Data Science Skills Resume

Advertisement



  data science skills resume: Data Science Bookcamp Leonard Apeltsin, 2021-12-07 Learn data science with Python by building five real-world projects! Experiment with card game predictions, tracking disease outbreaks, and more, as you build a flexible and intuitive understanding of data science. In Data Science Bookcamp you will learn: - Techniques for computing and plotting probabilities - Statistical analysis using Scipy - How to organize datasets with clustering algorithms - How to visualize complex multi-variable datasets - How to train a decision tree machine learning algorithm In Data Science Bookcamp you’ll test and build your knowledge of Python with the kind of open-ended problems that professional data scientists work on every day. Downloadable data sets and thoroughly-explained solutions help you lock in what you’ve learned, building your confidence and making you ready for an exciting new data science career. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology A data science project has a lot of moving parts, and it takes practice and skill to get all the code, algorithms, datasets, formats, and visualizations working together harmoniously. This unique book guides you through five realistic projects, including tracking disease outbreaks from news headlines, analyzing social networks, and finding relevant patterns in ad click data. About the book Data Science Bookcamp doesn’t stop with surface-level theory and toy examples. As you work through each project, you’ll learn how to troubleshoot common problems like missing data, messy data, and algorithms that don’t quite fit the model you’re building. You’ll appreciate the detailed setup instructions and the fully explained solutions that highlight common failure points. In the end, you’ll be confident in your skills because you can see the results. What's inside - Web scraping - Organize datasets with clustering algorithms - Visualize complex multi-variable datasets - Train a decision tree machine learning algorithm About the reader For readers who know the basics of Python. No prior data science or machine learning skills required. About the author Leonard Apeltsin is the Head of Data Science at Anomaly, where his team applies advanced analytics to uncover healthcare fraud, waste, and abuse. Table of Contents CASE STUDY 1 FINDING THE WINNING STRATEGY IN A CARD GAME 1 Computing probabilities using Python 2 Plotting probabilities using Matplotlib 3 Running random simulations in NumPy 4 Case study 1 solution CASE STUDY 2 ASSESSING ONLINE AD CLICKS FOR SIGNIFICANCE 5 Basic probability and statistical analysis using SciPy 6 Making predictions using the central limit theorem and SciPy 7 Statistical hypothesis testing 8 Analyzing tables using Pandas 9 Case study 2 solution CASE STUDY 3 TRACKING DISEASE OUTBREAKS USING NEWS HEADLINES 10 Clustering data into groups 11 Geographic location visualization and analysis 12 Case study 3 solution CASE STUDY 4 USING ONLINE JOB POSTINGS TO IMPROVE YOUR DATA SCIENCE RESUME 13 Measuring text similarities 14 Dimension reduction of matrix data 15 NLP analysis of large text datasets 16 Extracting text from web pages 17 Case study 4 solution CASE STUDY 5 PREDICTING FUTURE FRIENDSHIPS FROM SOCIAL NETWORK DATA 18 An introduction to graph theory and network analysis 19 Dynamic graph theory techniques for node ranking and social network analysis 20 Network-driven supervised machine learning 21 Training linear classifiers with logistic regression 22 Training nonlinear classifiers with decision tree techniques 23 Case study 5 solution
  data science skills resume: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  data science skills resume: Data Science in Production Ben Weber, 2020 Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
  data science skills resume: Data Science for Business Professionals Probyto Data Science and Consulting Pvt. Ltd., 2020-05-06 Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments
  data science skills resume: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-06 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  data science skills resume: Cracking the Data Science Interview Leondra R. Gonzalez, Aaren Stubberfield, 2024-02-29 Rise above the competition and excel in your next interview with this one-stop guide to Python, SQL, version control, statistics, machine learning, and much more Key Features Acquire highly sought-after skills of the trade, including Python, SQL, statistics, and machine learning Gain the confidence to explain complex statistical, machine learning, and deep learning theory Extend your expertise beyond model development with version control, shell scripting, and model deployment fundamentals Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe data science job market is saturated with professionals of all backgrounds, including academics, researchers, bootcampers, and Massive Open Online Course (MOOC) graduates. This poses a challenge for companies seeking the best person to fill their roles. At the heart of this selection process is the data science interview, a crucial juncture that determines the best fit for both the candidate and the company. Cracking the Data Science Interview provides expert guidance on approaching the interview process with full preparation and confidence. Starting with an introduction to the modern data science landscape, you’ll find tips on job hunting, resume writing, and creating a top-notch portfolio. You’ll then advance to topics such as Python, SQL databases, Git, and productivity with shell scripting and Bash. Building on this foundation, you'll delve into the fundamentals of statistics, laying the groundwork for pre-modeling concepts, machine learning, deep learning, and generative AI. The book concludes by offering insights into how best to prepare for the intensive data science interview. By the end of this interview guide, you’ll have gained the confidence, business acumen, and technical skills required to distinguish yourself within this competitive landscape and land your next data science job.What you will learn Explore data science trends, job demands, and potential career paths Secure interviews with industry-standard resume and portfolio tips Practice data manipulation with Python and SQL Learn about supervised and unsupervised machine learning models Master deep learning components such as backpropagation and activation functions Enhance your productivity by implementing code versioning through Git Streamline workflows using shell scripting for increased efficiency Who this book is for Whether you're a seasoned professional who needs to brush up on technical skills or a beginner looking to enter the dynamic data science industry, this book is for you. To get the most out of this book, basic knowledge of Python, SQL, and statistics is necessary. However, anyone familiar with other analytical languages, such as R, will also find value in this resource as it helps you revisit critical data science concepts like SQL, Git, statistics, and deep learning, guiding you to crack through data science interviews.
  data science skills resume: Fifty Challenging Problems in Probability with Solutions Frederick Mosteller, 2012-04-26 Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.
  data science skills resume: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021
  data science skills resume: Developing Analytic Talent Vincent Granville, 2014-03-24 Learn what it takes to succeed in the the most in-demand tech job Harvard Business Review calls it the sexiest tech job of the 21st century. Data scientists are in demand, and this unique book shows you exactly what employers want and the skill set that separates the quality data scientist from other talented IT professionals. Data science involves extracting, creating, and processing data to turn it into business value. With over 15 years of big data, predictive modeling, and business analytics experience, author Vincent Granville is no stranger to data science. In this one-of-a-kind guide, he provides insight into the essential data science skills, such as statistics and visualization techniques, and covers everything from analytical recipes and data science tricks to common job interview questions, sample resumes, and source code. The applications are endless and varied: automatically detecting spam and plagiarism, optimizing bid prices in keyword advertising, identifying new molecules to fight cancer, assessing the risk of meteorite impact. Complete with case studies, this book is a must, whether you're looking to become a data scientist or to hire one. Explains the finer points of data science, the required skills, and how to acquire them, including analytical recipes, standard rules, source code, and a dictionary of terms Shows what companies are looking for and how the growing importance of big data has increased the demand for data scientists Features job interview questions, sample resumes, salary surveys, and examples of job ads Case studies explore how data science is used on Wall Street, in botnet detection, for online advertising, and in many other business-critical situations Developing Analytic Talent: Becoming a Data Scientist is essential reading for those aspiring to this hot career choice and for employers seeking the best candidates.
  data science skills resume: Mastering Data Science Cybellium Ltd, Unleash the Power of Insights from Data Are you ready to embark on a transformative journey into the world of data science? Mastering Data Science is your comprehensive guide to unlocking the full potential of data for extracting valuable insights and driving informed decisions. Whether you're an aspiring data scientist looking to enhance your skills or a business leader seeking to leverage data-driven strategies, this book equips you with the knowledge and tools to master the art of data science. Key Features: 1. Dive into Data Science: Immerse yourself in the realm of data science, understanding its core principles, methodologies, and applications. Build a solid foundation that empowers you to extract meaningful insights from complex datasets. 2. Data Exploration and Visualization: Master the art of data exploration and visualization. Learn how to analyze datasets, uncover patterns, and create compelling visualizations that reveal hidden trends. 3. Statistical Analysis and Hypothesis Testing: Uncover the power of statistical analysis and hypothesis testing. Explore techniques for making data-driven inferences, validating assumptions, and drawing meaningful conclusions. 4. Machine Learning Fundamentals: Delve into machine learning concepts and techniques. Learn about supervised and unsupervised learning, feature engineering, model selection, and evaluation. 5. Predictive Analytics: Discover the realm of predictive analytics. Learn how to build predictive models that forecast future outcomes, enabling proactive decision-making. 6. Natural Language Processing (NLP) and Text Mining: Explore NLP and text mining techniques. Learn how to process and analyze textual data, extract sentiments, and uncover insights from unstructured content. 7. Time Series Analysis: Master time series analysis for modeling sequential data. Learn how to forecast trends, identify seasonality, and make predictions based on temporal patterns. 8. Big Data and Data Wrangling: Dive into big data analytics and data wrangling. Learn how to handle and preprocess large datasets, ensuring data quality and usability. 9. Deep Learning and Neural Networks: Uncover the world of deep learning and neural networks. Learn how to build and train deep learning models for tasks like image recognition and natural language understanding. 10. Real-World Applications: Gain insights into real-world applications of data science across industries. From healthcare to finance, explore how organizations harness data science for strategic decision-making. Who This Book Is For: Mastering Data Science is an indispensable resource for aspiring data scientists, analysts, and business professionals who want to excel in extracting insights from data. Whether you're new to data science or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of data for innovation. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
  data science skills resume: Data Science and Algorithms in Systems Radek Silhavy, Petr Silhavy, Zdenka Prokopova, 2023-01-03 This book offers real-world data science and algorithm design topics linked to systems and software engineering. Furthermore, articles describing unique techniques in data science, algorithm design, and systems and software engineering are featured. This book is the second part of the refereed proceedings of the 6th Computational Methods in Systems and Software 2022 (CoMeSySo 2022). The CoMeSySo 2022 conference, which is being hosted online, is breaking down barriers. CoMeSySo 2022 aims to provide a worldwide venue for debate of the most recent high-quality research findings.
  data science skills resume: Applying Data Science and Learning Analytics Throughout a Learner’s Lifespan Trajkovski, Goran, Demeter, Marylee, Hayes, Heather, 2022-05-06 Research in the domains of learning analytics and educational data mining has prototyped an approach where methodologies from data science and machine learning are used to gain insights into the learning process by using large amounts of data. As many training and academic institutions are maturing in their data-driven decision making, useful, scalable, and interesting trends are emerging. Organizations can benefit from sharing information on those efforts. Applying Data Science and Learning Analytics Throughout a Learner’s Lifespan examines novel and emerging applications of data science and sister disciplines for gaining insights from data to inform interventions into learners’ journeys and interactions with academic institutions. Data is collected at various times and places throughout a learner’s lifecycle, and the learners and the institution should benefit from the insights and knowledge gained from this data. Covering topics such as learning analytics dashboards, text network analysis, and employment recruitment, this book is an indispensable resource for educators, computer scientists, faculty of higher education, government officials, educational administration, students of higher education, pre-service teachers, business professionals, researchers, and academicians.
  data science skills resume: Think Stats Allen B. Downey, 2011-07-01 If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data
  data science skills resume: Data Science Secrets Jay Samson, 2019-09-01 Data Science Secrets is the #1 strategy guide to break into the field of data and get hired as a Data Scientist, Data Analyst, or Data Engineer. This was created by a group of top Data Scientists and Data Hiring Managers in Silicon Valley to share the secrets of landing your dream job. Here's what's included: Top Interview Questions from companies like Google, Facebook, Amazon, Airbnb, and many more, plus detailed sections on how to answer the questions effectively and get hired. The 8 Week Strategy to find your dream job: learn how to get interviews with your top companies, and more importantly- succeed and get an incredible job offer. Online Learning Breakdown: we go deep into the pros and cons of the online learning options to help you find the right platform for youIn-depth explanations of data roles. There are literally hundreds of different roles and job titles in the world of data- how do you know which is right for you? This section will help you understand how to pursue the role that is the best fit for you
  data science skills resume: Python for Finance Yves J. Hilpisch, 2018-12-05 The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
  data science skills resume: Recommendation Engines Michael Schrage, 2020-09-01 How companies like Amazon, Netflix, and Spotify know what you might also like: the history, technology, business, and societal impact of online recommendation engines. Increasingly, our technologies are giving us better, faster, smarter, and more personal advice than our own families and best friends. Amazon already knows what kind of books and household goods you like and is more than eager to recommend more; YouTube and TikTok always have another video lined up to show you; Netflix has crunched the numbers of your viewing habits to suggest whole genres that you would enjoy. In this volume in the MIT Press's Essential Knowledge series, innovation expert Michael Schrage explains the origins, technologies, business applications, and increasing societal impact of recommendation engines, the systems that allow companies worldwide to know what products, services, and experiences you might also like.
  data science skills resume: Computational Intelligence in Data Science Mieczyslaw Lech Owoc,
  data science skills resume: Top 3 Online Learning Platforms Jay Ford, Ready to learn new skills, but not sure where to start? If you're interested in pursuing a career as a Data Scientist, Data Analyst, or Data Engineer, online learning platforms like Coursera, EdX, and Udacity can be fantastic resources. But how do you know which one will help you reach your goals? This guide to the top platforms breaks down the costs and benefits of each one, so you'll be able to make the best decision and not worry about wasting money on the wrong platform.
  data science skills resume: Next Gen PhD Melanie V. Sinche, 2016-08-22 For decades, top scientists in colleges and universities pursued a clear path to success: enroll in a prestigious graduate program, conduct research, publish papers, complete the PhD, pursue postdoctoral work. With perseverance and a bit of luck, a tenure-track professorship awaited at the end. In today’s academic job market, this scenario represents the exception. As the number of newly conferred science PhDs keeps rising, the number of tenured professorships remains stubbornly stagnant. “Next Gen PhD: A Guide to Career Paths in Science is a practical and thorough manual for the entire career transition process, from defining personal interests and deciding on a career path all the way to day one of a new job. Written by experienced career counselor Melanie Sinche, it is geared toward postdocs and graduate students who may not have access to effective career counseling or mentorship or are not satisfied with what they have received thus far.” —Teegan A. Dellibovi-Ragheb, Science “With its focus on PhD level scientists, this book fills a gap in job search and career information literature. It’s a must-read for those contemplating or actively pursuing studies in the subject area, as well as those who provide guidance to undergraduates, graduate students, and postdoctoral scholars.” —Alan Farber, Library Journal (starred review)
  data science skills resume: Multivariable Calculus James Stewart, 2011-09-27 Success in your calculus course starts here! James Stewart's CALCULUS, 7e, International Metric texts are world-wide best-sellers for a reason: they are clear, accurate, and filled with relevant, real-world examples. With MULTIVARIABLE CALCULUS, 7e, International Metric Edition Stewart conveys not only the utility of calculus to help you develop technical competence, but also gives you an appreciation for the intrinsic beauty of the subject. His patient examples and built-in learning aids will help you build your mathematical confidence and achieve your goals in the course!
  data science skills resume: Mathematics for Machine Learning Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, 2020-04-23 The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
  data science skills resume: Machine Learning Interviews Susan Shu Chang, 2023-11-29 As tech products become more prevalent today, the demand for machine learning professionals continues to grow. But the responsibilities and skill sets required of ML professionals still vary drastically from company to company, making the interview process difficult to predict. In this guide, data science leader Susan Shu Chang shows you how to tackle the ML hiring process. Having served as principal data scientist in several companies, Chang has considerable experience as both ML interviewer and interviewee. She'll take you through the highly selective recruitment process by sharing hard-won lessons she learned along the way. You'll quickly understand how to successfully navigate your way through typical ML interviews. This guide shows you how to: Explore various machine learning roles, including ML engineer, applied scientist, data scientist, and other positions Assess your interests and skills before deciding which ML role(s) to pursue Evaluate your current skills and close any gaps that may prevent you from succeeding in the interview process Acquire the skill set necessary for each machine learning role Ace ML interview topics, including coding assessments, statistics and machine learning theory, and behavioral questions Prepare for interviews in statistics and machine learning theory by studying common interview questions
  data science skills resume: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
  data science skills resume: Data Science Careers, Training, and Hiring Renata Rawlings-Goss, 2019-08-02 This book is an information packed overview of how to structure a data science career, a data science degree program, and how to hire a data science team, including resources and insights from the authors experience with national and international large-scale data projects as well as industry, academic and government partnerships, education, and workforce. Outlined here are tips and insights into navigating the data ecosystem as it currently stands, including career skills, current training programs, as well as practical hiring help and resources. Also, threaded through the book is the outline of a data ecosystem, as it could ultimately emerge, and how career seekers, training programs, and hiring managers can steer their careers, degree programs, and organizations to align with the broader future of data science. Instead of riding the current wave, the author ultimately seeks to help professionals, programs, and organizations alike prepare a sustainable plan for growth in this ever-changing world of data. The book is divided into three sections, the first “Building Data Careers”, is from the perspective of a potential career seeker interested in a career in data, the second “Building Data Programs” is from the perspective of a newly forming data science degree or training program, and the third “Building Data Talent and Workforce” is from the perspective of a Data and Analytics Hiring Manager. Each is a detailed introduction to the topic with practical steps and professional recommendations. The reason for presenting the book from different points of view is that, in the fast-paced data landscape, it is helpful to each group to more thoroughly understand the desires and challenges of the other. It will, for example, help the career seekers to understand best practices for hiring managers to better position themselves for jobs. It will be invaluable for data training programs to gain the perspective of career seekers, who they want to help and attract as students. Also, hiring managers will not only need data talent to hire, but workforce pipelines that can only come from partnerships with universities, data training programs, and educational experts. The interplay gives a broader perspective from which to build.
  data science skills resume: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together
  data science skills resume: The Data Science Framework Juan J. Cuadrado-Gallego, Yuri Demchenko, 2020-10-01 This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines.
  data science skills resume: Seven Essentials for Business Success George Siedel, 2021-08-08 Successful leaders are great teachers, and successful teachers serve as models of leadership. This book enables both leaders and teachers to understand and use the best practices developed by award-winning professors, each of whom teaches one of the seven areas that are essential for business success. These professors candidly discuss their successes and failures in the classroom, the mentors who inspired them, how they developed their teaching methods, and their rigorous preparation for class. Through descriptions of the professors in action, readers will gain an insider’s perspective on their teaching skills, and witness how they teach the seven essentials for success in a variety of settings—MBA, Executive MBA, and executive education courses. The chapters also describe the daily lives (professional and personal) of the professors, and the impact they have beyond the classroom in improving organizations and society. If you are a leader or teacher—or if you are interested in the content of a business school education—this book provides an insider’s perspective on the best practices used by legendary professors when teaching the seven essentials that represent the core body of knowledge for business success.
  data science skills resume: Data Science and Machine Learning for Non-Programmers Dothang Truong, 2024-02-23 As data continues to grow exponentially, knowledge of data science and machine learning has become more crucial than ever. Machine learning has grown exponentially; however, the abundance of resources can be overwhelming, making it challenging for new learners. This book aims to address this disparity and cater to learners from various non-technical fields, enabling them to utilize machine learning effectively. Adopting a hands-on approach, readers are guided through practical implementations using real datasets and SAS Enterprise Miner, a user-friendly data mining software that requires no programming. Throughout the chapters, two large datasets are used consistently, allowing readers to practice all stages of the data mining process within a cohesive project framework. This book also provides specific guidelines and examples on presenting data mining results and reports, enhancing effective communication with stakeholders. Designed as a guiding companion for both beginners and experienced practitioners, this book targets a wide audience, including students, lecturers, researchers, and industry professionals from various backgrounds.
  data science skills resume: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
  data science skills resume: Non-Academic Careers for Quantitative Social Scientists Natalie Jackson, 2023-08-14 This book is a guide to non-academic careers for quantitative social scientists. Written by social science PhDs working in large corporations, non-profits, tech startups, and alt-academic positions in higher education, this book consists of more than a dozen chapters on various topics on finding rewarding careers outside the academy. Chapters are organized in three parts. Part I provides an introduction to the types of jobs available to social science PhDs, where those jobs can be found, and what the work looks like in those positions. Part II creates a guide for social science PhDs on how to set themselves up for such careers, including navigating the academic world of graduate school while contemplating non-academic options, and selling their academic experience in a non-academic setting. Part III offers perspectives on timelines for making non-academic career decisions, lifestyle differences between academia and non-academic jobs, and additional resources for those considering a non-academic route. Providing valuable insight on non-academic careers from those who have successfully made the transition, this volume will be an asset to graduate students, advisors, and recent PhDs, in quantitative social science.
  data science skills resume: The Manager's Path Camille Fournier, 2017-03-13 Managing people is difficult wherever you work. But in the tech industry, where management is also a technical discipline, the learning curve can be brutal—especially when there are few tools, texts, and frameworks to help you. In this practical guide, author Camille Fournier (tech lead turned CTO) takes you through each stage in the journey from engineer to technical manager. From mentoring interns to working with senior staff, you’ll get actionable advice for approaching various obstacles in your path. This book is ideal whether you’re a new manager, a mentor, or a more experienced leader looking for fresh advice. Pick up this book and learn how to become a better manager and leader in your organization. Begin by exploring what you expect from a manager Understand what it takes to be a good mentor, and a good tech lead Learn how to manage individual members while remaining focused on the entire team Understand how to manage yourself and avoid common pitfalls that challenge many leaders Manage multiple teams and learn how to manage managers Learn how to build and bootstrap a unifying culture in teams
  data science skills resume: Improving Equity in Data Science Colby Tofel-Grehl, Emmanuel Schanzer, 2024-06-03 Improving Equity in Data Science offers a comprehensive look at the ways in which data science can be conceptualized and engaged more equitably within the K-16 classroom setting, moving beyond merely broadening participation in educational opportunities. This book makes the case for field wide definitions, literacies and practices for data science teaching and learning that can be commonly discussed and used, and provides examples from research of these practices and literacies in action. Authors share stories and examples of research wherein data science advances equity and empowerment through the critical examination of social, educational, and political topics. In the first half of the book, readers will learn how data science can deliberately be embedded within K-12 spaces to empower students to use it to identify and address inequity. The latter half will focus on equity of access to data science learning opportunities in higher education, with a final synthesis of lessons learned and presentation of a 360-degree framework that links access, curriculum, and pedagogy as multiple facets collectively essential to comprehensive data science equity work. Practitioners and teacher educators will be able to answer the question, “how can data science serve to move equity efforts in computing beyond basic inclusion to empowerment?” whether the goal is to simply improve definitions and approaches to research on data science or support teachers of data science in creating more equitable and inclusive environments within their classrooms.
  data science skills resume: Be the Outlier Shrilata Murthy, 2020-07-27 According to LinkedIn's third annual U.S. Emerging Jobs Report, the data scientist role is ranked third among the top-15 emerging jobs in the U.S. Though the field of data science has been exploding, there didn't appear to be a comprehensive resource to help data scientists navigate the interview process... until now. In Be the Outlier: How to Ace Data Science Interviews, data scientist Shrilata Murthy covers all aspects of a data science interview in today's industry. Murthy combines her own experience in the job market with expert insight from data scientists with Google, Facebook, Amazon, NASA, Aetna, MBB & Big 4 consulting firms, and many more. In this book, you'll learn... the foundational knowledge that is key to any data science interview the 100-Word Story framework for writing a stellar resume what to expect from a variety of interview styles (take-home, presentation, case study, etc.), and actionable ways to differentiate yourself from your peers. By using real-world examples, practice questions, and sample interviews, Murthy has created an easy-to-follow guide that will help you crack any data science interview. After reading Be the Outlier, get ready to land your dream job in data science.
  data science skills resume: Data Scientists at Work Sebastian Gutierrez, 2014-12-12 Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. Data scientist is the sexiest job in the 21st century, according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.
  data science skills resume: Data Science and Analytics Strategy Kailash Awati, Alexander Scriven, 2023-04-05 This book describes how to establish data science and analytics capabilities in organisations using Emergent Design, an evolutionary approach that increases the chances of successful outcomes while minimising upfront investment. Based on their experiences and those of a number of data leaders, the authors provide actionable advice on data technologies, processes, and governance structures so that readers can make choices that are appropriate to their organisational contexts and requirements. The book blends academic research on organisational change and data science processes with real-world stories from experienced data analytics leaders, focusing on the practical aspects of setting up a data capability. In addition to a detailed coverage of capability, culture, and technology choices, a unique feature of the book is its treatment of emerging issues such as data ethics and algorithmic fairness. Data Science and Analytics Strategy: An Emergent Design Approach has been written for professionals who are looking to build data science and analytics capabilities within their organisations as well as those who wish to expand their knowledge and advance their careers in the data space. Providing deep insights into the intersection between data science and business, this guide will help professionals understand how to help their organisations reap the benefits offered by data. Most importantly, readers will learn how to build a fit-for-purpose data science capability in a manner that avoids the most common pitfalls.
  data science skills resume: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
  data science skills resume: Data Science Jobs Ann Rajaram, Want a high-paying $$$ career in the exciting field of DataScience? This is the ONLY book that will help you land a lucrative Analytics job in 90 days or less! This book is the perfect guide for you, if you fall into any of these categories: * You recently completed a masters degree (or online course or bootcamp) and want to get hired quickly as a Data Scientist, Data Analyst, Data Engineer, Machine learning engineer or BI developer. * Looking to start a career in data science, but unsure where to start. * You are an experienced tech professional, but looking to pivot into analytics to boost your salary potential. * Tired of applying to dozens of jobs without getting a positive response and/or final job offer . * F1 visa, STEM OPT/ CPT students will also find this book helpful to land a job in this lucrative field. The book will teach you proven successful strategies on: * Winning Profiles Turbocharge your resume and LinkedIn profile and start receiving interview calls from hiring managers. Let JOBS CHASE YOU, instead of the other way around! * LinkedIn - A dedicated chapter on LinkedIn that teaches you some creative (and SECRET) ways to leverage the site and identify high-paying jobs with low competition. * Niche sites - A full list of niche job boards that other candidates have overlooked. These sites have high-$ jobs but lesser competition than the popular job search sites. Upwork - Contrary to popular opinion, Upwork can help you make $$$ in data science jobs. Learn proven techniques to help you bag contracts and start earning, as quickly as next week. * 100+ interview questions asked in real-life data scientist interviews. * Other learner resources and much more... Author is a practicing analytics professional who has worked in Fortune500 Firms like NASDAQ , BlackRock, etc. Unlike most job search books that are written by recruiters or professors, this book is written by a senior professional, who rose quickly from analyst to managerial roles. She has attended interviews of her own, and knows clearly the frustrations (and at times, hopelessness) of the job search process. The systems in this book have successfully helped dozens of job seekers and will work effectively for you too! Read on to launch your dream career! Note, this book is deliberately kept short and precise, so you can quickly read through and start applying these principles, instead of sifting through 500 pages of fluff. This book includes: Data Science interview questions and answers; Help preparing for Machine Learning Interviews; Top 25 Interview Questions for Data Analyst/Scientist roles; An in-depth overview of Data Science Interview Process; How to ace your interview even if you are an Entry level Data Analyst / Data Scientist; Data Science Interview questions for freshers; How and Where to look for jobs; and much more!
  data science skills resume: How to Become a Data Analyst Annie Nelson, 2023-11-23 Start a brand-new career in data analytics with no-nonsense advice from a self-taught data analytics consultant In How to Become a Data Analyst: My Low-Cost, No Code Roadmap for Breaking into Tech, data analyst and analytics consultant Annie Nelson walks you through how she took the reins and made a dramatic career change to unlock new levels of career fulfilment and enjoyment. In the book, she talks about the adaptability, curiosity, and persistence you’ll need to break free from the 9-5 grind and how data analytics—with its wide variety of skills, roles, and options—is the perfect field for people looking to refresh their careers. Annie offers practical and approachable data portfolio-building advice to help you create one that’s manageable for an entry-level professional but will still catch the eye of employers and clients. You’ll also find: Deep dives into the learning journey required to step into a data analytics role Ways to avoid getting lost in the maze of online courses and certifications you can find online—while still obtaining the skills you need to be competitive Explorations of the highs and lows of Annie’s career-change journey and job search—including what was hard, what was easy, what worked well, and what didn’t Strategies for using ChatGPT to help you in your job search A must-read roadmap to a brand-new and exciting career in data analytics, How to Become a Data Analyst is the hands-on tutorial that shows you exactly how to succeed.
  data science skills resume: Data Science from Scratch Steven Cooper, 2018-08-10 ★☆If you are looking to start a new career that is in high demand, then you need to continue reading!★☆​​​​​​​ Data scientists are changing the way big data is used in different institutions. Big data is everywhere, but without the right person to interpret it, it means nothing. So where do business find these people to help change their business? You could be that person! It has become a universal truth that businesses are full of data. With the use of big data, the US healthcare could reduce their health-care spending by $300 billion to $450 billion. It can easily be seen that the value of big data lies in the analysis and processing of that data, and that's where data science comes in. ★★ Grab your copy today and learn ★★ ♦ In depth information about what data science is and why it is important. ♦ The prerequisites you will need to get started in data science. ♦ What it means to be a data scientist. ♦ The roles that hacking and coding play in data science. ♦ The different coding languages that can be used in data science. ♦ Why python is so important. ♦ How to use linear algebra and statistics. ♦ The different applications for data science. ♦ How to work with the data through munging and cleaning ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. As businesses and the internet change, so will data science. This means it's important to be flexible. When data science can reduce spending costs by billions of dollars in the healthcare industry, why wait to jump in? If you want to get started in a new, ever growing, career, don't wait any longer. Scroll up and click the buy now button to get this book today!
  data science skills resume: Unstructured Data Analytics Jean Paul Isson, 2018-03-02 Turn unstructured data into valuable business insight Unstructured Data Analytics provides an accessible, non-technical introduction to the analysis of unstructured data. Written by global experts in the analytics space, this book presents unstructured data analysis (UDA) concepts in a practical way, highlighting the broad scope of applications across industries, companies, and business functions. The discussion covers key aspects of UDA implementation, beginning with an explanation of the data and the information it provides, then moving into a holistic framework for implementation. Case studies show how real-world companies are leveraging UDA in security and customer management, and provide clear examples of both traditional business applications and newer, more innovative practices. Roughly 80 percent of today's data is unstructured in the form of emails, chats, social media, audio, and video. These data assets contain a wealth of valuable information that can be used to great advantage, but accessing that data in a meaningful way remains a challenge for many companies. This book provides the baseline knowledge and the practical understanding companies need to put this data to work. Supported by research with several industry leaders and packed with frontline stories from leading organizations such as Google, Amazon, Spotify, LinkedIn, Pfizer Manulife, AXA, Monster Worldwide, Under Armour, the Houston Rockets, DELL, IBM, and SAS Institute, this book provide a framework for building and implementing a successful UDA center of excellence. You will learn: How to increase Customer Acquisition and Customer Retention with UDA The Power of UDA for Fraud Detection and Prevention The Power of UDA in Human Capital Management & Human Resource The Power of UDA in Health Care and Medical Research The Power of UDA in National Security The Power of UDA in Legal Services The Power of UDA for product development The Power of UDA in Sports The future of UDA From small businesses to large multinational organizations, unstructured data provides the opportunity to gain consumer information straight from the source. Data is only as valuable as it is useful, and a robust, effective UDA strategy is the first step toward gaining the full advantage. Unstructured Data Analytics lays this space open for examination, and provides a solid framework for beginning meaningful analysis.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …