Advertisement
data science and coding: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data science and coding: Data Science Programming All-in-One For Dummies John Paul Mueller, Luca Massaron, 2020-01-09 Your logical, linear guide to the fundamentals of data science programming Data science is exploding—in a good way—with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you’re a beginning student or already mid-career, get your copy now and add even more meaning to your life—and everyone else’s! |
data science and coding: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases |
data science and coding: R Programming for Data Science Roger D. Peng, 2012-04-19 Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox. |
data science and coding: Foundational Python for Data Science Kennedy Behrman, 2021-10-12 Learn all the foundational Python you'll need to solve real data science problems Data science and machine learning--two of the world's hottest fields--are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help millions of people with widely diverse backgrounds learn Python so they can use it for data science and machine learning. Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving. Master Google colab notebook Data Science programming Manipulate data with popular Python libraries such as: pandas and numpy Apply Python Data Science recipes to real world projects Learn functional programming essentials unique to Data Science Access case studies, chapter exercises, learning assessments, comprehensive Jupyter based Notebooks, and a complete final project Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more--all created with colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software. |
data science and coding: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data science and coding: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021 |
data science and coding: Modern Data Science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton, 2021-03-31 From a review of the first edition: Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice. |
data science and coding: Data Science Programming All-in-One For Dummies John Paul Mueller, Luca Massaron, 2019-12-09 Your logical, linear guide to the fundamentals of data science programming Data science is exploding—in a good way—with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you’re a beginning student or already mid-career, get your copy now and add even more meaning to your life—and everyone else’s! |
data science and coding: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today. |
data science and coding: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace. |
data science and coding: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code |
data science and coding: Pandas for Everyone Daniel Y. Chen, 2017-12-15 The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning |
data science and coding: Data Science from Scratch Steven Cooper, 2018-08-10 ★☆If you are looking to start a new career that is in high demand, then you need to continue reading!★☆ Data scientists are changing the way big data is used in different institutions. Big data is everywhere, but without the right person to interpret it, it means nothing. So where do business find these people to help change their business? You could be that person! It has become a universal truth that businesses are full of data. With the use of big data, the US healthcare could reduce their health-care spending by $300 billion to $450 billion. It can easily be seen that the value of big data lies in the analysis and processing of that data, and that's where data science comes in. ★★ Grab your copy today and learn ★★ ♦ In depth information about what data science is and why it is important. ♦ The prerequisites you will need to get started in data science. ♦ What it means to be a data scientist. ♦ The roles that hacking and coding play in data science. ♦ The different coding languages that can be used in data science. ♦ Why python is so important. ♦ How to use linear algebra and statistics. ♦ The different applications for data science. ♦ How to work with the data through munging and cleaning ♦ And much more... The use of data science adds a lot of value to businesses, and we will continue to see the need for data scientists grow. As businesses and the internet change, so will data science. This means it's important to be flexible. When data science can reduce spending costs by billions of dollars in the healthcare industry, why wait to jump in? If you want to get started in a new, ever growing, career, don't wait any longer. Scroll up and click the buy now button to get this book today! |
data science and coding: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
data science and coding: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
data science and coding: Programming Skills For Data Science Freeman, Programming Skills for Data Science brings together all the foundation skills needed to transform raw data into actionable insights for domains ranging from urban planning to precision medicine, even if you have no programming or data science experience. Guided by expert instructors Michael Freeman and Joel Ross, this book will help learners install the tools required to solve professional-level data science problems, including widely used R language, RStudio integrated development environment, and Git version-control system. It explains how to wrangle data into a form where it can be easily used, analyzed, and visualized so others can see the patterns uncovered. Step by step, students will master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales. |
data science and coding: Python and R for the Modern Data Scientist Rick J. Scavetta, Boyan Angelov, 2021-06-22 Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together |
data science and coding: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website. |
data science and coding: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course. |
data science and coding: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics. |
data science and coding: Head First SQL Lynn Beighley, 2007-08-28 With its visually rich format designed for the way the brain works, this series of engaging narrative lessons that build on each other gives readers hands-on experience working with the SQL database language. |
data science and coding: Python for Data Science For Dummies John Paul Mueller, Luca Massaron, 2015-06-23 Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover. |
data science and coding: Practical Statistics for Data Scientists Peter Bruce, Andrew Bruce, 2017-05-10 Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data |
data science and coding: Programming Machine Learning Paolo Perrotta, 2020-03-31 You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain. |
data science and coding: Data Science in Production Ben Weber, 2020 Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub. |
data science and coding: Computer Programming Jason Callaway, 2020-03-13 Are you searching for the fastest way to master the fascinating world of Computer Science? For a very limited time you have the opportunity to get four best-selling guides in a single phenomenal mega bundle: if you are a student or a professional looking for more technical skills, then this is definitely the audiobook for you. In this complete crash course Jason Callaway has condensed everything you need in clear and beginner-friendly language, with practical examples, detailed explanations, tips and tricks from his experience. His revolutionary approach will speed up your learning, allowing you to master the Python language and its powerful applications in an extremely short time, even if you are a complete beginner. Moreover, you are about to begin a journey into the deepest areas of the web, which will lead you to understand perfectly the most effective strategies to hack any system you want. Don't forget that ETHICAL HACKING is becoming one of the most requested and well-paid positions in every big company all around the world. Here is just a tiny fraction of what you will learn: The basics of Python programming variables, data types, basic and advanced operations Essential Python libraries such as NumPy, Pandas, Matplotlib The most up-to-date computational methods and visualization techniques for data science Real-world applications of machine learning and artificial intelligence How to build statistical and machine learning models Neural networks and predictive modeling Computer Network Communication systems and their applications Wireless technologies and their vulnerabilities How to master the Linux operating system and its command line How to use Kali Linux for hacking and penetration testing Step-by-step exercises, practical examples, tips and tricks You will be amazed by the large number of programs that you will be able to create in no time. If you are ready to develop a successful career in this growing industry, then click the BUY button and get your copy! |
data science and coding: Public Policy Analytics Ken Steif, 2021-08-18 Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government. |
data science and coding: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science. |
data science and coding: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data science and coding: Think Like a Data Scientist Brian Godsey, 2017-03-09 Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away |
data science and coding: Advanced R Hadley Wickham, 2015-09-15 An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does. |
data science and coding: Pro T-SQL 2012 Programmer's Guide Michael Coles, Scott Shaw, Jay Natarajan, Rudi Bruchez, 2012-11-29 Pro T–SQL 2012 Programmer’s Guide is every developer’s key to making full use of SQL Server 2012’s powerful, built–in Transact–SQL language. Discussing new and existing features, the book takes you on an expert guided tour of Transact–SQL functionality. Fully functioning examples and downloadable source code bring technically accurate and engaging treatment of Transact–SQL into your own hands. Step–by–step explanations ensure clarity, and an advocacy of best–practices will steer you down the road to success. Transact–SQL is the language developers and DBAs use to interact with SQL Server. It’s used for everything from querying data, to writing stored procedures, to managing the database. New features in T-SQL 2012 include full support for window functions, stored sequences, the ability to throw errors, data paging, and more. All these important new features are covered in this book. Developers and DBAs alike can benefit from the expressive power of Transact-SQL, and Pro T-SQL 2012 Programmer's Guide provides the gateway to success in applying this increasingly important database language to everyday business and technical tasks. |
data science and coding: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
data science and coding: Data Science Fundamentals for Python and MongoDB David Paper, 2018-05-10 Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn’t required because complete examples are provided and explained. Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is “rocky” at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. What You'll Learn Prepare for a career in data science Work with complex data structures in Python Simulate with Monte Carlo and Stochastic algorithms Apply linear algebra using vectors and matrices Utilize complex algorithms such as gradient descent and principal component analysis Wrangle, cleanse, visualize, and problem solve with data Use MongoDB and JSON to work with data Who This Book Is For The novice yearning to break into the data science world, and the enthusiast looking to enrich, deepen, and develop data science skills through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming will make learning easier. |
data science and coding: Data Science for Beginners Andrew Park, 2020-05-14 Master the world of Python, Data Analysis, Machine Learning and Data Science with this comprehensive 4-in-1 bundle. Are you interested in becoming a Python geek? Or do you want to learn more about the fascinating world of Data Science, and what it can do for you? Then keep reading. Created with the beginner in mind, this powerful bundle delves into the fundamentals behind Python and Data Science, from basic code and concepts to complex Neural Networks and data manipulation. Inside, you'll discover everything you need to know to get started with Python and Data Science, and begin your journey to success! In book one, PYTHON FOR BEGINNERS, you'll learn: How to install Python What are the different Python Data Types, Variables and Basic Operators Data Structures, Functions and Files Conditional and Loops in Python Object-Oriented Programming (OOP), Inheritance and Polymorphism Essential Programming Tools and Exception Handling An application to Decision Trees And Much More! In book two, PYTHON FOR DATA ANALYSIS, you will: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Neural Network The 7 Python libraries that make Python one of the best choices for Data Analysis How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! In book three, PYTHON MACHINE LEARNING, you'll discover: What is Machine Learning and how it is applied in real-world situations Understanding the differences between Machine Learning, Deep Learning, and Artificial Intelligence Machine learning training models, Regression techniques and Linear Regression in Python How to use Lists and Modules in Python The 12 essential libraries for Machine Learning in Python Artificial Neural Networks And Much More! And in book four, PYTHON DATA SCIENCE, you will: What Data Science is all about and why so many companies are using it to give them a competitive edge. Why Python and how to use it to implement Data Science The main Data Structures & Object-Oriented Programming, Functions and Modules in Python with practical codes and exercises The 7 most important algorithms and models in Data Science Data Aggregation, Group Operations, Databases and Data in the Cloud 9 important Data Mining techniques in Data Science And So Much More! Whether you're a complete beginner or a programmer looking to improve his skillset, Data Science for Beginners is your all-in-one solution to mastering the world of Python and Data Science. Would you like to know more?Scroll Up and Click the BUY NOW Button to Get Your Copy! |
data science and coding: Black Hole Focus Isaiah Hankel, 2014-05-05 ...an absurdly motivating book. –A.J. Jacobs, New York Times bestselling author Don’t get stuck on a career path you have no passion for. Don’t waste your intelligence on something that doesn’t really mean anything more to you than a paycheck. Let Isaiah Hankel help you define a focus so powerful that everything in your life will be pulled towards it. Create your purpose and change your life. Be focused. Be fulfilled. Be successful. Black Hole Focus has been endorsed by top names in business, entrepreneurship, and academia, including 4 times New York Times bestseller AJ Jacobs and Harvard Medical School Postdoc Director Dr. Jim Gould. The book is broken up into 3 different sections; the first section shows you why you need a purpose in life, the second section shows you how to find your new purpose, and the third section shows you how to achieve your goals when facing adversity. In this book, you will learn: How to understand what you really want in life and how to get it Why people with a powerful purpose live to 100 How to rapidly improve focus and change your life using the secret techniques of an international memory champion How people like Jim Carrey, Oprah Winfrey, and J.K. Rowling transformed pain into purpose How to start a business by avoiding willpower depletion and the life hack lie Black Hole Focus includes exclusive case studies from medical practitioners, research scientists, lawyers, corporate executives and small business owners who have used the techniques described in this book to achieve massive success in their own lives. About the Author: Dr. Hankel is an internationally recognized expert in the biotechnology industry and prolific public speaker. He's given over 250 seminars in 22 different countries while working with many of the world's most respected companies and institutions, including Harvard University, Oxford University, Roche Pharmaceuticals, Eli Lilly & Company, Baxter International and Pfizer. Dr. Hankel uses the science of purpose and the principles of entrepreneurship to help people achieve their biggest goals. |
data science and coding: Classic Computer Science Problems in Java David Kopec, 2020-12-21 Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You’ll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your new problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Whatever software development problem you’re facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You’ll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation Search, graph, and genetic algorithms Constraint-satisfaction problems K-means clustering, neural networks, and adversarial search About the reader For intermediate Java programmers. About the author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems 2 Search problems 3 Constraint-satisfaction problems 4 Graph problems 5 Genetic algorithms 6 K-means clustering 7 Fairly simple neural networks 8 Adversarial search 9 Miscellaneous problems 10 Interview with Brian Goetz |
data science and coding: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science and coding: Python Programming Jason Test, 2020-08-03 Are you looking for a super-fast computer programming course? Would you like to learn the Python Programming Language in 7 days? Do you want to increase your business thanks to the web applications? If so, keep reading: this bundle book is for you! Finally on launch the most complete Python guide with 3 Manuscripts in 1 book: 1-Python for beginners 2-Python for Data Science 4-Python Crash Course Python will introduce you many selected practices for coding . You will discover as a beginner the world of data science, machine learning and artificial intelligence. The following list is just a tiny fraction of what you will learn in this collection bundle. 1) Python for beginners ✓ The basics of Python programming ✓ Differences among programming languages ✓ Vba, SQL, R, Python ✓ Game creation with Pyhton ✓ Easy-to-follow steps for reading and writing codes. ✓ Control flow statements and Error handling ✓ 4 best strategies with NumPy, Pandas, Matplotlib 2) Python for Data science ◆ 4 reason why Python is fundamental for Data Science ◆ Python design patterns ◆ How to use Python Data Analysis in your business ◆ Data visualization optimal tools and techniques ◆ Analysis of popular Python projects templates ◆ How to set up the Python environment for Data Science ◆ Most important Machine Learning Algorithms ◆ How to leverage Data Science in the Cloud 3) Python Crash Course * A Proven Method to Write your First Program in 7 Days * 5 Common Mistakes to Avoid when You Start Coding * A Simple Strategy to Write Clean, Understandable and Flexible Codes * The One Thing You Need to Debug your Codes in Python * 5 Practical exercises to start programming Even if you have never written a programming code before, you will quickly grasp the basics thanks to visual charts and guidelines for coding. Examples and step-by-step guides will guide you during the code-writing learning process. The description of each topic is crystal-clear and you can easily practice with related exercises. You will also learn all the best tricks of writing codes with point by point descriptions of the code elements. If you really wish to to learn Python and master its language, please click the BUY NOW button. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …