data science report example: Report Writing for Data Science in R Roger Peng, 2015-12-03 This book teaches the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducibility is the idea that data analyses should be published or made available with their data and software code so that others may verify the findings and build upon them. The need for reproducible report writing is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This book will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results. |
data science report example: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science report example: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code |
data science report example: End-to-End Data Science with SAS James Gearheart, 2020-06-26 Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning models in any industry. The book covers concepts including understanding the business need, creating a modeling data set, linear regression, parametric classification models, and non-parametric classification models. Real-world business examples and example code are used to demonstrate each process step-by-step. Although a significant amount of background information and supporting mathematics are presented, the book is not structured as a textbook, but rather it is a user’s guide for the application of data science and machine learning in a business environment. Readers will learn how to think like a data scientist, wrangle messy data, choose a model, and evaluate the model’s effectiveness. New data scientists or professionals who want more experience with SAS will find this book to be an invaluable reference. Take your data science career to the next level by mastering SAS programming for machine learning models. |
data science report example: Fundamentals of Data Science Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare, 2021-09-26 Fundamentals of Data Science is designed for students, academicians and practitioners with a complete walkthrough right from the foundational groundwork required to outlining all the concepts, techniques and tools required to understand Data Science. Data Science is an umbrella term for the non-traditional techniques and technologies that are required to collect, aggregate, process, and gain insights from massive datasets. This book offers all the processes, methodologies, various steps like data acquisition, pre-process, mining, prediction, and visualization tools for extracting insights from vast amounts of data by the use of various scientific methods, algorithms, and processes Readers will learn the steps necessary to create the application with SQl, NoSQL, Python, R, Matlab, Octave and Tablue. This book provides a stepwise approach to building solutions to data science applications right from understanding the fundamentals, performing data analytics to writing source code. All the concepts are discussed in simple English to help the community to become Data Scientist without much pre-requisite knowledge. Features : Simple strategies for developing statistical models that analyze data and detect patterns, trends, and relationships in data sets. Complete roadmap to Data Science approach with dedicatedsections which includes Fundamentals, Methodology and Tools. Focussed approach for learning and practice various Data Science Toolswith Sample code and examples for practice. Information is presented in an accessible way for students, researchers and academicians and professionals. |
data science report example: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data science report example: Getting Started with Data Science Murtaza Haider, 2015-12-14 Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon. |
data science report example: Think Bigger Mark Van Rijmenam, 2014-04-03 Offering real-world insight and explanations, this book provides a roadmap for organizations looking to develop a profitable big data strategy and reveals why it's not something they can leave to the I.T. department. Big data--the enormous amount of data that is created as virtually every movement, transaction, and choice we make becomes digitized--is revolutionizing business. Sharing best practices from companies that have implemented a big data strategy including Walmart, InterContinental Hotel Group, Walt Disney, and Shell, this helpful resource covers the most important big data trends affecting organizations, as well as key technologies like Hadoop and MapReduce, and several crucial types of analyses. In Think Bigger, you will find guidance on topics such as: how to ensure security, respecting the privacy rights of consumers, and how big data is impacting specific industries--and where opportunities can be found. Big data is changing the way businesses--and even governments--are operated and managed. Think Bigger is an essential resource for anyone who wants to ensure that their company isn't left in the dust. |
data science report example: Modern Data Science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton, 2021-03-31 From a review of the first edition: Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice. |
data science report example: Data Science Projects with Python Stephen Klosterman, 2019-04-30 Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful. |
data science report example: Data Science Foundations Fionn Murtagh, 2017-09-22 Data Science Foundations is most welcome and, indeed, a piece of literature that the field is very much in need of...quite different from most data analytics texts which largely ignore foundational concepts and simply present a cookbook of methods...a very useful text and I would certainly use it in my teaching. - Mark Girolami, Warwick University Data Science encompasses the traditional disciplines of mathematics, statistics, data analysis, machine learning, and pattern recognition. This book is designed to provide a new framework for Data Science, based on a solid foundation in mathematics and computational science. It is written in an accessible style, for readers who are engaged with the subject but not necessarily experts in all aspects. It includes a wide range of case studies from diverse fields, and seeks to inspire and motivate the reader with respect to data, associated information, and derived knowledge. |
data science report example: The Real Work of Data Science Ron S. Kenett, Thomas C. Redman, 2019-04-01 The essential guide for data scientists and for leaders who must get more from their data science teams The Economist boldly claims that data are now the world's most valuable resource. But, as Kenett and Redman so richly describe, unlocking that value requires far more than technical excellence. The Real Work of Data Science explores understanding the problems, dealing with quality issues, building trust with decision makers, putting data science teams in the right organizational spots, and helping companies become data-driven. This is the work that spells the difference between a good data scientist and a great one, between a team that makes marginal contributions and one that drives the business, between a company that gains some value from its data and one in which data truly is the most valuable resource. These two authors are world-class experts on analytics, data management, and data quality; they've forgotten more about these topics than most of us will ever know. Their book is pragmatic, understandable, and focused on what really counts. If you want to do data science in any capacity, you need to read it. —Thomas H. Davenport, Distinguished Professor, Babson College and Fellow, MIT Initiative on the Digital Economy I like your book. The chapters address problems that have faced statisticians for generations, updated to reflect today's issues, such as computational Big Data. —Sir David Cox, Warden of Nuffield College and Professor of Statistics, Oxford University Data science is critical for competitiveness, for good government, for correct decisions. But what is data science? Kenett and Redman give, by far, the best introduction to the subject I have seen anywhere. They address the critical questions of formulating the right problem, collecting the right data, doing the right analyses, making the right decisions, and measuring the actual impact of the decisions. This book should become required reading in statistics and computer science departments, business schools, analytics institutes and, most importantly, by all business managers. —A. Blanton Godfrey, Joseph D. Moore Distinguished University Professor, Wilson College of Textiles, North Carolina State University |
data science report example: Foundations of Data Science Avrim Blum, John Hopcroft, Ravindran Kannan, 2020-01-23 This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data. |
data science report example: Data Science and Business Intelligence for Corporate Decision-Making Dr. P. S. Aithal, 2024-02-09 About the Book: A comprehensive book plan on Data Science and Business Intelligence for Corporate Decision-Making with 15 chapters, each with several sections: Chapter 1: Introduction to Data Science and Business Intelligence Chapter 2: Foundations of Data Science Chapter 3: Business Intelligence Tools and Technologies Chapter 4: Data Visualization for Decision-Making Chapter 5: Machine Learning for Business Intelligence Chapter 6: Big Data Analytics Chapter 7: Data Ethics and Governance Chapter 8: Data-Driven Decision-Making Process Chapter 9: Business Intelligence in Marketing Chapter 10: Financial Analytics and Business Intelligence Chapter 11: Operational Excellence through Data Analytics Chapter 12: Human Resources and People Analytics Chapter 13: Case Studies in Data-Driven Decision-Making Chapter 14: Future Trends in Data Science and Business Intelligence Chapter 15: Implementing Data Science Strategies in Corporations Each chapter dives deep into the concepts, methods, and applications of data science and business intelligence, providing practical insights, real-world examples, and case studies for corporate decision-making processes. |
data science report example: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
data science report example: Introducing Data Science Davy Cielen, Arno Meysman, 2016-05-02 Summary Introducing Data Science teaches you how to accomplish the fundamental tasks that occupy data scientists. Using the Python language and common Python libraries, you'll experience firsthand the challenges of dealing with data at scale and gain a solid foundation in data science. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Many companies need developers with data science skills to work on projects ranging from social media marketing to machine learning. Discovering what you need to learn to begin a career as a data scientist can seem bewildering. This book is designed to help you get started. About the Book Introducing Data ScienceIntroducing Data Science explains vital data science concepts and teaches you how to accomplish the fundamental tasks that occupy data scientists. You’ll explore data visualization, graph databases, the use of NoSQL, and the data science process. You’ll use the Python language and common Python libraries as you experience firsthand the challenges of dealing with data at scale. Discover how Python allows you to gain insights from data sets so big that they need to be stored on multiple machines, or from data moving so quickly that no single machine can handle it. This book gives you hands-on experience with the most popular Python data science libraries, Scikit-learn and StatsModels. After reading this book, you’ll have the solid foundation you need to start a career in data science. What’s Inside Handling large data Introduction to machine learning Using Python to work with data Writing data science algorithms About the Reader This book assumes you're comfortable reading code in Python or a similar language, such as C, Ruby, or JavaScript. No prior experience with data science is required. About the Authors Davy Cielen, Arno D. B. Meysman, and Mohamed Ali are the founders and managing partners of Optimately and Maiton, where they focus on developing data science projects and solutions in various sectors. Table of Contents Data science in a big data world The data science process Machine learning Handling large data on a single computer First steps in big data Join the NoSQL movement The rise of graph databases Text mining and text analytics Data visualization to the end user |
data science report example: Practical Data Science Andreas François Vermeulen, 2018-02-21 Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers |
data science report example: Comet for Data Science Angelica Lo Duca, Gideon Mendels, 2022-08-26 Gain the key knowledge and skills required to manage data science projects using Comet Key Features • Discover techniques to build, monitor, and optimize your data science projects • Move from prototyping to production using Comet and DevOps tools • Get to grips with the Comet experimentation platform Book Description This book provides concepts and practical use cases which can be used to quickly build, monitor, and optimize data science projects. Using Comet, you will learn how to manage almost every step of the data science process from data collection through to creating, deploying, and monitoring a machine learning model. The book starts by explaining the features of Comet, along with exploratory data analysis and model evaluation in Comet. You'll see how Comet gives you the freedom to choose from a selection of programming languages, depending on which is best suited to your needs. Next, you will focus on workspaces, projects, experiments, and models. You will also learn how to build a narrative from your data, using the features provided by Comet. Later, you will review the basic concepts behind DevOps and how to extend the GitLab DevOps platform with Comet, further enhancing your ability to deploy your data science projects. Finally, you will cover various use cases of Comet in machine learning, NLP, deep learning, and time series analysis, gaining hands-on experience with some of the most interesting and valuable data science techniques available. By the end of this book, you will be able to confidently build data science pipelines according to bespoke specifications and manage them through Comet. What you will learn • Prepare for your project with the right data • Understand the purposes of different machine learning algorithms • Get up and running with Comet to manage and monitor your pipelines • Understand how Comet works and how to get the most out of it • See how you can use Comet for machine learning • Discover how to integrate Comet with GitLab • Work with Comet for NLP, deep learning, and time series analysis Who this book is for This book is for anyone who has programming experience, and wants to learn how to manage and optimize a complete data science lifecycle using Comet and other DevOps platforms. Although an understanding of basic data science concepts and programming concepts is needed, no prior knowledge of Comet and DevOps is required. |
data science report example: Practical Statistics for Data Scientists Peter Bruce, Andrew Bruce, 2017-05-10 Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data |
data science report example: Frontiers in Massive Data Analysis National Research Council, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, Committee on Applied and Theoretical Statistics, Committee on the Analysis of Massive Data, 2013-09-03 Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data. |
data science report example: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
data science report example: Machine Learning: A Gateway to Data Science Mrs.S.N.Santhalakshmi, Dr.Goutam Panigrahi, Dr. Saibal Majumder, Dr. Chandan Bandyopadhyay, 2024-05-16 Mrs.S.N.Santhalakshmi, Assistant Professor & Head of The Department, Department of Computer Applications, Nandha Arts & Science College, Erode, Tamil Nadu, India. Dr.Goutam Panigrahi, Assistant Professor, Department of Mathematics, National Institute of Technology, Durgapur, West Bengal, India. Dr. Saibal Majumder, Assistant Professor, Department of Computer Science and Engineering(Data Science), Dr. B.C. Roy Engineering College, Durgapur, West Bengal, India. Dr. Chandan Bandyopadhyay, Associate Professor & Head of the Department, Department of Computer Science and Engineering(Data Science), Dr. B.C. Roy Engineering College, Durgapur, West Bengal, India. |
data science report example: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases |
data science report example: Statistics for Data Science James D. Miller, 2017-11-17 Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples |
data science report example: R for Health Data Science Ewen Harrison, Riinu Pius, 2020-12-31 In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms. |
data science report example: Data Science Thinking Longbing Cao, 2018-08-17 This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective. |
data science report example: Data Science & Business Analytics Sneha Kumari, K. K. Tripathy, Vidya Kumbhar, 2020-12-04 Data Science & Business Analytics explores the application of big data and business analytics by academics, researchers, industrial experts, policy makers and practitioners, helping the reader to understand how big data can be efficiently utilized in better managerial applications. |
data science report example: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
data science report example: Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, Committee on Applied and Theoretical Statistics, Committee on Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions, 2017-02-06 The Office of the Under Secretary of Defense (Personnel & Readiness), referred to throughout this report as P&R, is responsible for the total force management of all Department of Defense (DoD) components including the recruitment, readiness, and retention of personnel. Its work and policies are supported by a number of organizations both within DoD, including the Defense Manpower Data Center (DMDC), and externally, including the federally funded research and development centers (FFRDCs) that work for DoD. P&R must be able to answer questions for the Secretary of Defense such as how to recruit people with an aptitude for and interest in various specialties and along particular career tracks and how to assess on an ongoing basis service members' career satisfaction and their ability to meet new challenges. P&R must also address larger-scale questions, such as how the current realignment of forces to the Asia-Pacific area and other regions will affect recruitment, readiness, and retention. While DoD makes use of large-scale data and mathematical analysis in intelligence, surveillance, reconnaissance, and elsewhereâ€exploiting techniques such as complex network analysis, machine learning, streaming social media analysis, and anomaly detectionâ€these skills and capabilities have not been applied as well to the personnel and readiness enterprise. Strengthening Data Science Methods for Department of Defense Personnel and Readiness Missions offers and roadmap and implementation plan for the integration of data analysis in support of decisions within the purview of P&R. |
data science report example: Capitalizing Data Science Mathangi Sri Ramachandran, 2022-12-03 Unlock the Potential of Data Science and Machine Learning to Your Business and Organization KEY FEATURES ● Includes today's most popular applications powered by data science and machine learning technology. ● A solid primer on the entire data science lifecycle, detailed with examples. ● An integrated approach to demonstrating the use of Image Processing, Natural Language Processing, and Neural Networks in business. DESCRIPTION Can you foresee how your company and its products will benefit from data science? How can the results of using AI and ML in business be tracked and questioned? Do questions like ‘how do you build a data science team?’ keep popping into your head? All these strategic concerns and challenges are addressed in this book. Firstly, the book explores the evolution of decision-making based on empirical evidence. The book then helps compare the data-supported era with the current data-led era. It also discusses how to successfully run a data science project, the lifecycle of a data science project, and what it looks like. The book dives fairly in-depth into various today's data-led applications, highlights example datasets, discusses obstacles, and explains machine learning models and algorithms intuitively. This book covers structural and organizational considerations for making a data science team. The book helps recommend the use of optimal data science organization structure based on the company's level of development. Finally, the book explains data science's effects on businesses by assisting technological leaders. WHAT YOU WILL LEARN ● Learn the entire data science lifecycle and become fluent in each phase. ● Discover the world of supervised and unsupervised learning applications and structured and unstructured datasets. ● Discuss NLP's function, its potential, and the application of well-known methods like BERT and GPT3. ● Explain practical applications like automatic captioning, machine translation, and emotion recognition. ● Provide a framework for evaluating your team's data science skills and resources. WHO THIS BOOK IS FOR Startups, investors, small businesses, product management teams, CxO and all developing businesses desiring to leverage a data science team to gain the most from this book. The book also discusses the potential of practical applications of machine learning and AI for the future of businesses in banking and e-commerce. TABLE OF CONTENTS 1. Data-Driven Decisions from Beginning to Now 2. Data Science Life Cycle —Part 1 3. Data Science Life Cycle —Part 2 4. Deep Dive into AI 5. Applying AI with Structured Data—Banking 6. Applying AI with Structured Data 7. Applying AI with Structured Data—On-Demand Deliveries 8. AI in Natural Language Processing 9. Bringing It All Together |
data science report example: Navigating Digital Transformation in Management Richard Busulwa, 2022-10-31 Navigating Digital Transformation in Management provides a thorough introduction to the implications of digital transformation for leaders and managers. The book clearly outlines what new or enhanced roles and activities digital transformation requires of them. The book takes a practical approach and shapes an actionable guide that students can take with them into their future careers as managers themselves. With core theoretical grounding, the book explains how the digital transformation imperative requires all organizations to continuously undertake digital business transformation to adapt to ongoing digital disruption and to effectively compete as digital businesses. The book discusses the critical roles managers need to play in establishing, facilitating, and accelerating the day-to-day activities required to build and continuously upgrade these capabilities. Drawing on cutting edge research, this textbook: Explains how digital technology advancements drive digital disruption and why digital business transformation and operating as a digital business are critical to organization survival Unpacks the different digital business capabilities required to effectively compete as a digital business Considers the new or digitally enhanced competencies required of leaders, managers, and their supporting professionals to effectively play their roles in digital transformation Discusses how leaders, managers, and their supporting professionals can keep up with digital technology advancements Unpacks key digital technology advancements, providing a plain language understanding of what they are, how they work, and their implications for organizations Enriched with pedagogical features to support understanding and reinforce learning, such as reflective questions, learning summaries, and case studies, and supported by a suite of instructor materials, this textbook is an ideal choice for teachers that want to enable their information systems, information technology, and digital business students to compete and thrive in the contemporary business environment. |
data science report example: Data Science and Analytics Strategy Kailash Awati, Alexander Scriven, 2023-04-05 This book describes how to establish data science and analytics capabilities in organisations using Emergent Design, an evolutionary approach that increases the chances of successful outcomes while minimising upfront investment. Based on their experiences and those of a number of data leaders, the authors provide actionable advice on data technologies, processes, and governance structures so that readers can make choices that are appropriate to their organisational contexts and requirements. The book blends academic research on organisational change and data science processes with real-world stories from experienced data analytics leaders, focusing on the practical aspects of setting up a data capability. In addition to a detailed coverage of capability, culture, and technology choices, a unique feature of the book is its treatment of emerging issues such as data ethics and algorithmic fairness. Data Science and Analytics Strategy: An Emergent Design Approach has been written for professionals who are looking to build data science and analytics capabilities within their organisations as well as those who wish to expand their knowledge and advance their careers in the data space. Providing deep insights into the intersection between data science and business, this guide will help professionals understand how to help their organisations reap the benefits offered by data. Most importantly, readers will learn how to build a fit-for-purpose data science capability in a manner that avoids the most common pitfalls. |
data science report example: Envisioning the Data Science Discipline National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-03-05 The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education. |
data science report example: INTRODUCTION TO DATA SCIENCE THROUGH MACHINE LEARNING Dr.V.Maniraj, M.Dhivya , 2022-07-22 Dr.V.Maniraj, Associate Professor & Coordinator, PG & Research Department of Computer Science, AVVM SRI PUSHPAM COLLEGE (AUTONOMOUS), Poondi, Thanjavur, Tamil Nadu, India. M.Dhivya , Research Scholar, PG & Research Department of Computer Science, AVVM SRI PUSHPAM COLLEGE (AUTONOMOUS), Poondi, Thanjavur, Tamil Nadu, India. |
data science report example: Introduction to Data Science in Biostatistics Thomas W. MacFarland, |
data science report example: Confident Data Science Adam Ross Nelson, 2023-09-03 The global data market is estimated to be worth $64 billion dollars, making it a more valuable resource than oil. But data is useless without the analysis, interpretation and innovations of data scientists. With Confident Data Science, learn the essential skills and build your confidence in this sector through key insights and practical tools for success. In this book, you will discover all of the skills you need to understand this discipline, from primers on the key analytic and visualization tools to tips for pitching to and working with clients. Adam Ross Nelson draws upon his expertise as a data science consultant and, as someone who made moved into the industry late in his career, to provide an overview of data science, including its key concepts, its history and the knowledge required to become a successful data scientist. Whether you are considering a career in this industry or simply looking to expand your knowledge, Confident Data Science is the essential guide to the world of data science. About the Confident series... From coding and data science to cloud and cyber security, the Confident books are perfect for building your technical knowledge and enhancing your professional career. |
data science report example: Essentials of Forensic Accounting Michael A. Crain, William S. Hopwood, Richard S. Gendler, George R. Young, Carl Pacini, 2019-08-06 Essentials of Forensic Accounting Essentials of Forensic Accounting is an authoritative resource covering a comprehensive range of forensic accounting topics. As a foundation review, a reference book, or as preparation for the Certification in Financial Forensics (CFF®) Exam, this publication will provide thoughtful and insightful examination of the key themes in this field, including: Professional responsibilities and practice management Fundamental forensic knowledge including laws, courts, and dispute resolution Specialized forensic knowledge such as bankruptcy, insolvency, reorganization, and valuation Through illustrative examples, cases, and explanations, this book makes abstract concepts come to life to help you understand and successfully navigate this complex area. |
data science report example: INFORMS Analytics Body of Knowledge James J. Cochran, 2018-09-21 Standardizes the definition and framework of analytics #2 on Book Authority’s list of the Best New Analytics Books to Read in 2019 (January 2019) We all want to make a difference. We all want our work to enrich the world. As analytics professionals, we are fortunate - this is our time! We live in a world of pervasive data and ubiquitous, powerful computation. This convergence has inspired and accelerated the development of both analytic techniques and tools and this potential for analytics to have an impact has been a huge call to action for organizations, universities, and governments. This title from Institute for Operations Research and the Management Sciences (INFORMS) represents the perspectives of some of the most respected experts on analytics. Readers with various backgrounds in analytics – from novices to experienced professionals – will benefit from reading about and implementing the concepts and methods covered here. Peer reviewed chapters provide readers with in-depth insights and a better understanding of the dynamic field of analytics The INFORMS Analytics Body of Knowledge documents the core concepts and skills with which an analytics professional should be familiar; establishes a dynamic resource that will be used by practitioners to increase their understanding of analytics; and, presents instructors with a framework for developing academic courses and programs in analytics. |
data science report example: Human-Centered Data Science Cecilia Aragon, Shion Guha, Marina Kogan, Michael Muller, Gina Neff, 2022-03-01 Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns. |
data science report example: Elgar Encyclopedia of Law and Data Science Comandé, Giovanni, 2022-02-18 This Encyclopedia brings together jurists, computer scientists, and data analysts to map the emerging field of data science and law for the first time, uncovering the challenges, opportunities, and fault lines that arise as these groups are increasingly thrown together by expanding attempts to regulate and adapt to a data-driven world. It explains the concepts and tools at the crossroads of the many disciplines involved in data science and law, bridging scientific and applied domains. Entries span algorithmic fairness, consent, data protection, ethics, healthcare, machine learning, patents, surveillance, transparency and vulnerability. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …