Data Science For Teachers



  data science for teachers: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
  data science for teachers: Statistics and Data Science for Teachers Anna Bargagliotti, Christine Franklin, 2021 A main goal of Statistics and Data Science for Teachers is to provide teacher educators with a resource to guide entire courses and professional development, or portions of courses and professional development when preparing teachers of all school level grade levels to teach the foundations of statistics and data science in their classrooms. In supporting the spirit of Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II), this book presents statistical ideas through investigations and engagement with the statistical problem-solving process of formulating statistical investigative questions, collecting/considering data, analyzing data, and interpreting results--
  data science for teachers: Mindset Mathematics Jo Boaler, Jen Munson, Cathy Williams, 2017-08-28 Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the first-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person - anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum.
  data science for teachers: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  data science for teachers: Mechanistic Data Science for STEM Education and Applications Wing Kam Liu, Zhengtao Gan, Mark Fleming, 2022-01-01 This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e., “mechanistic” principles) to solve intractable problems. Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5) deep learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry level textbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as STEM (Science, Technology, Engineering, Mathematics) high school students and teachers.
  data science for teachers: Ambitious Science Teaching Mark Windschitl, Jessica Thompson, Melissa Braaten, 2020-08-05 2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
  data science for teachers: Dear Data Giorgia Lupi, Stefanie Posavec, 2016-09-13 Equal parts mail art, data visualization, and affectionate correspondence, Dear Data celebrates the infinitesimal, incomplete, imperfect, yet exquisitely human details of life, in the words of Maria Popova (Brain Pickings), who introduces this charming and graphically powerful book. For one year, Giorgia Lupi, an Italian living in New York, and Stefanie Posavec, an American in London, mapped the particulars of their daily lives as a series of hand-drawn postcards they exchanged via mail weekly—small portraits as full of emotion as they are data, both mundane and magical. Dear Data reproduces in pinpoint detail the full year's set of cards, front and back, providing a remarkable portrait of two artists connected by their attention to the details of their lives—including complaints, distractions, phone addictions, physical contact, and desires. These details illuminate the lives of two remarkable young women and also inspire us to map our own lives, including specific suggestions on what data to draw and how. A captivating and unique book for designers, artists, correspondents, friends, and lovers everywhere.
  data science for teachers: Bridging the Gap Between Common Core State Standards and Teaching Statistics Patrick Hopfensperger, 2012
  data science for teachers: Science Teachers' Learning National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Teacher Advisory Council, Board on Science Education, Committee on Strengthening Science Education through a Teacher Learning Continuum, 2016-01-15 Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.
  data science for teachers: Transforming Teaching and Learning Through Data-Driven Decision Making Ellen B. Mandinach, Sharnell S. Jackson, 2012-04-10 Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management.--Publisher's description.
  data science for teachers: Data Science Tiffany Timbers, Trevor Campbell, Melissa Lee, 2022-07-15 Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows. Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects. The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia’s DSCI100: Introduction to Data Science course.
  data science for teachers: The K-12 Educator’s Data Guidebook Ryan A. Estrellado, 2022-03-21 The K-12 Educator’s Data Guidebook is a comprehensive field guide for school professionals learning to use data. “Non-data people,” rejoice! Requiring no prior proficiency in data tools and programming, this book validates the implicit challenges of learning to use data to empower educators and features original real-world examples from in-service educators to illustrate common problem-solving. Each chapter uses stories, humor, and a human approach to set the tone for a safe and fun learning experience. Through this highly practical foundation, everyday educators can better engage school initiatives, professional development, and instructional challenges that require competent data use for improving school systems.
  data science for teachers: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data science for teachers: Visible Learning for Science, Grades K-12 John Almarode, Douglas Fisher, Nancy Frey, John Hattie, 2018-02-15 In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.
  data science for teachers: Learning Analytics in the Classroom Jason Lodge, Jared Horvath, Linda Corrin, 2018-10-03 Learning Analytics in the Classroom presents a coherent framework for the effective translation of learning analytics research for educational practice to its practical application in different education domains. Highlighting the real potential of learning analytics as a way to better understand and enhance student learning and with each chapter including specific discussion about what the research means in the classroom, this book provides educators and researchers alike with the tools and frameworks to effectively make sense of and use data and analytics in their everyday practice. This volume is split into five sections, all of which relate to the key themes in understanding learning analytics through the lens of the classroom: broad theoretical perspectives understanding learning through analytics the relationship between learning design and learning analytics analytics in the classroom and the impact it can and will have on education implementing analytics and the challenges involved. Bridging the gap between research, theory and practice, Learning Analytics in the Classroom is both a practical tool and an instructive guide for educators, and a valuable addition to researchers' bookshelves. A team of world-leading researchers and expert editors have compiled a state-of-the-art compendium on this fascinating subject and this will be a critical resource for the evolution of this field into the future.
  data science for teachers: Bayes Rules! Alicia A. Johnson, Miles Q. Ott, Mine Dogucu, 2022-03-03 Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analysis.” Andrew Gelman, Columbia University “The examples are modern, and even many frequentist intro books ignore important topics (like the great p-value debate) that the authors address. The focus on simulation for understanding is excellent.” Amy Herring, Duke University “I sincerely believe that a generation of students will cite this book as inspiration for their use of – and love for – Bayesian statistics. The narrative holds the reader’s attention and flows naturally – almost conversationally. Put simply, this is perhaps the most engaging introductory statistics textbook I have ever read. [It] is a natural choice for an introductory undergraduate course in applied Bayesian statistics. Yue Jiang, Duke University “This is by far the best book I’ve seen on how to (and how to teach students to) do Bayesian modeling and understand the underlying mathematics and computation. The authors build intuition and scaffold ideas expertly, using interesting real case studies, insightful graphics, and clear explanations. The scope of this book is vast – from basic building blocks to hierarchical modeling, but the authors’ thoughtful organization allows the reader to navigate this journey smoothly. And impressively, by the end of the book, one can run sophisticated Bayesian models and actually understand the whys, whats, and hows.” Paul Roback, St. Olaf College “The authors provide a compelling, integrated, accessible, and non-religious introduction to statistical modeling using a Bayesian approach. They outline a principled approach that features computational implementations and model assessment with ethical implications interwoven throughout. Students and instructors will find the conceptual and computational exercises to be fresh and engaging.” Nicholas Horton, Amherst College An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.
  data science for teachers: Big Data in Education Ben Williamson, 2017-07-24 Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment!
  data science for teachers: A Framework for K-12 Science Education National Research Council, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on a Conceptual Framework for New K-12 Science Education Standards, 2012-02-28 Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
  data science for teachers: Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices Christina V. Schwarz, Cynthia Passmore, Brian J. Reiser , 2017-01-31 When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.
  data science for teachers: Driven by Data Paul Bambrick-Santoyo, 2010-04-12 Offers a practical guide for improving schools dramatically that will enable all students from all backgrounds to achieve at high levels. Includes assessment forms, an index, and a DVD.
  data science for teachers: A Hands-On Introduction to Data Science Chirag Shah, 2020-04-02 An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
  data science for teachers: Big Data, Small Devices Donna Governor, Michael Bowen, Eric Brunsell, 2017 Now your students can transform their mobile phones and tablets into tools for learning about everything from weather to water quality. Big Data, Small Devices shows you how. This book is designed for Earth and environmental science teachers who want to help students tap into, organize, and deploy large data sets via their devices to investigate the world around them. Using the many available websites and free apps, students can learn to detect patterns among phenomena related to the atmosphere, biosphere, geosphere, hydrosphere, and seasons. Written by veteran teachers, Big Data, Small Devices is organized into two major parts. It covers tools that help you both find real-time data and understand what to do with the data. Then, the authors provide sample app-based activities that you can use as written or adapt to your specific needs. These days, opportunities to learn are as close as your students' personal technology. As the authors of Big Data, Small Devices note, Allowing students to conduct investigations using their smart phone in app-based activities allows them to be more engaged in science investigations.
  data science for teachers: Cases of Teachers' Data Use Nicole Barnes, Helenrose Fives, 2018-04-27 Cases of Teachers’ Data Use addresses applications of student data beyond theoretical, school-, and district-level examinations by presenting case studies of teachers’ data use in practice. Within the context of data-driven education reform policies, the authors examine the effective and ineffective ways that teachers make use of student data in instruction, evaluation, and planning. Promising practices, based on the empirical research presented, offer strategies and routines for sound data use that can be applied in schools. Chapters written by scholars from diverse methodological perspectives offer readers multiple lenses to use in considering issues of data use such that current theoretical assumptions may be challenged and the field advanced. This uniquely focused yet comprehensive work is an indispensable resource for researchers and students interested in classroom assessment and for professionals looking to support teachers’ use of student performance data for adaptive instruction.
  data science for teachers: Using Data in Schools to Inform Leadership and Decision Making Alex J. Bowers, Alan R. Shoho, Bruce G. Barnett, 2014-11-01 Our fifth book in the International Research on School Leadership series focuses on the use of data in schools and districts as useful information for leadership and decision making. Schools are awash in data and information, from test scores, to grades, to discipline reports, and attendance as just a short list of student information sources, while additional streams of data feed into schools and districts from teachers and parents as well as local, regional and national policy levels. To deal with the data, schools have implemented a variety of data practices, from data rooms, to data days, data walks, and data protocols. However, despite the flood of data, successful school leaders are leveraging an analysis of their school’s data as a means to bring about continuous improvement in an effort to improve instruction for all students. Nevertheless, some drown, some swim, while others find success. Our goal in this book volume is to bring together a set of chapters by authors who examine successful data use as it relates to leadership and school improvement. In particular, the chapters in this volume consider important issues in this domain, including: • How educational leaders use data to inform their practice. • What types of data and data analysis are most useful to successful school leaders. • To what extent are data driven and data informed practices helping school leaders positively change instructional practice? • In what ways does good data collection and analysis feed into successful continuous improvement and holistic systems thinking? • How have school leadership practices changed as more data and data analysis techniques have become available? • What are the major obstacles facing school leaders when using data for decision making and how do they overcome them?
  data science for teachers: Examining the Roles of Teachers and Students in Mastering New Technologies Podovšovnik, Eva, 2020-02-21 The development of technologies, education, and economy play an important role in modern society. Digital literacy is important for personal development and for the economic growth of society. Technological learning provides students with specific knowledge and capabilities for using new technologies in their everyday lives and in their careers. Examining the Roles of Teachers and Students in Mastering New Technologies is a critical scholarly resource that examines computer literacy knowledge levels in students and the perception of computer use in the classroom from various teacher perspectives. Featuring a wide range of topics such as higher education, special education, and blended learning, this book is ideal for teachers, instructional designers, curriculum developers, academicians, policymakers, administrators, researchers, and students.
  data science for teachers: Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II) Anna Bargagliotti, Christine Franklin, Pip Arnold, Rob Gould, 2020 This document lays out a curriculum framework for pre-K-12 educational programs that is designed to help students achieve data literacy and become statistically literate. The framework and subsequent sections in this book recommend curriculum and implementation strategies covering pre-K-12 statistics education--
  data science for teachers: Data Wise, Revised and Expanded Edition Kathryn Parker Boudett, Elizabeth A. City, Richard J. Murnane, 2020-08-26 Data Wise: A Step-by-Step Guide to Using Assessment Results to Improve Teaching and Learning presents a clear and carefully tested blueprint for school leaders. It shows how examining test scores and other classroom data can become a catalyst for important schoolwide conversations that will enhance schools’ abilities to capture teachers’ knowledge, foster collaboration, identify obstacles to change, and enhance school culture and climate. This revised and expanded edition captures the learning that has emerged in integrating the Data Wise process into school practice and brings the book up-to-date with recent developments in education and technology including: The shift to the Common Core State Standards. New material on the “ACE Habits of Mind”: practices that prioritize Action, Collaboration, and Evidence as part of transforming school culture. A new chapter on “How We Improve,” based on experiences implementing Data Wise and to address two common questions: “Where do I start?” and “How long will it take?” Other revisions take into account changes in the roles of school data teams and instructional leadership teams in guiding the inquiry process. The authors have also updated exhibits, examples, and terminology throughout and have added new protocols and resources.
  data science for teachers: Data-based Decision Making in Education Kim Schildkamp, Mei Kuin Lai, Lorna Earl, 2012-09-18 In a context where schools are held more and more accountable for the education they provide, data-based decision making has become increasingly important. This book brings together scholars from several countries to examine data-based decision making. Data-based decision making in this book refers to making decisions based on a broad range of evidence, such as scores on students’ assessments, classroom observations etc. This book supports policy-makers, people working with schools, researchers and school leaders and teachers in the use of data, by bringing together the current research conducted on data use across multiple countries into a single volume. Some of these studies are ‘best practice’ studies, where effective data use has led to improvements in student learning. Others provide insight into challenges in both policy and practice environments. Each of them draws on research and literature in the field.
  data science for teachers: Street Data Shane Safir, Jamila Dugan, 2021-02-12 Radically reimagine our ways of being, learning, and doing Education can be transformed if we eradicate our fixation on big data like standardized test scores as the supreme measure of equity and learning. Instead of the focus being on fixing and filling academic gaps, we must envision and rebuild the system from the student up—with classrooms, schools and systems built around students’ brilliance, cultural wealth, and intellectual potential. Street data reminds us that what is measurable is not the same as what is valuable and that data can be humanizing, liberatory and healing. By breaking down street data fundamentals: what it is, how to gather it, and how it can complement other forms of data to guide a school or district’s equity journey, Safir and Dugan offer an actionable framework for school transformation. Written for educators and policymakers, this book · Offers fresh ideas and innovative tools to apply immediately · Provides an asset-based model to help educators look for what’s right in our students and communities instead of seeking what’s wrong · Explores a different application of data, from its capacity to help us diagnose root causes of inequity, to its potential to transform learning, and its power to reshape adult culture Now is the time to take an antiracist stance, interrogate our assumptions about knowledge, measurement, and what really matters when it comes to educating young people.
  data science for teachers: Understanding and Developing Science Teachers' Pedagogical Content Knowledge J. John Loughran, Amanda Berry, Pamala Mulhall, 2006-01-01 There has been a growing interest in the notion of a scholarship of teaching. Such scholarship is displayed through a teacher’s grasp of, and response to, the relationships between knowledge of content, teaching and learning in ways that attest to practice as being complex and interwoven. Yet attempting to capture teachers’ professional knowledge is difficult because the critical links between practice and knowledge, for many teachers, is tacit. Pedagogical Content Knowledge (PCK) offers one way of capturing, articulating and portraying an aspect of the scholarship of teaching and, in this case, the scholarship of science teaching. The research underpinning the approach developed by Loughran, Berry and Mulhall offers access to the development of the professional knowledge of science teaching in a form that offers new ways of sharing and disseminating this knowledge. Through this Resource Folio approach (comprising CoRe and PaP-eRs) a recognition of the value of the specialist knowledge and skills of science teaching is not only highlighted, but also enhanced. The CoRe and PaP-eRs methodology offers an exciting new way of capturing and portraying science teachers’ pedagogical content knowledge so that it might be better understood and valued within the profession. This book is a concrete example of the nature of scholarship in science teaching that is meaningful, useful and immediately applicable in the work of all science teachers (preservice, in-service and science teacher educators). It is an excellent resource for science teachers as well as a guiding text for teacher education.
  data science for teachers: Mathematical Mindsets Jo Boaler, 2015-10-12 Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.
  data science for teachers: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
  data science for teachers: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
  data science for teachers: Designing Professional Development for Teachers of Science and Mathematics Susan Loucks-Horsley, Katherine E. Stiles, Susan Mundry, Peter W. Hewson, 2010 The revised classic for designing mathematics and science professional development presents an updated planning framework and many professional development strategies and emphasizes continuous program monitoring and building professional cultures.
  data science for teachers: Big Data in Education: Pedagogy and Research Theodosia Prodromou, 2021-10-04 This book discusses how Big Data could be implemented in educational settings and research, using empirical data and suggesting both best practices and areas in which to invest future research and development. It also explores: 1) the use of learning analytics to improve learning and teaching; 2) the opportunities and challenges of learning analytics in education. As Big Data becomes a common part of the fabric of our world, education and research are challenged to use this data to improve educational and research systems, and also are tasked with teaching coming generations to deal with Big Data both effectively and ethically. The Big Data era is changing the data landscape for statistical analysis, the ways in which data is captured and presented, and the necessary level of statistical literacy to analyse and interpret data for future decision making. The advent of Big Data accentuates the need to enable citizens to develop statistical skills, thinking and reasoning needed for representing, integrating and exploring complex information. This book offers guidance to researchers who are seeking suitable topics to explore. It presents research into the skills needed by data practitioners (data analysts, data managers, statisticians, and data consumers, academics), and provides insights into the statistical skills, thinking and reasoning needed by educators and researchers in the future to work with Big Data. This book serves as a concise reference for policymakers, who must make critical decisions regarding funding and applications.
  data science for teachers: The Basics of Data Literacy Michael Bowen, Anthony Bartley, 2014 Here's the ideal statistics book for teachers with no statistical background. Written in an informal style with easy-to-grasp examples, The Basics of Data Literacy teaches you how to help your students understand data. Then, in turn, they learn how to collect, summarize, and analyze statistics inside and outside the classroom. The books 10 succinct chapters provide an introduction to types of variables and data, ways to structure and interpret data tables, simple statistics, and survey basics from a student perspective. The appendices include hands-on activities tailored to middle and high school investigations. Because data are so central to many of the ideas in the Next Generation Science Standards, the ability to work with such information is an important science skill for both you and your students. This accessible book will help you get over feeling intimidated as your students learn to evaluate messy data on the Internet, in the news, and in future negotiations with car dealers and insurance agents.
  data science for teachers: Taking Science to School National Research Council, Division of Behavioral and Social Sciences and Education, Center for Education, Board on Science Education, Committee on Science Learning, Kindergarten Through Eighth Grade, 2007-04-16 What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
  data science for teachers: Learning Analytics Johann Ari Larusson, Brandon White, 2014-07-04 In education today, technology alone doesn't always lead to immediate success for students or institutions. In order to gauge the efficacy of educational technology, we need ways to measure the efficacy of educational practices in their own right. Through a better understanding of how learning takes place, we may work toward establishing best practices for students, educators, and institutions. These goals can be accomplished with learning analytics. Learning Analytics: From Research to Practice updates this emerging field with the latest in theories, findings, strategies, and tools from across education and technological disciplines. Guiding readers through preparation, design, and examples of implementation, this pioneering reference clarifies LA methods as not mere data collection but sophisticated, systems-based analysis with practical applicability inside the classroom and in the larger world. Case studies illustrate applications of LA throughout academic settings (e.g., intervention, advisement, technology design), and their resulting impact on pedagogy and learning. The goal is to bring greater efficiency and deeper engagement to individual students, learning communities, and educators, as chapters show diverse uses of learning analytics to: Enhance student and faculty performance. Improve student understanding of course material. Assess and attend to the needs of struggling learners. Improve accuracy in grading. Allow instructors to assess and develop their own strengths. Encourage more efficient use of resources at the institutional level. Researchers and practitioners in educational technology, IT, and the learning sciences will hail the information in Learning Analytics: From Research to Practice as a springboard to new levels of student, instructor, and institutional success.
  data science for teachers: Fundamentals of Machine Learning for Predictive Data Analytics, second edition John D. Kelleher, Brian Mac Namee, Aoife D'Arcy, 2020-10-20 The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
  data science for teachers: Teaching Machines Audrey Watters, 2023-02-07 How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to go at their own pace did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the pre-verbal machine that taught spelling. (Alternate names proposed by Skinner include Autodidak, Instructomat, and Autostructor.) Telling these somewhat cautionary tales, Watters challenges what she calls the teleology of ed tech--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …