniques that software developers have employed for years. They have replaced large batches in favor of smaller ones...and their results will astonish you. Through a series of case studies and examples, Analytics: The Agile Way demonstrates the benefits of this new analytics mind-set: superior access to information, quicker insights, and the ability to spot trends far ahead of your competitors. |
data science project planning: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science project planning: The Data Science Framework Juan J. Cuadrado-Gallego, Yuri Demchenko, 2020-10-01 This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines. |
data science project planning: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
data science project planning: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today. |
data science project planning: Effective Data Science Infrastructure Ville Tuulos, 2022-08-30 Simplify data science infrastructure to give data scientists an efficient path from prototype to production. In Effective Data Science Infrastructure you will learn how to: Design data science infrastructure that boosts productivity Handle compute and orchestration in the cloud Deploy machine learning to production Monitor and manage performance and results Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, Conda, and Docker Architect complex applications for multiple teams and large datasets Customize and grow data science infrastructure Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. The author is donating proceeds from this book to charities that support women and underrepresented groups in data science. About the technology Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises. About the book Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems. What's inside Handle compute and orchestration in the cloud Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem Architect complex applications that require large datasets and models, and a team of data scientists About the reader For infrastructure engineers and engineering-minded data scientists who are familiar with Python. About the author At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure. Table of Contents 1 Introducing data science infrastructure 2 The toolchain of data science 3 Introducing Metaflow 4 Scaling with the compute layer 5 Practicing scalability and performance 6 Going to production 7 Processing data 8 Using and operating models 9 Machine learning with the full stack |
data science project planning: Data Science in Theory and Practice Maria Cristina Mariani, Osei Kofi Tweneboah, Maria Pia Beccar-Varela, 2021-09-30 DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia. |
data science project planning: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-21 Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. How to lead in data science shares unique leadership techniques from high-performance data teams. It's filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You'll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you'll build practical skills to grow and improve your team, your company's data culture, and yourself. |
data science project planning: Project Management, Planning and Control Albert Lester, 2007 This fifth edition provides a comprehensive resource for project managers. It describes the latest project management systems that use critical path methods. |
data science project planning: Executing Data Quality Projects Danette McGilvray, 2021-05-27 Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online |
data science project planning: Managing Your Data Science Projects Robert de Graaf, 2019-06-08 At first glance, the skills required to work in the data science field appear to be self-explanatory. Do not be fooled. Impactful data science demands an interdisciplinary knowledge of business philosophy, project management, salesmanship, presentation, and more. In Managing Your Data Science Projects, author Robert de Graaf explores important concepts that are frequently overlooked in much of the instructional literature that is available to data scientists new to the field. If your completed models are to be used and maintained most effectively, you must be able to present and sell them within your organization in a compelling way. The value of data science within an organization cannot be overstated. Thus, it is vital that strategies and communication between teams are dexterously managed. Three main ways that data science strategy is used in a company is to research its customers, assess risk analytics, and log operational measurements. These all require different managerial instincts, backgrounds, and experiences, and de Graaf cogently breaks down the unique reasons behind each. They must align seamlessly to eventually be adopted as dynamic models. Data science is a relatively new discipline, and as such, internal processes for it are not as well-developed within an operational business as others. With Managing Your Data Science Projects, you will learn how to create products that solve important problems for your customers and ensure that the initial success is sustained throughout the product’s intended life. Your users will trust you and your models, and most importantly, you will be a more well-rounded and effectual data scientist throughout your career. Who This Book Is For Early-career data scientists, managers of data scientists, and those interested in entering the field of data science |
data science project planning: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data science project planning: The Handbook of Project Management Martina Huemann, Rodney Turner, 2024-02-28 This practice-oriented handbook presents practitioners and students with a comprehensive overview of the essential knowledge and current best practices in project management. It includes the most up-to-date thinking in the discipline, describing recent developments in a way that practitioners can immediately use in their work. The Handbook of Project Management was the first “APM Body of Knowledge Approved” title for the Association for Project Management. Over the course of six editions, The Handbook of Project Management has become the definitive desk reference for project management practitioners. The team of expert contributors, selected to introduce the reader to the knowledge and skills required to manage projects, includes many of the most experienced and highly regarded international writers and practitioners. The book is divided into six parts: Projects; Performance; Process; People; Portfolio; and Perspectives. Including over 25 completely new chapters, this sixth edition provides a fully up-to-date encyclopaedia for the discipline and profession of project management. The book will be of use to all project management practitioners, from those starting out in the profession to people with advanced experience. It is also highly relevant to students, with earlier editions being used as a set or recommended text on Masters’ courses in project management. |
data science project planning: The Human Side of Service Engineering Christine Leitner , Walter Ganz , Clara Bassano and Debra Satterfield, 2022-07-24 The Human Side of Service Engineering Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), July 24–28, 2022, New York, USA |
data science project planning: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder |
data science project planning: Practical Data Science with R, Second Edition John Mount, Nina Zumel, 2019-11-17 Summary Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever expanding field of data science. You’ll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. About the technology Evidence-based decisions are crucial to success. Applying the right data analysis techniques to your carefully curated business data helps you make accurate predictions, identify trends, and spot trouble in advance. The R data analysis platform provides the tools you need to tackle day-to-day data analysis and machine learning tasks efficiently and effectively. About the book Practical Data Science with R, Second Edition is a task-based tutorial that leads readers through dozens of useful, data analysis practices using the R language. By concentrating on the most important tasks you’ll face on the job, this friendly guide is comfortable both for business analysts and data scientists. Because data is only useful if it can be understood, you’ll also find fantastic tips for organizing and presenting data in tables, as well as snappy visualizations. What's inside Statistical analysis for business pros Effective data presentation The most useful R tools Interpreting complicated predictive models About the reader You’ll need to be comfortable with basic statistics and have an introductory knowledge of R or another high-level programming language. About the author Nina Zumel and John Mount founded a San Francisco–based data science consulting firm. Both hold PhDs from Carnegie Mellon University and blog on statistics, probability, and computer science. |
data science project planning: Practical Data Science with R Nina Zumel, John Mount, 2014-04-10 Summary Practical Data Science with R lives up to its name. It explains basic principles without the theoretical mumbo-jumbo and jumps right to the real use cases you'll face as you collect, curate, and analyze the data crucial to the success of your business. You'll apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Business analysts and developers are increasingly collecting, curating, analyzing, and reporting on crucial business data. The R language and its associated tools provide a straightforward way to tackle day-to-day data science tasks without a lot of academic theory or advanced mathematics. Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations. Using examples from marketing, business intelligence, and decision support, it shows you how to design experiments (such as A/B tests), build predictive models, and present results to audiences of all levels. This book is accessible to readers without a background in data science. Some familiarity with basic statistics, R, or another scripting language is assumed. What's Inside Data science for the business professional Statistical analysis using the R language Project lifecycle, from planning to delivery Numerous instantly familiar use cases Keys to effective data presentations About the Authors Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com. Table of Contents PART 1 INTRODUCTION TO DATA SCIENCE The data science process Loading data into R Exploring data Managing data PART 2 MODELING METHODS Choosing and evaluating models Memorization methods Linear and logistic regression Unsupervised methods Exploring advanced methods PART 3 DELIVERING RESULTS Documentation and deployment Producing effective presentations |
data science project planning: Development Methodologies for Big Data Analytics Systems Manuel Mora, Fen Wang, Jorge Marx Gomez, Hector Duran-Limon, 2023-11-03 This book presents research in big data analytics (BDA) for business of all sizes. The authors analyze problems presented in the application of BDA in some businesses through the study of development methodologies based on the three approaches – 1) plan-driven, 2) agile and 3) hybrid lightweight. The authors first describe BDA systems and how they emerged with the convergence of Statistics, Computer Science, and Business Intelligent Analytics with the practical aim to provide concepts, models, methods and tools required for exploiting the wide variety, volume, and velocity of available business internal and external data - i.e. Big Data – and provide decision-making value to decision-makers. The book presents high-quality conceptual and empirical research-oriented chapters on plan-driven, agile, and hybrid lightweight development methodologies and relevant supporting topics for BDA systems suitable to be used for large-, medium-, and small-sized business organizations. |
data science project planning: Project Management Analytics Harjit Singh, 2015-11-12 To manage projects, you must not only control schedules and costs: you must also manage growing operational uncertainty. Today’s powerful analytics tools and methods can help you do all of this far more successfully. In Project Management Analytics, Harjit Singh shows how to bring greater evidence-based clarity and rationality to all your key decisions throughout the full project lifecycle. Singh identifies the components and characteristics of a good project decision and shows how to improve decisions by using predictive, prescriptive, statistical, and other methods. You’ll learn how to mitigate risks by identifying meaningful historical patterns and trends; optimize allocation and use of scarce resources within project constraints; automate data-driven decision-making processes based on huge data sets; and effectively handle multiple interrelated decision criteria. Singh also helps you integrate analytics into the project management methods you already use, combining today’s best analytical techniques with proven approaches such as PMI PMBOK® and Lean Six Sigma. Project managers can no longer rely on vague impressions or seat-of-the-pants intuition. Fortunately, you don’t have to. With Project Management Analytics, you can use facts, evidence, and knowledge—and get far better results. Achieve efficient, reliable, consistent, and fact-based project decision-making Systematically bring data and objective analysis to key project decisions Avoid “garbage in, garbage out” Properly collect, store, analyze, and interpret your project-related data Optimize multi-criteria decisions in large group environments Use the Analytic Hierarchy Process (AHP) to improve complex real-world decisions Streamline projects the way you streamline other business processes Leverage data-driven Lean Six Sigma to manage projects more effectively |
data science project planning: Project Planning, Implementation, and Evaluation: A Guide for Nurses and Interprofessional Teams James L. Harris, Linda A. Roussel, Catherine Dearman, Patricia L. Thomas, 2022-03-29 Project Planning and Management: A Guide for Nurses and Interprofessional Teams, Fourth Edition serves as a primary resource for students developing and implementing clinical projects as a requirement for course completion. Additionally, the text also serves as a guide for faculty and preceptors who assist students in identifying clinical and management gaps as well as in initiating projects. |
data science project planning: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data science project planning: From Concepts to Code Adam P. Tashman, 2024-04-25 The breadth of problems that can be solved with data science is astonishing, and this book provides the required tools and skills for a broad audience. The reader takes a journey into the forms, uses, and abuses of data and models, and learns how to critically examine each step. Python coding and data analysis skills are built from the ground up, with no prior coding experience assumed. The necessary background in computer science, mathematics, and statistics is provided in an approachable manner. Each step of the machine learning lifecycle is discussed, from business objective planning to monitoring a model in production. This end-to-end approach supplies the broad view necessary to sidestep many of the pitfalls that can sink a data science project. Detailed examples are provided from a wide range of applications and fields, from fraud detection in banking to breast cancer classification in healthcare. The reader will learn the techniques to accomplish tasks that include predicting outcomes, explaining observations, and detecting patterns. Improper use of data and models can introduce unwanted effects and dangers to society. A chapter on model risk provides a framework for comprehensively challenging a model and mitigating weaknesses. When data is collected, stored, and used, it may misrepresent reality and introduce bias. Strategies for addressing bias are discussed. From Concepts to Code: Introduction to Data Science leverages content developed by the author for a full-year data science course suitable for advanced high school or early undergraduate students. This course is freely available and it includes weekly lesson plans. |
data science project planning: Data Science and Machine Learning Diana Benavides-Prado, Sarah Erfani, Philippe Fournier-Viger, Yee Ling Boo, Yun Sing Koh, 2023-12-04 This book constitutes the proceedings of the 21st Australasian Conference on Data Science and Machine Learning, AusDM 2023, held in Auckland, New Zealand, during December 11–13, 2023. The 20 full papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: research track and application track. They deal with topics around data science and machine learning in everyday life. |
data science project planning: Planning and Implementing your Final Year Project — with Success! Mikael Berndtsson, Jörgen Hansson, B. Olsson, Björn Lundell, 2013-03-09 Written in concise language this book is for any student who is about to undertake a final year undergraduate or MSc project. It takes them step-by-step through all the important stages of the process, from initial planning to completion. It tells them everything they need to know about key issues such as: How to formulate a suitable problem, Which research method to use, Developing an appropriate structure for the written report, Project focus, and Quality assurance. The book aims to demystify the whole process, making it invaluable for any MSc student. |
data science project planning: Apply Data Science Thomas Barton, Christian Müller, 2023-01-01 This book offers an introduction to the topic of data science based on the visual processing of data. It deals with ethical considerations in the digital transformation and presents a process framework for the evaluation of technologies. It also explains special features and findings on the failure of data science projects and presents recommendation systems in consideration of current developments. Machine learning functionality in business analytics tools is compared and the use of a process model for data science is shown.The integration of renewable energies using the example of photovoltaic systems, more efficient use of thermal energy, scientific literature evaluation, customer satisfaction in the automotive industry and a framework for the analysis of vehicle data serve as application examples for the concrete use of data science. The book offers important information that is just as relevant for practitioners as for students and teachers. |
data science project planning: Recommendation Engines Michael Schrage, 2020-09-01 How companies like Amazon, Netflix, and Spotify know what you might also like: the history, technology, business, and societal impact of online recommendation engines. Increasingly, our technologies are giving us better, faster, smarter, and more personal advice than our own families and best friends. Amazon already knows what kind of books and household goods you like and is more than eager to recommend more; YouTube and TikTok always have another video lined up to show you; Netflix has crunched the numbers of your viewing habits to suggest whole genres that you would enjoy. In this volume in the MIT Press's Essential Knowledge series, innovation expert Michael Schrage explains the origins, technologies, business applications, and increasing societal impact of recommendation engines, the systems that allow companies worldwide to know what products, services, and experiences you might also like. |
data science project planning: Big Data Infrastructure Technologies for Data Analytics Yuri Demchenko, |
data science project planning: Ethical Practice of Statistics and Data Science Rochelle Tractenberg, 2023-11-25 Ethical Practice of Statistics and Data Science is intended to prepare people to fully assume their responsibilities to practice statistics and data science ethically. Aimed at early career professionals, practitioners, and mentors or supervisors of practitioners, the book supports the ethical practice of statistics and data science, with an emphasis on how to earn the designation of, and recognize, “the ethical practitioner”. The book features 47 case studies, each mapped to the Data Science Ethics Checklist (DSEC); Data Ethics Framework (DEFW); the American Statistical Association (ASA) Ethical Guidelines for Statistical Practice; and the Association of Computing Machinery (ACM) Code of Ethics. It is necessary reading for students enrolled in any data intensive program, including undergraduate or graduate degrees in (bio-)statistics, business/analytics, or data science. Managers, leaders, supervisors, and mentors who lead data-intensive teams in government, industry, or academia would also benefit greatly from this book. This is a companion volume to Ethical Reasoning For A Data-Centered World, also published by Ethics International Press (2022). These are the first and only books to be based on, and to provide guidance to, the ASA and ACM Ethical Guidelines/Code of Ethics. |
data science project planning: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …