Data Science For Manufacturing

Advertisement



  data science for manufacturing: Data Science in Production Ben Weber, 2020 Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
  data science for manufacturing: Machine Learning in Production Andrew Kelleher, Adam Kelleher, 2019-02-27 Foundational Hands-On Skills for Succeeding with Real Data Science Projects This pragmatic book introduces both machine learning and data science, bridging gaps between data scientist and engineer, and helping you bring these techniques into production. It helps ensure that your efforts actually solve your problem, and offers unique coverage of real-world optimization in production settings. –From the Foreword by Paul Dix, series editor Machine Learning in Production is a crash course in data science and machine learning for people who need to solve real-world problems in production environments. Written for technically competent “accidental data scientists” with more curiosity and ambition than formal training, this complete and rigorous introduction stresses practice, not theory. Building on agile principles, Andrew and Adam Kelleher show how to quickly deliver significant value in production, resisting overhyped tools and unnecessary complexity. Drawing on their extensive experience, they help you ask useful questions and then execute production projects from start to finish. The authors show just how much information you can glean with straightforward queries, aggregations, and visualizations, and they teach indispensable error analysis methods to avoid costly mistakes. They turn to workhorse machine learning techniques such as linear regression, classification, clustering, and Bayesian inference, helping you choose the right algorithm for each production problem. Their concluding section on hardware, infrastructure, and distributed systems offers unique and invaluable guidance on optimization in production environments. Andrew and Adam always focus on what matters in production: solving the problems that offer the highest return on investment, using the simplest, lowest-risk approaches that work. Leverage agile principles to maximize development efficiency in production projects Learn from practical Python code examples and visualizations that bring essential algorithmic concepts to life Start with simple heuristics and improve them as your data pipeline matures Avoid bad conclusions by implementing foundational error analysis techniques Communicate your results with basic data visualization techniques Master basic machine learning techniques, starting with linear regression and random forests Perform classification and clustering on both vector and graph data Learn the basics of graphical models and Bayesian inference Understand correlation and causation in machine learning models Explore overfitting, model capacity, and other advanced machine learning techniques Make informed architectural decisions about storage, data transfer, computation, and communication Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
  data science for manufacturing: Data Driven Smart Manufacturing Technologies and Applications Weidong Li, Yuchen Liang, Sheng Wang, 2021-02-20 This book reports innovative deep learning and big data analytics technologies for smart manufacturing applications. In this book, theoretical foundations, as well as the state-of-the-art and practical implementations for the relevant technologies, are covered. This book details the relevant applied research conducted by the authors in some important manufacturing applications, including intelligent prognosis on manufacturing processes, sustainable manufacturing and human-robot cooperation. Industrial case studies included in this book illustrate the design details of the algorithms and methodologies for the applications, in a bid to provide useful references to readers. Smart manufacturing aims to take advantage of advanced information and artificial intelligent technologies to enable flexibility in physical manufacturing processes to address increasingly dynamic markets. In recent years, the development of innovative deep learning and big data analytics algorithms is dramatic. Meanwhile, the algorithms and technologies have been widely applied to facilitate various manufacturing applications. It is essential to make a timely update on this subject considering its importance and rapid progress. This book offers a valuable resource for researchers in the smart manufacturing communities, as well as practicing engineers and decision makers in industry and all those interested in smart manufacturing and Industry 4.0.
  data science for manufacturing: Machine Learning and Data Science in the Power Generation Industry Patrick Bangert, 2021-01-14 Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. - Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful - Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them - Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems - Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls
  data science for manufacturing: Effective Data Science Infrastructure Ville Tuulos, 2022-08-30 Simplify data science infrastructure to give data scientists an efficient path from prototype to production. In Effective Data Science Infrastructure you will learn how to: Design data science infrastructure that boosts productivity Handle compute and orchestration in the cloud Deploy machine learning to production Monitor and manage performance and results Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, Conda, and Docker Architect complex applications for multiple teams and large datasets Customize and grow data science infrastructure Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you’ll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You’ll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python. The author is donating proceeds from this book to charities that support women and underrepresented groups in data science. About the technology Growing data science projects from prototype to production requires reliable infrastructure. Using the powerful new techniques and tooling in this book, you can stand up an infrastructure stack that will scale with any organization, from startups to the largest enterprises. About the book Effective Data Science Infrastructure teaches you to build data pipelines and project workflows that will supercharge data scientists and their projects. Based on state-of-the-art tools and concepts that power data operations of Netflix, this book introduces a customizable cloud-based approach to model development and MLOps that you can easily adapt to your company’s specific needs. As you roll out these practical processes, your teams will produce better and faster results when applying data science and machine learning to a wide array of business problems. What's inside Handle compute and orchestration in the cloud Combine cloud-based tools into a cohesive data science environment Develop reproducible data science projects using Metaflow, AWS, and the Python data ecosystem Architect complex applications that require large datasets and models, and a team of data scientists About the reader For infrastructure engineers and engineering-minded data scientists who are familiar with Python. About the author At Netflix, Ville Tuulos designed and built Metaflow, a full-stack framework for data science. Currently, he is the CEO of a startup focusing on data science infrastructure. Table of Contents 1 Introducing data science infrastructure 2 The toolchain of data science 3 Introducing Metaflow 4 Scaling with the compute layer 5 Practicing scalability and performance 6 Going to production 7 Processing data 8 Using and operating models 9 Machine learning with the full stack
  data science for manufacturing: Guide to Industrial Analytics Richard Hill, Stuart Berry, 2021-09-27 This textbook describes the hands-on application of data science techniques to solve problems in manufacturing and the Industrial Internet of Things (IIoT). Monitoring and managing operational performance is a crucial activity for industrial and business organisations. The emergence of low-cost, accessible computing and storage, through Industrial Digital Technologies (IDT) and Industry 4.0, has generated considerable interest in innovative approaches to doing more with data. Data science, predictive analytics, machine learning, artificial intelligence and general approaches to modelling, simulating and visualising industrial systems have often been considered topics only for research labs and academic departments. This textbook debunks the mystique around applied data science and shows readers, using tutorial-style explanations and real-life case studies, how practitioners can develop their own understanding of performance to achieve tangible business improvements. All exercises can be completed with commonly available tools, many of which are free to install and use. Readers will learn how to use tools to investigate, diagnose, propose and implement analytics solutions that will provide explainable results to deliver digital transformation.
  data science for manufacturing: Data Science for Nano Image Analysis Chiwoo Park, Yu Ding, 2021-07-31 This book combines two distinctive topics: data science/image analysis and materials science. The purpose of this book is to show what type of nano material problems can be better solved by which set of data science methods. The majority of material science research is thus far carried out by domain-specific experts in material engineering, chemistry/chemical engineering, and mechanical & aerospace engineering. The book could benefit materials scientists and manufacturing engineers who were not exposed to systematic data science training while in schools, or data scientists in computer science or statistics disciplines who want to work on material image problems or contribute to materials discovery and optimization. This book provides in-depth discussions of how data science and operations research methods can help and improve nano image analysis, automating the otherwise manual and time-consuming operations for material engineering and enhancing decision making for nano material exploration. A broad set of data science methods are covered, including the representations of images, shape analysis, image pattern analysis, and analysis of streaming images, change points detection, graphical methods, and real-time dynamic modeling and object tracking. The data science methods are described in the context of nano image applications, with specific material science case studies.
  data science for manufacturing: Data-Driven Optimization of Manufacturing Processes Kalita, Kanak, Ghadai, Ranjan Kumar, Gao, Xiao-Zhi, 2020-12-25 All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.
  data science for manufacturing: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
  data science for manufacturing: Learning to Love Data Science Mike Barlow, 2015 Until recently, many people thought big data was a passing fad. Data science was an enigmatic term. Today, big data is taken seriously, and data science is considered downright sexy. With this anthology of reports from award-winning journalist Mike Barlow, you'll appreciate how data science is fundamentally altering our world, for better and for worse. Barlow paints a picture of the emerging data space in broad strokes. From new techniques and tools to the use of data for social good, you'll find out how far data science reaches. With this anthology, you'll learn how: Analysts can now get results from their data queries in near real time Indie manufacturers are blurring the lines between hardware and software Companies try to balance their desire for rapid innovation with the need to tighten data security Advanced analytics and low-cost sensors are transforming equipment maintenance from a cost center to a profit center CIOs have gradually evolved from order takers to business innovators New analytics tools let businesses go beyond data analysis and straight to decision-making Mike Barlow is an award-winning journalist, author, and communications strategy consultant. Since launching his own firm, Cumulus Partners, he has represented major organizations in a number of industries.
  data science for manufacturing: Applying Data Science Arthur K. Kordon, 2021-09-14 This book offers practical guidelines on creating value from the application of data science based on selected artificial intelligence methods. In Part I, the author introduces a problem-driven approach to implementing AI-based data science and offers practical explanations of key technologies: machine learning, deep learning, decision trees and random forests, evolutionary computation, swarm intelligence, and intelligent agents. In Part II, he describes the main steps in creating AI-based data science solutions for business problems, including problem knowledge acquisition, data preparation, data analysis, model development, and model deployment lifecycle. Finally, in Part III the author illustrates the power of AI-based data science with successful applications in manufacturing and business. He also shows how to introduce this technology in a business setting and guides the reader on how to build the appropriate infrastructure and develop the required skillsets. The book is ideal for data scientists who will implement the proposed methodology and techniques in their projects. It is also intended to help business leaders and entrepreneurs who want to create competitive advantage by using AI-based data science, as well as academics and students looking for an industrial view of this discipline.
  data science for manufacturing: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
  data science for manufacturing: Artificial Intelligence, Machine Learning, and Data Science Technologies Neeraj Mohan, Ruchi Singla, Priyanka Kaushal, Seifedine Kadry, 2021-10-11 This book provides a comprehensive, conceptual, and detailed overview of the wide range of applications of Artificial Intelligence, Machine Learning, and Data Science and how these technologies have an impact on various domains such as healthcare, business, industry, security, and how all countries around the world are feeling this impact. The book aims at low-cost solutions which could be implemented even in developing countries. It highlights the significant impact these technologies have on various industries and on us as humans. It provides a virtual picture of forthcoming better human life shadowed by the new technologies and their applications and discusses the impact Data Science has on business applications. The book will also include an overview of the different AI applications and their correlation between each other. The audience is graduate and postgraduate students, researchers, academicians, institutions, and professionals who are interested in exploring key technologies like Artificial Intelligence, Machine Learning, and Data Science.
  data science for manufacturing: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data science for manufacturing: Service-Oriented Computing Schahram Dustdar, 2020-12-07 This book constitutes the refereed proceedings of the 14th Symposium and Summer School on Service-Oriented Computing, SummerSOC 2020, held in Crete, Greece, in September 2020.* The 9 full and 2 short papers were carefully reviewed and selected from 23 submissions. The papers mainly focus on IoT and cyber-physical systems, advanced application areas, cloud and edge, and service-based applications. *The conference was held virtually due to the COVID-19 pandemic.
  data science for manufacturing: Data Science Vijay Kotu, Bala Deshpande, 2018-11-27 Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You'll be able to: - Gain the necessary knowledge of different data science techniques to extract value from data. - Master the concepts and inner workings of 30 commonly used powerful data science algorithms. - Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... - Contains fully updated content on data science, including tactics on how to mine business data for information - Presents simple explanations for over twenty powerful data science techniques - Enables the practical use of data science algorithms without the need for programming - Demonstrates processes with practical use cases - Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language - Describes the commonly used setup options for the open source tool RapidMiner
  data science for manufacturing: Big Data Analytics in Supply Chain Management Iman Rahimi, Amir H. Gandomi, Simon James Fong, M. Ali Ülkü, 2020-12-20 In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.
  data science for manufacturing: Applying Data Science Arthur K. Kordon, 2020-09-12 This book offers practical guidelines on creating value from the application of data science based on selected artificial intelligence methods. In Part I, the author introduces a problem-driven approach to implementing AI-based data science and offers practical explanations of key technologies: machine learning, deep learning, decision trees and random forests, evolutionary computation, swarm intelligence, and intelligent agents. In Part II, he describes the main steps in creating AI-based data science solutions for business problems, including problem knowledge acquisition, data preparation, data analysis, model development, and model deployment lifecycle. Finally, in Part III the author illustrates the power of AI-based data science with successful applications in manufacturing and business. He also shows how to introduce this technology in a business setting and guides the reader on how to build the appropriate infrastructure and develop the required skillsets. The book is ideal for data scientists who will implement the proposed methodology and techniques in their projects. It is also intended to help business leaders and entrepreneurs who want to create competitive advantage by using AI-based data science, as well as academics and students looking for an industrial view of this discipline.
  data science for manufacturing: Application of Decision Science in Business and Management Fausto Pedro García Márquez, 2020-03-04 Application of Decision Science in Business and Management is a book where each chapter has been contributed by a different author(s). The chapters introduce and demonstrate a decision-making theory to practice case studies. It demonstrates key results for each sector with diverse real-world case studies. Theory is accompanied by relevant analysis techniques, with a progressive approach building from simple theory to complex and dynamic decisions with multiple data points, including big data, lot of data, etc. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support analysis of multi-criteria decision-making problems with defined constraints and requirements. The book provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of decision making. It is complementary to other sub-disciplines such as economics, finance, marketing, decision and risk analysis, etc.
  data science for manufacturing: Data Science in Engineering and Management Zdzislaw Polkowski, Sambit Kumar Mishra, Julian Vasilev, 2021-12-31 This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.
  data science for manufacturing: Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing Hermann Lödding, Ralph Riedel, Klaus-Dieter Thoben, Gregor von Cieminski, Dimitris Kiritsis, 2017-08-28 The two-volume set IFIP AICT 513 and 514 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2017, held in Hamburg, Germany, in September 2017. The 121 revised full papers presented were carefully reviewed and selected from 163 submissions. They are organized in the following topical sections: smart manufacturing system characterization; product and asset life cycle management in smart factories of industry 4.0; cyber-physical (IIoT) technology deployments in smart manufacturing systems; multi-disciplinary collaboration in the development of smart product-service solutions; sustainable human integration in cyber-physical systems: the operator 4.0; intelligent diagnostics and maintenance solutions; operations planning, scheduling and control; supply chain design; production management in food supply chains; factory planning; industrial and other services; operations management in engineer-to-order manufacturing; gamification of complex systems design development; lean and green manufacturing; and eco-efficiency in manufacturing operations.
  data science for manufacturing: Applied Data Science Martin Braschler, Thilo Stadelmann, Kurt Stockinger, 2019-06-13 This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
  data science for manufacturing: Managing Data Science Kirill Dubovikov, 2019-11-12 Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.
  data science for manufacturing: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.
  data science for manufacturing: Manufacturing Intelligence for Industrial Engineering: Methods for System Self-Organization, Learning, and Adaptation Zhou, Zude, Wang, Huaiqing, Lou, Ping, 2010-03-31 This book focuses on the latest innovations in the process of manufacturing in engineering--Provided by publisher.
  data science for manufacturing: Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing Karabegovi?, Isak, Kova?evi?, Ahmed, Banjanovi?-Mehmedovi?, Lejla, Daši?, Predrag, 2020-03-27 In Industry 4.0, industrial productions are adjusted to complete smart automation, which means introducing self-automation methods, self-configuration, self-diagnosis of problems and removal, cognition, and intelligent decision making. This implementation of Industry 4.0 brings about a change in business paradigms and production models, and this will be reflected at all levels of the production process including supply chains and will involve all workers in the production process from managers to cyber-physical systems designers and customers as end-users. The Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing is an essential reference source that explores the development and integration of Industry 4.0 by examining changes and innovations to manufacturing processes as well as its applications in different industrial areas. Featuring coverage on a wide range of topics such as cyber physical systems, integration criteria, and artificial intelligence, this book is ideally designed for mechanical engineers, electrical engineers, manufacturers, supply chain managers, logistics specialists, investors, managers, policymakers, production scientists, researchers, academicians, and students at the postgraduate level.
  data science for manufacturing: Materials Processing and Manufacturing Science Rajiv Asthana, Ashok Kumar, Narendra B. Dahotre, 2006-01-09 Materials Science in Manufacturing focuses on materials science and materials processing primarily for engineering and technology students preparing for careers in manufacturing. The text also serves as a useful reference on materials science for the practitioner engaged in manufacturing as well as the beginning graduate student.Integrates theoretical understanding and current practices to provide a resource for students preparing for advanced study or career in industry. Also serves as a useful resource to the practitioner who works with diverse materials and processes, but is not a specialist in materials science. This book covers a wider range of materials and processes than is customary in the elementary materials science books.This book covers a wider range of materials and processes than is customary in the elementary materials science books.* Detailed explanations of theories, concepts, principles and practices of materials and processes of manufacturing through richly illustrated text* Includes new topics such as nanomaterials and nanomanufacturing, not covered in most similar works* Focuses on the interrelationship between Materials Science, Processing Science, and Manufacturing Technology
  data science for manufacturing: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  data science for manufacturing: Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing Amit Kumar Tyagi, Shrikant Tiwari, Gulshan Soni, 2024-10-23 Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
  data science for manufacturing: Data-Driven Science and Engineering Steven L. Brunton, J. Nathan Kutz, 2022-05-05 A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
  data science for manufacturing: Manufacturing Demand David Lewis, 2012-11 Historically, the discipline of marketing has been heavily skewed toward a subjective art at the expense of a measurable science. But the days of hunches, intuitions, and incomplete or misleading perspectives are rapidly disappearing. Today, savvy marketers and forward-looking organizations are embracing innovative new models driven by cutting-edge technology and analytics to align sales and marketing, pinpoint (and respond to) customer needs, and achieve breakthrough revenue gains. In Manufacturing Demand, marketing guru David Lewis, CEO of DemandGen International, reveals the transformations taking place in marketing today, including the rise of the marketing geek and the emergence of the so-called fifth and sixth P s of marketing: Process and Programming. You ll learn about the key practices and principles of creating your demand-generation factory: buyer personas, the demand funnel, lead scoring, lead nurturing, and analytics. Plus, Manufacturing Demand presents plenty of actionable tips and recommendations as well as real-world case studies that showcase how leading companies are achieving tremendous results applying these principles of successful lead management. If you re ready to move into of the next generation of marketing, get ready to start Manufacturing Demand.
  data science for manufacturing: Systems Engineering in the Fourth Industrial Revolution Ron S. Kenett, Robert S. Swarz, Avigdor Zonnenshain, 2019-12-24 An up-to-date guide for using massive amounts of data and novel technologies to design, build, and maintain better systems engineering Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering offers a guide to the recent changes in systems engineering prompted by the current challenging and innovative industrial environment called the Fourth Industrial Revolution—INDUSTRY 4.0. This book contains advanced models, innovative practices, and state-of-the-art research findings on systems engineering. The contributors, an international panel of experts on the topic, explore the key elements in systems engineering that have shifted towards data collection and analytics, available and used in the design and development of systems and also in the later life-cycle stages of use and retirement. The contributors address the issues in a system in which the system involves data in its operation, contrasting with earlier approaches in which data, models, and algorithms were less involved in the function of the system. The book covers a wide range of topics including five systems engineering domains: systems engineering and systems thinking; systems software and process engineering; the digital factory; reliability and maintainability modeling and analytics; and organizational aspects of systems engineering. This important resource: Presents new and advanced approaches, methodologies, and tools for designing, testing, deploying, and maintaining advanced complex systems Explores effective evidence-based risk management practices Describes an integrated approach to safety, reliability, and cyber security based on system theory Discusses entrepreneurship as a multidisciplinary system Emphasizes technical merits of systems engineering concepts by providing technical models Written for systems engineers, Systems Engineering in the Fourth Industrial Revolution offers an up-to-date resource that contains the best practices and most recent research on the topic of systems engineering.
  data science for manufacturing: Essentials of Data Science and Analytics Amar Sahay, 2021-07-06 Data science and analytics have emerged as the most desired fields in driving business decisions. Using the techniques and methods of data science, decision makers can uncover hidden patterns in their data, develop algorithms and models that help improve processes and make key business decisions. Data science is a data driven decision making approach that uses several different areas and disciplines with a purpose of extracting insights and knowledge from structured and unstructured data. The algorithms and models of data science along with machine learning and predictive modeling are widely used in solving business problems and predicting future outcomes. This book combines the key concepts of data science and analytics to help you gain a practical understanding of these fields. The four different sections of the book are divided into chapters that explain the core of data science. Given the booming interest in data science, this book is timely and informative.
  data science for manufacturing: Cleaning Data for Effective Data Science David Mertz, 2021-03-31 Think about your data intelligently and ask the right questions Key FeaturesMaster data cleaning techniques necessary to perform real-world data science and machine learning tasksSpot common problems with dirty data and develop flexible solutions from first principlesTest and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the hard way. In a light-hearted and engaging exploration of different tools, techniques, and datasets real and fictitious, Python veteran David Mertz teaches you the ins and outs of data preparation and the essential questions you should be asking of every piece of data you work with. Using a mixture of Python, R, and common command-line tools, Cleaning Data for Effective Data Science follows the data cleaning pipeline from start to end, focusing on helping you understand the principles underlying each step of the process. You'll look at data ingestion of a vast range of tabular, hierarchical, and other data formats, impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features. The long-form exercises at the end of each chapter let you get hands-on with the skills you've acquired along the way, also providing a valuable resource for academic courses. What you will learnIngest and work with common data formats like JSON, CSV, SQL and NoSQL databases, PDF, and binary serialized data structuresUnderstand how and why we use tools such as pandas, SciPy, scikit-learn, Tidyverse, and BashApply useful rules and heuristics for assessing data quality and detecting bias, like Benford’s law and the 68-95-99.7 ruleIdentify and handle unreliable data and outliers, examining z-score and other statistical propertiesImpute sensible values into missing data and use sampling to fix imbalancesUse dimensionality reduction, quantization, one-hot encoding, and other feature engineering techniques to draw out patterns in your dataWork carefully with time series data, performing de-trending and interpolationWho this book is for This book is designed to benefit software developers, data scientists, aspiring data scientists, teachers, and students who work with data. If you want to improve your rigor in data hygiene or are looking for a refresher, this book is for you. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful.
  data science for manufacturing: Data Science and Innovations for Intelligent Systems Kavita Taneja, Harmunish Taneja, Kuldeep Kumar, Arvind Selwal, Eng Lieh Ouh, 2021-09-30 Data science is an emerging field and innovations in it need to be explored for the success of society 5.0. This book not only focuses on the practical applications of data science to achieve computational excellence, but also digs deep into the issues and implications of intelligent systems. This book highlights innovations in data science to achieve computational excellence that can optimize performance of smart applications. The book focuses on methodologies, framework, design issues, tools, architectures, and technologies necessary to develop and understand data science and its emerging applications in the present era. Data Science and Innovations for Intelligent Systems: Computational Excellence and Society 5.0 is useful for the research community, start-up entrepreneurs, academicians, data-centered industries, and professeurs who are interested in exploring innovations in varied applications and the areas of data science.
  data science for manufacturing: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry Stephanie K. Ashenden, 2021-04-23 The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide
  data science for manufacturing: Data Science and Emerging Technologies Yap Bee Wah, Michael W. Berry, Azlinah Mohamed, Dhiya Al-Jumeily, 2023-03-31 The book presents selected papers from International Conference on Data Science and Emerging Technologies (DaSET 2022), held online at UNITAR International University, Malaysia, during December 20–21, 2022. This book aims to present current research and applications of data science and emerging technologies. The deployment of data science and emerging technology contributes to the achievement of the Sustainable Development Goals for social inclusion, environmental sustainability, and economic prosperity. Data science and emerging technologies such as artificial intelligence and blockchain are useful for various domains such as marketing, health care, finance, banking, environmental, and agriculture. An important grand challenge in data science is to determine how developments in computational and social-behavioral sciences can be combined to improve well-being, emergency response, sustainability, and civic engagement in a well-informed, data-driven society. The topics of this book include, but not limited to: artificial intelligence, big data technology, machine and deep learning, data mining, optimization algorithms, blockchain, Internet of Things (IoT), cloud computing, computer vision, cybersecurity, augmented and virtual reality, cryptography, and statistical learning.
  data science for manufacturing: Data Science Pallavi Vijay Chavan, Parikshit N Mahalle, Ramchandra Mangrulkar, Idongesit Williams, 2022-08-15 This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science. Key Features • Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science. • Presents predictive outcomes by applying data science techniques to real-life applications. • Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. • Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful.
  data science for manufacturing: Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology Dimitris Mourtzis, 2021-11-10 Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology draws on the latest industry advances to provide everything needed for the effective implementation of this powerful tool. Shorter product lifecycles have increased pressure on manufacturers through the increasing variety and complexity of production, challenging their workforce to remain competitive and profitable. This has led to innovation in production network methodologies, which together with opportunities provided by new digital technologies has fed a rapid evolution of production engineering that has opened new solutions to the challenges of mass personalization and market uncertainty. In addition to the latest developments in cloud technology, reference is made to key enabling technologies, including artificial intelligence, the digital twin, big data analytics, and the internet of things (IoT) to help users integrate the cloud approach with a fully digitalized production system. - Presents diverse cases that show how cloud-based technologies can be used in different ways as part of the standard operation of global production networks - Provides detailed reviews of new technologies like the digital twin, big data analytics, and blockchain to provide context on the role of cloud technologies in a fully digitalized system - Explores future trends for cloud technology and production engineering
  data science for manufacturing: The Fourth Industrial Revolution Klaus Schwab, 2017-01-03 World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolu­tion, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wear­able sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manu­facturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individu­als. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frame­works that advance progress.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …