Data Warehouse Case Study Healthcare



  data warehouse case study healthcare: Data Warehousing in the Age of Big Data Krish Krishnan, 2013-05-02 Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. - Learn how to leverage Big Data by effectively integrating it into your data warehouse. - Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies - Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements
  data warehouse case study healthcare: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2011-08-08 This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.
  data warehouse case study healthcare: A Practitioner's Guide to Data Governance Uma Gupta, San Cannon, 2020-07-08 Data governance looks simple on paper, but in reality it is a complex issue facing organizations. In this practical guide, data experts Uma Gupta and San Cannon look to demystify data governance through pragmatic advice based on real-world experience and cutting-edge academic research.
  data warehouse case study healthcare: INTRODUCTION TO DATA MINING WITH CASE STUDIES G. K. GUPTA, 2014-06-28 The field of data mining provides techniques for automated discovery of valuable information from the accumulated data of computerized operations of enterprises. This book offers a clear and comprehensive introduction to both data mining theory and practice. It is written primarily as a textbook for the students of computer science, management, computer applications, and information technology. The book ensures that the students learn the major data mining techniques even if they do not have a strong mathematical background. The techniques include data pre-processing, association rule mining, supervised classification, cluster analysis, web data mining, search engine query mining, data warehousing and OLAP. To enhance the understanding of the concepts introduced, and to show how the techniques described in the book are used in practice, each chapter is followed by one or two case studies that have been published in scholarly journals. Most case studies deal with real business problems (for example, marketing, e-commerce, CRM). Studying the case studies provides the reader with a greater insight into the data mining techniques. The book also provides many examples, review questions, multiple choice questions, chapter-end exercises and a good list of references and Web resources especially those which are easy to understand and useful for students. A number of class projects have also been included.
  data warehouse case study healthcare: Corporate Information Factory W. H. Inmon, Claudia Imhoff, Ryan Sousa, 2002-03-14 The father of data warehousing incorporates the latesttechnologies into his blueprint for integrated decision supportsystems Today's corporate IT and data warehouse managers are required tomake a small army of technologies work together to ensure fast andaccurate information for business managers. Bill Inmon created theCorporate Information Factory to solve the needs ofthese managers. Since the First Edition, the design of the factoryhas grown and changed dramatically. This Second Edition, revisedand expanded by 40% with five new chapters, incorporates thesechanges. This step-by-step guide will enable readers to connecttheir legacy systems with the data warehouse and deal with a hostof new and changing technologies, including Web access mechanisms,e-commerce systems, ERP (Enterprise Resource Planning) systems. Thebook also looks closely at exploration and data mining servers foranalyzing customer behavior and departmental data marts forfinance, sales, and marketing.
  data warehouse case study healthcare: DW 2.0: The Architecture for the Next Generation of Data Warehousing W.H. Inmon, Derek Strauss, Genia Neushloss, 2010-07-28 DW 2.0: The Architecture for the Next Generation of Data Warehousing is the first book on the new generation of data warehouse architecture, DW 2.0, by the father of the data warehouse. The book describes the future of data warehousing that is technologically possible today, at both an architectural level and technology level. The perspective of the book is from the top down: looking at the overall architecture and then delving into the issues underlying the components. This allows people who are building or using a data warehouse to see what lies ahead and determine what new technology to buy, how to plan extensions to the data warehouse, what can be salvaged from the current system, and how to justify the expense at the most practical level. This book gives experienced data warehouse professionals everything they need in order to implement the new generation DW 2.0. It is designed for professionals in the IT organization, including data architects, DBAs, systems design and development professionals, as well as data warehouse and knowledge management professionals. - First book on the new generation of data warehouse architecture, DW 2.0 - Written by the father of the data warehouse, Bill Inmon, a columnist and newsletter editor of The Bill Inmon Channel on the Business Intelligence Network - Long overdue comprehensive coverage of the implementation of technology and tools that enable the new generation of the DW: metadata, temporal data, ETL, unstructured data, and data quality control
  data warehouse case study healthcare: Data Warehousing and Analytics David Taniar, Wenny Rahayu, 2022-02-04 This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics). This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
  data warehouse case study healthcare: E-Data Jill Dyché, 2000 Dyche presents the complete manager's briefing on what data warehousing technology can do today and how to achieve optimal results. Using real-world case studies from Charles Schwab, Bank of America, Qantas, 20th Century Fox, and others, she covers decision support, database marketing, and many industry-specific data warehouse applications.
  data warehouse case study healthcare: The Data Warehouse Toolkit Ralph Kimball, Margy Ross, 2013-07-01 Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.
  data warehouse case study healthcare: Data Warehousing Fundamentals Paulraj Ponniah, 2004-04-07 Geared to IT professionals eager to get into the all-importantfield of data warehousing, this book explores all topics needed bythose who design and implement data warehouses. Readers will learnabout planning requirements, architecture, infrastructure, datapreparation, information delivery, implementation, and maintenance.They'll also find a wealth of industry examples garnered from theauthor's 25 years of experience in designing and implementingdatabases and data warehouse applications for majorcorporations. Market: IT Professionals, Consultants.
  data warehouse case study healthcare: Data Warehousing Mark Humphries, Michael W. Hawkins, Michelle C. Dy, 1999 PLEASE PROVIDE COURSE INFORMATION PLEASE PROVIDE
  data warehouse case study healthcare: Registries for Evaluating Patient Outcomes Agency for Healthcare Research and Quality/AHRQ, 2014-04-01 This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
  data warehouse case study healthcare: ,
  data warehouse case study healthcare: Building the Data Warehouse W. H. Inmon, 2002-10-01 The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing bible provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.
  data warehouse case study healthcare: Hospital Management and Emergency Medicine: Breakthroughs in Research and Practice Management Association, Information Resources, 2020-02-07 Improvements in hospital management and emergency medical and critical care services require continual attention and dedication to ensure efficient and proper care for citizens. To support this endeavor, professionals rely more and more on the application of information systems and technologies to promote the overall quality of modern healthcare. Implementing effective technologies and strategies ensures proper quality and instruction for both the patient and medical practitioners. Hospital Management and Emergency Medicine: Breakthroughs in Research and Practice examines the latest scholarly material on emerging strategies and methods for delivering optimal emergency medical care and examines the latest technologies and tools that support the development of efficient emergency departments and hospital staff. While highlighting the challenges medical practitioners and healthcare professionals face when treating patients and striving to optimize their processes, the book shows how revolutionary technologies and methods are vastly improving how healthcare is implemented globally. Highlighting a range of topics such as overcrowding, decision support systems, and patient safety, this publication is an ideal reference source for hospital directors, hospital staff, emergency medical services, paramedics, medical administrators, managers and employees of health units, physicians, medical students, academicians, and researchers seeking current research on providing optimal care in emergency medicine.
  data warehouse case study healthcare: Modern Data Warehousing, Mining, and Visualization George M. Marakas, 2003 For undergraduate/graduate-level Data Mining or Data Warehousing courses in Information Systems or Operations Management Departments electives. Taking a multidisciplinary user/manager approach, this text looks at data warehousing technologies necessary to support the business processes of the twenty-first century. Using a balanced professional and conversational approach, it explores the basic concepts of data mining, warehousing, and visualization with an emphasis on both technical and managerial issues and the implication of these modern emerging technologies on those issues. Data mining and visualization exercises using an included fully-enabled, but time-limited version of Megaputer's PolyAnalyst and TextAnalyst data mining and visualization software give students hands-on experience with real-world applications.
  data warehouse case study healthcare: Data Warehousing and Knowledge Discovery A Min Tjoa, 2006-09-21 This book constitutes the refereed proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2006, held in conjunction with DEXA 2006. The book presents 53 revised full papers, organized in topical sections on ETL processing, materialized view, multidimensional design, OLAP and multidimensional model, cubes processing, data warehouse applications, mining techniques, frequent itemsets, mining data streams, ontology-based mining, clustering, advanced mining techniques, association rules, miscellaneous applications, and classification.
  data warehouse case study healthcare: Applying Business Intelligence to Clinical and Healthcare Organizations Machado, José, Abelha, António, 2016-02-10 Business intelligence (BI) tools are capable of working with healthcare data in an efficient manner to generate real-time information and knowledge relevant to the success of healthcare organizations. Further, BI tools benefit healthcare professionals making critical decisions within hospitals, clinics, and physicians’ offices. Applying Business Intelligence to Clinical and Healthcare Organizations presents new solutions for data analysis within the healthcare sector in order to improve the quality of medical care and patient quality of life. Business intelligence models and techniques are explored and their benefits for the healthcare sector exposed in this timely research-based publication comprised of chapters written by professionals and researchers from around the world. Hospital administrators, healthcare professionals, biomedical engineers, informatics engineers, and students in graduate-level healthcare management programs will find this publication essential to their professional development and research needs.
  data warehouse case study healthcare: Journal of Healthcare Information Management, E-Healthcare Data Warehousing Edward Russo, 2001-07-11 This issue focuses on key issues relating to defining, planning, and implementing e-healthcare data warehousing, including discussing the application of a warehouse and variations on how it can provide benefits from a theoretical, practical, and economic prospective. Authors explore the life cycle of a data warehousing project and discuss major issues involved in beginning implementation of a data warehouse. They also focus on the role of data warehouses as a source of information in providing best practice and in advancing the science of managed care. What form information takes and how it gets used is addressed through discussion of data visualization (the presentation of data to users in the form in which they are used to working) and data marts. The authors present case studies exploring the benefits of data mining and illustrating the use of a data warehouse to support research and education functions. This issue will serve as an invaluable resource to both those who are new and already familiar with implementing data warehousing projects.
  data warehouse case study healthcare: Data Mining and Data Warehousing Parteek Bhatia, 2019-06-27 Written in lucid language, this valuable textbook brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The textbook is written to cater to the needs of undergraduate students of computer science, engineering and information technology for a course on data mining and data warehousing. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models and NoSQL are discussed in detail. Pedagogical features including unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding.
  data warehouse case study healthcare: Building the Data Lakehouse Bill Inmon, Ranjeet Srivastava, Mary Levins, 2021-10 The data lakehouse is the next generation of the data warehouse and data lake, designed to meet today's complex and ever-changing analytics, machine learning, and data science requirements. Learn about the features and architecture of the data lakehouse, along with its powerful analytical infrastructure. Appreciate how the universal common connector blends structured, textual, analog, and IoT data. Maintain the lakehouse for future generations through Data Lakehouse Housekeeping and Data Future-proofing. Know how to incorporate the lakehouse into an existing data governance strategy. Incorporate data catalogs, data lineage tools, and open source software into your architecture to ensure your data scientists, analysts, and end users live happily ever after.
  data warehouse case study healthcare: Data Management and Analysis Using JMP Jane E Oppenlander, Patricia Schaffer, 2017-10-17 A holistic, step-by-step approach to analyzing health care data! Written for both beginner and intermediate JMP users working in or studying health care, Data Management and Analysis Using JMP: Health Care Case Studies bridges the gap between taking traditional statistics courses and successfully applying statistical analysis in the workplace. Authors Jane Oppenlander and Patricia Schaffer begin by illustrating techniques to prepare data for analysis, followed by presenting effective methods to summarize, visualize, and analyze data. The statistical analysis methods covered in the book are the foundational techniques commonly applied to meet regulatory, operational, budgeting, and research needs in the health care field. This example-driven book shows practitioners how to solve real-world problems by using an approach that includes problem definition, data management, selecting the appropriate analysis methods, step-by-step JMP instructions, and interpreting statistical results in context. Practical strategies for selecting appropriate statistical methods, remediating data anomalies, and interpreting statistical results in the domain context are emphasized. The cases presented in Data Management and Analysis Using JMP use multiple statistical methods. A progression of methods--from univariate to multivariate--is employed, illustrating a logical approach to problem-solving. Much of the data used in these cases is open source and drawn from a variety of health care settings. The book offers a welcome guide to working professionals as well as students studying statistics in health care-related fields.
  data warehouse case study healthcare: Data Warehouse Systems Alejandro Vaisman, Esteban Zimányi, 2022-08-16 With this textbook, Vaisman and Zimányi deliver excellent coverage of data warehousing and business intelligence technologies ranging from the most basic principles to recent findings and applications. To this end, their work is structured into three parts. Part I describes “Fundamental Concepts” including conceptual and logical data warehouse design, as well as querying using MDX, DAX and SQL/OLAP. This part also covers data analytics using Power BI and Analysis Services. Part II details “Implementation and Deployment,” including physical design, ETL and data warehouse design methodologies. Part III covers “Advanced Topics” and it is almost completely new in this second edition. This part includes chapters with an in-depth coverage of temporal, spatial, and mobility data warehousing. Graph data warehouses are also covered in detail using Neo4j. The last chapter extensively studies big data management and the usage of Hadoop, Spark, distributed, in-memory, columnar, NoSQL and NewSQL database systems, and data lakes in the context of analytical data processing. As a key characteristic of the book, most of the topics are presented and illustrated using application tools. Specifically, a case study based on the well-known Northwind database illustrates how the concepts presented in the book can be implemented using Microsoft Analysis Services and Power BI. All chapters have been revised and updated to the latest versions of the software tools used. KPIs and Dashboards are now also developed using DAX and Power BI, and the chapter on ETL has been expanded with the implementation of ETL processes in PostgreSQL. Review questions and exercises complement each chapter to support comprehensive student learning. Supplemental material to assist instructors using this book as a course text is available online and includes electronic versions of the figures, solutions to all exercises, and a set of slides accompanying each chapter. Overall, students, practitioners and researchers alike will find this book the most comprehensive reference work on data warehouses, with key topics described in a clear and educational style. “I can only invite you to dive into the contents of the book, feeling certain that once you have completed its reading (or maybe, targeted parts of it), you will join me in expressing our gratitude to Alejandro and Esteban, for providing such a comprehensive textbook for the field of data warehousing in the first place, and for keeping it up to date with the recent developments, in this current second edition.” From the foreword by Panos Vassiliadis, University of Ioannina, Greece.
  data warehouse case study healthcare: Data Warehouse Project Management Sid Adelman, Larissa T. Moss, 2010-07-15
  data warehouse case study healthcare: Agile Data Warehousing Ralph Hughes, 2008-07-14 Contains a six-stage plan for starting new warehouse projects and guiding programmers step-by-step until they become a world-class, Agile development team. It describes also how to avoid or contain the fierce opposition that radically new methods can encounter from the traditionally-minded IS departments found in many large companies.
  data warehouse case study healthcare: Decision Support Systems and Education J. Mantas, Z. Sonicki, M. Crișan – Vida, 2018-10-18 Medical informatics has revolutionized healthcare in recent years, and one of the major challenges now faced by health professionals everywhere is the further improvement of healthcare by making more effective use of the data from biomedical informatics, not least for education and decision support. This book presents the 52 full papers (accepted from 95 initial submissions) delivered at the Special Topic Conference of the European Federation for Medical Informatics (EFMI STC 2018), held in Zagreb, Croatia, on 15 and 16 October 2018. The EFMI STC is one of Europe`s leading conferences for the sharing of current professional and scientific knowledge in health informatics processes, and the topics covered here have been broadly divided into two sections; decision support and education. Offering an overview of current medical informatics research, this book will undoubtedly prove invaluable for the professional development of healthcare practitioners, as well as contributing to knowledge sustainability within the field of medical informatics.
  data warehouse case study healthcare: Anonymizing Health Data Khaled El Emam, Luk Arbuckle, 2013-12-11 Updated as of August 2014, this practical book will demonstrate proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets. Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors’ experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others. Understand different methods for working with cross-sectional and longitudinal datasets Assess the risk of adversaries who attempt to re-identify patients in anonymized datasets Reduce the size and complexity of massive datasets without losing key information or jeopardizing privacy Use methods to anonymize unstructured free-form text data Minimize the risks inherent in geospatial data, without omitting critical location-based health information Look at ways to anonymize coding information in health data Learn the challenge of anonymously linking related datasets
  data warehouse case study healthcare: Fundamentals of Data Warehouses Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, Panos Vassiliadis, 2013-03-09 This book presents the first comparative review of the state of the art and the best current practices of data warehouses. It covers source and data integration, multidimensional aggregation, query optimization, metadata management, quality assessment, and design optimization. A conceptual framework is presented by which the architecture and quality of a data warehouse can be assessed and improved using enriched metadata management combined with advanced techniques from databases, business modeling, and artificial intelligence.
  data warehouse case study healthcare: Cases on Virtual Reality Modeling in Healthcare Tang, Yuk Ming, Lun, Ho Ho, Chau, Ka Yin, 2021-12-17 Virtual reality (VR) provides immersive stereoscopic visualization of virtual environments, and the visualization effect and computer graphics are critical to enhancing the engagement of participants and achieving optimal education and training effectiveness. Constructing realistic 3D models and scenarios for a specific application of VR simulation is no easy task. There are many different tools for 3D modeling. However, many of the modeling tools are used for manufacturing and product design applications and have advanced features and functions which may not be applicable to different levels of users and various specializations. Cases on Virtual Reality Modeling in Healthcare introduces the use of Blender for VR 3D modeling, demonstrates healthcare applications, and examines potential uses in modeling, dressing, and animation in healthcare. Covering a range of topics such as cross reality, rehabilitation games, and augmented reality, this book is ideal for engineers, industry professionals, practitioners, researchers, academicians, instructors, and students.
  data warehouse case study healthcare: Process Mining in Healthcare Ronny S. Mans, Wil M. P. van der Aalst, Rob J. B. Vanwersch, 2015-03-12 What are the possibilities for process mining in hospitals? In this book the authors provide an answer to this question by presenting a healthcare reference model that outlines all the different classes of data that are potentially available for process mining in healthcare and the relationships between them. Subsequently, based on this reference model, they explain the application opportunities for process mining in this domain and discuss the various kinds of analyses that can be performed. They focus on organizational healthcare processes rather than medical treatment processes. The combination of event data and process mining techniques allows them to analyze the operational processes within a hospital based on facts, thus providing a solid basis for managing and improving processes within hospitals. To this end, they also explicitly elaborate on data quality issues that are relevant for the data aspects of the healthcare reference model. This book mainly targets advanced professionals involved in areas related to business process management, business intelligence, data mining, and business process redesign for healthcare systems as well as graduate students specializing in healthcare information systems and process analysis.
  data warehouse case study healthcare: Clinical Case Studies for the Family Nurse Practitioner Leslie Neal-Boylan, 2011-11-28 Clinical Case Studies for the Family Nurse Practitioner is a key resource for advanced practice nurses and graduate students seeking to test their skills in assessing, diagnosing, and managing cases in family and primary care. Composed of more than 70 cases ranging from common to unique, the book compiles years of experience from experts in the field. It is organized chronologically, presenting cases from neonatal to geriatric care in a standard approach built on the SOAP format. This includes differential diagnosis and a series of critical thinking questions ideal for self-assessment or classroom use.
  data warehouse case study healthcare: The Unified Star Schema Bill Inmon, Francesco Puppini, 2020-10 Master the most agile and resilient design for building analytics applications: the Unified Star Schema (USS) approach. The USS has many benefits over traditional dimensional modeling. Witness the power of the USS as a single star schema that serves as a foundation for all present and future business requirements of your organization.
  data warehouse case study healthcare: ERP & Data Warehousing in Organizations Gerald G. Grant, 2003-01-01 Offering enterprise resource planning (ERP) deployment strategies for information as diverse as patient records, police and community relations, and geospatial services, this text addresses the complex issues that information and communication technologies pose for small, midsize, and large organizations. Provided are recent research findings as well as practical assessments and suggestions for managers.
  data warehouse case study healthcare: Developing a Data Warehouse for the Healthcare Enterprise: Lessons from the Trenches Bryan Bergeron, 2013 This edition is a straightforward view of a clinical data warehouse development project, from Inception through Implementation and follow-up. Through first-hand experiences from Individuals charged with the Implementation, this book offers guidance and multiple perspectives on the data warehouse development process--from the Initial vision to system-wide release. The book provides valuable lessons learned during a data warehouse Implementation at King Faisal Specialist Hospital and Research Center (KFSH & RC) in Riyadh, Saudi Arabia, a large, modern, tertiary-care hospital with an IT environment that parallels a typical U.S. hospital.
  data warehouse case study healthcare: OLAP Solutions Erik Thomsen, 2002-10-15 OLAP enables users to access information from multidimensional datawarehouses almost instantly, to view information in any way theylike, and to cleanly specify and carry out sophisticatedcalculations. Although many commercial OLAP tools and products arenow available, OLAP is still a difficult and complex technology tomaster. Substantially updated with expanded coverage of implementationmethods for data storage, access, and calculation; also, newchapters added to combine OLAP with data warehouse, mining, anddecision support tools Teaches the best practices for building OLAP models thatimprove business and organizational decision-making, completelyindependent of commercial tools, using revised case studies Companion Web site provides updates on OLAP standards andtools, code examples, and links to valuable resources
  data warehouse case study healthcare: Population Health Analytics Martha L. Sylvia, Ines Maria Vigil, 2021-03 Binding: PB--
  data warehouse case study healthcare: Public Health Informatics and Information Systems Patrick W. O'Carroll, William A. Yasnoff, M. Elizabeth Ward, Laura H. Ripp, Ernest L. Martin, 2006-05-07 Let us not go over the old ground, let us rather prepare for what is to come. —Marcus Tullius Cicero Improvements in the health status of communities depend on effective public health and healthcare infrastructures. These infrastructures are increasingly electronic and tied to the Internet. Incorporating emerging technologies into the service of the community has become a required task for every public health leader. The revolution in information technology challenges every sector of the health enterprise. Individuals, care providers, and public health agencies can all benefit as we reshape public health through the adoption of new infor- tion systems, use of electronic methods for disease surveillance, and refor- tion of outmoded processes. However, realizing the benefits will be neither easy nor inexpensive. Technological innovation brings the promise of new ways of improving health. Individuals have become more involved in knowing about, and managing and improving, their own health through Internet access. Similarly, healthcare p- viders are transforming the ways in which they assess, treat, and document - tient care through their use of new technologies. For example, point-of-care and palm-type devices will soon be capable of uniquely identifying patients, s- porting patient care, and documenting treatment simply and efficiently.
  data warehouse case study healthcare: Introduction to Privacy-Preserving Data Publishing Benjamin C.M. Fung, Ke Wang, Ada Wai-Chee Fu, Philip S. Yu, 2010-08-02 Gaining access to high-quality data is a vital necessity in knowledge-based decision making. But data in its raw form often contains sensitive information about individuals. Providing solutions to this problem, the methods and tools of privacy-preserving data publishing enable the publication of useful information while protecting data privacy. Int
  data warehouse case study healthcare: Transforming Health Care Through Information: Case Studies Laura Einbinder, Nancy M. Lorenzi, Joan Ash, Cynthia S. Gadd, Jonathan Einbinder, 2010-03-14 With the growth of information and focus on Healthcare Informatics, there remains an interest in case studies. In the current field of Health Informatics there is no text that uses case studies to explain the difficulties that occur. . Edited by specialists in the field of Health Informatics, the third edition of Transforming Healthcare Through Information: Case Studies builds upon the specific examples of case studies to exemplify the various phases of introducing technological advancements into healthcare institutions. The new edition includes a section on how to implement Link2care, a system that will allow caregivers of ill patients, to seek reliable and informative online information and support. In addition the cases will be framed under new sections with discussion on new topics in the area of healthcare technology such as quality data management and knowledge management. The case studies described in the third edition will benefit not only the practicing professional but also the instructor and student studying in the field of health informatics.
  data warehouse case study healthcare: Reshaping Healthcare with Cutting-Edge Biomedical Advancements Prabhakar, Pranav Kumar, 2024-05-06 Despite remarkable advancements in biomedical research, the healthcare industry faces challenges in effectively translating these discoveries into tangible patient benefits. Healthcare professionals often need help to keep pace with the rapid evolution of medical knowledge, leading to variations in patient care and treatment outcomes. Policymakers and educators may need more insight to leverage recent biomedical developments in shaping effective health policies and educational curricula. Additionally, ethical considerations surrounding emerging technologies like gene editing and Artificial Intelligence (AI) in healthcare pose complex dilemmas that require careful navigation. Reshaping Healthcare with Cutting-Edge Biomedical Advancements offers a comprehensive solution to these challenges. By providing a detailed exploration of the latest breakthroughs in genomics, regenerative therapies, neurobiology, AI, and more, this book equips healthcare professionals with the knowledge needed to make informed decisions about patient care. It also guides policymakers and educators, offering insights into the implications of recent biomedical advancements for shaping health policies and educational programs.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …