Data Quality Assessment Example

Advertisement



  data quality assessment example: Data Quality Assessment Arkady Maydanchik, 2007 Imagine a group of prehistoric hunters armed with stone-tipped spears. Their primitive weapons made hunting large animals, such as mammoths, dangerous work. Over time, however, a new breed of hunters developed. They would stretch the skin of a previously killed mammoth on the wall and throw their spears, while observing which spear, thrown from which angle and distance, penetrated the skin the best. The data gathered helped them make better spears and develop better hunting strategies. Quality data is the key to any advancement, whether it is from the Stone Age to the Bronze Age. Or from the Information Age to whatever Age comes next. The success of corporations and government institutions largely depends on the efficiency with which they can collect, organise, and utilise data about products, customers, competitors, and employees. Fortunately, improving your data quality does not have to be such a mammoth task. This book is a must read for anyone who needs to understand, correct, or prevent data quality issues in their organisation. Skipping theory and focusing purely on what is practical and what works, this text contains a proven approach to identifying, warehousing, and analysing data errors. Master techniques in data profiling and gathering metadata, designing data quality rules, organising rule and error catalogues, and constructing the dimensional data quality scorecard. David Wells, Director of Education of the Data Warehousing Institute, says This is one of those books that marks a milestone in the evolution of a discipline. Arkady's insights and techniques fuel the transition of data quality management from art to science -- from crafting to engineering. From deep experience, with thoughtful structure, and with engaging style Arkady brings the discipline of data quality to practitioners.
  data quality assessment example: Meeting the Challenges of Data Quality Management Laura Sebastian-Coleman, 2022-01-25 Meeting the Challenges of Data Quality Management outlines the foundational concepts of data quality management and its challenges. The book enables data management professionals to help their organizations get more value from data by addressing the five challenges of data quality management: the meaning challenge (recognizing how data represents reality), the process/quality challenge (creating high-quality data by design), the people challenge (building data literacy), the technical challenge (enabling organizational data to be accessed and used, as well as protected), and the accountability challenge (ensuring organizational leadership treats data as an asset). Organizations that fail to meet these challenges get less value from their data than organizations that address them directly. The book describes core data quality management capabilities and introduces new and experienced DQ practitioners to practical techniques for getting value from activities such as data profiling, DQ monitoring and DQ reporting. It extends these ideas to the management of data quality within big data environments. This book will appeal to data quality and data management professionals, especially those involved with data governance, across a wide range of industries, as well as academic and government organizations. Readership extends to people higher up the organizational ladder (chief data officers, data strategists, analytics leaders) and in different parts of the organization (finance professionals, operations managers, IT leaders) who want to leverage their data and their organizational capabilities (people, processes, technology) to drive value and gain competitive advantage. This will be a key reference for graduate students in computer science programs which normally have a limited focus on the data itself and where data quality management is an often-overlooked aspect of data management courses. - Describes the importance of high-quality data to organizations wanting to leverage their data and, more generally, to people living in today's digitally interconnected world - Explores the five challenges in relation to organizational data, including Big Data, and proposes approaches to meeting them - Clarifies how to apply the core capabilities required for an effective data quality management program (data standards definition, data quality assessment, monitoring and reporting, issue management, and improvement) as both stand-alone processes and as integral components of projects and operations - Provides Data Quality practitioners with ways to communicate consistently with stakeholders
  data quality assessment example: Executing Data Quality Projects Danette McGilvray, 2021-05-27 Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online
  data quality assessment example: Handbook of EHealth Evaluation Francis Yin Yee Lau, Craig Kuziemsky, 2016-11 To order please visit https://onlineacademiccommunity.uvic.ca/press/books/ordering/
  data quality assessment example: The Practitioner's Guide to Data Quality Improvement David Loshin, 2010-11-22 The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.
  data quality assessment example: Measuring Data Quality for Ongoing Improvement Laura Sebastian-Coleman, 2012-12-31 The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. - Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges - Enables discussions between business and IT with a non-technical vocabulary for data quality measurement - Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation
  data quality assessment example: Assessing the National Health Information System Health Metrics Network, World Health Organization, 2008 The Health Metrics Network (HMN) was launched in 2005 to help countries ... improve global health by strengthening the systems that generate health-related information for evidence-based decision-making.--Introd.
  data quality assessment example: Data Quality Carlo Batini, Monica Scannapieco, 2006-09-27 Poor data quality can seriously hinder or damage the efficiency and effectiveness of organizations and businesses. The growing awareness of such repercussions has led to major public initiatives like the Data Quality Act in the USA and the European 2003/98 directive of the European Parliament. Batini and Scannapieco present a comprehensive and systematic introduction to the wide set of issues related to data quality. They start with a detailed description of different data quality dimensions, like accuracy, completeness, and consistency, and their importance in different types of data, like federated data, web data, or time-dependent data, and in different data categories classified according to frequency of change, like stable, long-term, and frequently changing data. The book's extensive description of techniques and methodologies from core data quality research as well as from related fields like data mining, probability theory, statistical data analysis, and machine learning gives an excellent overview of the current state of the art. The presentation is completed by a short description and critical comparison of tools and practical methodologies, which will help readers to resolve their own quality problems. This book is an ideal combination of the soundness of theoretical foundations and the applicability of practical approaches. It is ideally suited for everyone – researchers, students, or professionals – interested in a comprehensive overview of data quality issues. In addition, it will serve as the basis for an introductory course or for self-study on this topic.
  data quality assessment example: Registries for Evaluating Patient Outcomes Agency for Healthcare Research and Quality/AHRQ, 2014-04-01 This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
  data quality assessment example: Guidance for Data Quality Assessment , 1996
  data quality assessment example: Exploratory Data Mining and Data Cleaning Tamraparni Dasu, Theodore Johnson, 2003-08-01 Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.
  data quality assessment example: Journey to Data Quality Yang W. Lee, 2006 All organizations today confront data quality problems, both systemic and structural. Neither ad hoc approaches nor fixes at the systems level--installing the latest software or developing an expensive data warehouse--solve the basic problem of bad data quality practices. Journey to Data Qualityoffers a roadmap that can be used by practitioners, executives, and students for planning and implementing a viable data and information quality management program. This practical guide, based on rigorous research and informed by real-world examples, describes the challenges of data management and provides the principles, strategies, tools, and techniques necessary to meet them. The authors, all leaders in the data quality field for many years, discuss how to make the economic case for data quality and the importance of getting an organization's leaders on board. They outline different approaches for assessing data, both subjectively (by users) and objectively (using sampling and other techniques). They describe real problems and solutions, including efforts to find the root causes of data quality problems at a healthcare organization and data quality initiatives taken by a large teaching hospital. They address setting company policy on data quality and, finally, they consider future challenges on the journey to data quality.
  data quality assessment example: Bioanalytical Tools in Water Quality Assessment Beate Escher, Frederic Leusch, 2011-12-15 Part of Water Quality Set - Buy all four books and save over 30% on buying separately! Bioanalytical Tools in Water Quality Assessment reviews the application of bioanalytical tools to the assessment of water quality including surveillance monitoring. The types of water included range from wastewater to drinking water, including recycled water, as well as treatment processes and advanced water treatment. Bioanalytical Tools in Water Quality Assessment not only demonstrates applications but also fills in the background knowledge in toxicology/ecotoxicology needed to appreciate these applications. Each chapter summarises fundamental material in a targeted way so that information can be applied to better understand the use of bioanalytical tools in water quality assessment. Bioanalytical tools in Water Quality Assessment can be used by lecturers teaching academic and professional courses and also by risk assessors, regulators, experts, consultants, researchers and managers working in the water sector. It can also be a reference manual for environmental engineers, analytical chemists, and toxicologists. Authors: Beate Escher, National Research Centre for Environmental Toxicology (EnTox), The University of Queensland, Australia, Frederic Leusch, Smart Water Research Facility (G51), Griffith University Gold Coast Campus, Australia. With contributions by Heather Chapman and Anita Poulsen
  data quality assessment example: Principles of Data Quality Arthur D. Chapman, 2005
  data quality assessment example: Competing with High Quality Data Rajesh Jugulum, 2014-03-10 Create a competitive advantage with data quality Data is rapidly becoming the powerhouse of industry, but low-quality data can actually put a company at a disadvantage. To be used effectively, data must accurately reflect the real-world scenario it represents, and it must be in a form that is usable and accessible. Quality data involves asking the right questions, targeting the correct parameters, and having an effective internal management, organization, and access system. It must be relevant, complete, and correct, while falling in line with pervasive regulatory oversight programs. Competing with High Quality Data: Concepts, Tools and Techniques for Building a Successful Approach to Data Quality takes a holistic approach to improving data quality, from collection to usage. Author Rajesh Jugulum is globally-recognized as a major voice in the data quality arena, with high-level backgrounds in international corporate finance. In the book, Jugulum provides a roadmap to data quality innovation, covering topics such as: The four-phase approach to data quality control Methodology that produces data sets for different aspects of a business Streamlined data quality assessment and issue resolution A structured, systematic, disciplined approach to effective data gathering The book also contains real-world case studies to illustrate how companies across a broad range of sectors have employed data quality systems, whether or not they succeeded, and what lessons were learned. High-quality data increases value throughout the information supply chain, and the benefits extend to the client, employee, and shareholder. Competing with High Quality Data: Concepts, Tools and Techniques for Building a Successful Approach to Data Quality provides the information and guidance necessary to formulate and activate an effective data quality plan today.
  data quality assessment example: Data Quality for Analytics Using SAS Gerhard Svolba, 2012-04-01 Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting. With this book you will learn how you can use SAS to perform advanced profiling of data quality status and how SAS can help improve your data quality. This book is part of the SAS Press program.
  data quality assessment example: Data and Information Quality Carlo Batini, Monica Scannapieco, 2016-03-23 This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. It does so by delivering a sound, integrated and comprehensive overview of the state of the art and future development of data and information quality in databases and information systems. To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples. The book has been written primarily for researchers in the fields of databases and information management or in natural sciences who are interested in investigating properties of data and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.
  data quality assessment example: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
  data quality assessment example: Federal Statistics, Multiple Data Sources, and Privacy Protection National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Improving Federal Statistics for Policy and Social Science Research Using Multiple Data Sources and State-of-the-Art Estimation Methods, 2018-01-27 The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.
  data quality assessment example: Guidance for the Data Quality Objectives Process United States. Environmental protection agency. Office of environmental information (Washington DC)., 2000
  data quality assessment example: Data Quality Jack E. Olson, 2003-01-09 Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality.* Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets.
  data quality assessment example: Enterprise Data Management with SAP NetWeaver MDM Andrew LeBlanc, 2008 Learn how to effectively manage your enterprise's master data with SAP NetWeaver Master Data Management (MDM). With this book, you'll find out how to develop and implement your own comprehensive master data strategy to meet your organization's unique requirements. Written by an SAP insider, the book explains the importance of an enterprise data management (EDM) strategy, and how to integrate the best one for your company. It then teaches you key master data and data management concepts, including quality management, architecture and standards, governance organization and processes, and deployment and technology. You'll also explore case studies illustrating EDM at work, and learn advanced topics, such as how to incorporate an EDM project into a large ERP project, and the issues around globalization and EDM. This is the one resource you need to get your EDM strategy in place. Highlights Include: * SAP NetWeaver MDM 5.5 SP04 * EDM Framework * As-Is Assessment Scorecard * Best Practices * Integration with SAP PI (formerly XI), and SAP NetWeaver BI * Interfacing with SAP Solution Manager, and ARIS
  data quality assessment example: Data Quality for the Information Age Thomas C. Redman, 1996 All aspects of data management are explored in this title, which provides detailed analyses of quality problems and their impacts, potential solutions and how they are combined to form an overall data quality program, senior management's role, and methods used to make and sustain improvements.
  data quality assessment example: The Materials Flow of Cobalt in the United States Kim B. Shedd, 1993
  data quality assessment example: The Computer-Based Patient Record Committee on Improving the Patient Record, Institute of Medicine, 1997-10-28 Most industries have plunged into data automation, but health care organizations have lagged in moving patients' medical records from paper to computers. In its first edition, this book presented a blueprint for introducing the computer-based patient record (CPR). The revised edition adds new information to the original book. One section describes recent developments, including the creation of a computer-based patient record institute. An international chapter highlights what is new in this still-emerging technology. An expert committee explores the potential of machine-readable CPRs to improve diagnostic and care decisions, provide a database for policymaking, and much more, addressing these key questions: Who uses patient records? What technology is available and what further research is necessary to meet users' needs? What should government, medical organizations, and others do to make the transition to CPRs? The volume also explores such issues as privacy and confidentiality, costs, the need for training, legal barriers to CPRs, and other key topics.
  data quality assessment example: The Science of Citizen Science Katrin Vohland, Anne Land-zandstra, Luigi Ceccaroni, Rob Lemmens, Josep Perelló, Marisa Ponti, Roeland Samson, Katherin Wagenknecht, 2021 This open access book discusses how the involvement of citizens into scientific endeavors is expected to contribute to solve the big challenges of our time, such as climate change and the loss of biodiversity, growing inequalities within and between societies, and the sustainability turn. The field of citizen science has been growing in recent decades. Many different stakeholders from scientists to citizens and from policy makers to environmental organisations have been involved in its practice. In addition, many scientists also study citizen science as a research approach and as a way for science and society to interact and collaborate. This book provides a representation of the practices as well as scientific and societal outcomes in different disciplines. It reflects the contribution of citizen science to societal development, education, or innovation and provides and overview of the field of actors as well as on tools and guidelines. It serves as an introduction for anyone who wants to get involved in and learn more about the science of citizen science.
  data quality assessment example: Master Data Management David Loshin, 2010-07-28 The key to a successful MDM initiative isn't technology or methods, it's people: the stakeholders in the organization and their complex ownership of the data that the initiative will affect.Master Data Management equips you with a deeply practical, business-focused way of thinking about MDM—an understanding that will greatly enhance your ability to communicate with stakeholders and win their support. Moreover, it will help you deserve their support: you'll master all the details involved in planning and executing an MDM project that leads to measurable improvements in business productivity and effectiveness. - Presents a comprehensive roadmap that you can adapt to any MDM project - Emphasizes the critical goal of maintaining and improving data quality - Provides guidelines for determining which data to master. - Examines special issues relating to master data metadata - Considers a range of MDM architectural styles - Covers the synchronization of master data across the application infrastructure
  data quality assessment example: Business Process Management Workshops Chiara Di Francescomarino, Remco Dijkman, Uwe Zdun, 2020-01-03 This book constitutes revised papers from the twelve International Workshops held at the 17th International Conference on Business Process Management, BPM 2019, in Vienna, Austria, in September 2019: The third International Workshop on Artificial Intelligence for Business Process Management (AI4BPM) The third International Workshop on Business Processes Meet Internet-of-Things (BP-Meet-IoT) The 15th International Workshop on Business Process Intelligence (BPI) The first International Workshop on Business Process Management in the era of Digital Innovation and Transformation (BPMinDIT) The 12th International Workshop on Social and Human Aspects of Business Process Management (BPMS2) The 7th International Workshop on Declarative, Decision and Hybrid approaches to processes (DEC2H) The second International Workshop on Methods for Interpretation of Industrial Event Logs (MIEL) The first International Workshop on Process Management in Digital Production (PM-DiPro) The second International Workshop on Process-Oriented Data Science for Healthcare (PODS4H) The fourth International Workshop on Process Querying (PQ) The second International Workshop on Security and Privacy-enhanced Business Process Management (SPBP) The first International Workshop on the Value and Quality of Enterprise Modelling (VEnMo) Each of the workshops discussed research still in progress and focused on aspects of business process management, either a particular technical aspect or a particular application domain. These proceedings present the work that was discussed during the workshops.
  data quality assessment example: Water Quality Assessments Deborah V Chapman, 1996-08-22 This guidebook, now thoroughly updated and revised in its second edition, gives comprehensive advice on the designing and setting up of monitoring programmes for the purpose of providing valid data for water quality assessments in all types of freshwater bodies. It is clearly and concisely written in order to provide the essential information for all agencies and individuals responsible for the water quality.
  data quality assessment example: Improving the Quality of Care in Nursing Homes Institute of Medicine, Committee on Nursing Home Regulation, 1986-02-01 As more people live longer, the need for quality long-term care for the elderly will increase dramatically. This volume examines the current system of nursing home regulations, and proposes an overhaul to better provide for those confined to such facilities. It determines the need for regulations, and concludes that the present regulatory system is inadequate, stating that what is needed is not more regulation, but better regulation. This long-anticipated study provides a wealth of useful background information, in-depth study, and discussion for nursing home administrators, students, and teachers in the health care field; professionals involved in caring for the elderly; and geriatric specialists.
  data quality assessment example: Information Quality Applied Larry P. English, 2009-10-12 How to apply data quality management techniques to marketing, sales, and other specific business units Author and information quality management expert Larry English returns with a sequel to his much-acclaimed book, Improving Data Warehouse and Business Information Quality. In this new book he takes a hands-on approach, showing how to apply the concepts outlined in the first book to specific business areas like marketing, sales, finance, and human resources. The book presents real-world scenarios so you can see how to meld data quality concepts to specific business areas such as supply chain management, product and service development, customer care, and others. Step-by-step instruction, practical techniques, and helpful templates from the author help you immediately apply best practices and start modeling your own quality initiatives. Maintaining the quality and accuracy of business data is crucial; database managers are in need of specific guidance for data quality management in all key business areas Information Quality Applied offers IT, database, and business managers step-by-step instruction in setting up methodical and effective procedures The book provides specifics if you have to manage data quality in marketing, sales, customer care, supply chain management, product and service management, human resources, or finance The author includes templates that readers can put to immedate use for modeling their own quality initiatives A Companion Web site provides templates, updates to the book, and links to related sites
  data quality assessment example: Improving Data Quality Regional Office for the Western Pacific World Health Organization, World Health Organization. Regional Office for the Western Pacific, 2003-01-01 This publication provides a set of guidelines for health care workers, health information managers and administrators to help them focus on improving the timeliness, accuracy and reliability of health care data. They describe key activities and tasks to be considered when addressing the question of data quality in health care, regardless of the setting or size of organisations.
  data quality assessment example: Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields Leanne Marie Kmet, Robert C. Lee (M.Sc.), Alberta Heritage Foundation for Medical Research, 2004 This paper arose in response to a gap in the literature and a need on the part of health science researchers for a standard reproducible criteria for simultaneously critically appraising the quality of a wide range of studies. The paper is meant to stimulate discussion about how to further advance the capacity of researchers to effectively conduct the critical appraisals. It is hoped that researchers will continue to test the validity of and refine the Qualsyst tool which is described in this paper.
  data quality assessment example: DAMA-DMBOK Dama International, 2017 Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
  data quality assessment example: Business Information Systems Workshops Witold Abramowicz, Gary Klein, 2020-11-12 This book constitutes revised papers from the five workshops which were held during June 2020 at the 23rd International Conference on Business Information Systems, BIS 2020. The conference was planned to take place in Colorado Springs, CO, USA. Due to the COVID-19 pandemic it changed to a virtual format. There was a total of 54 submissions to all workshops of which 26 papers were accepted for publication. The workshops included in this volume are: BITA 2020: 11th Workshop on Business and IT Alignment BSCT 2020: 3rd Workshop on Blockchain and Smart Contract Technologies DigEX 2020: 2nd International Workshop on transforming the Digital Customer Experience iCRM 2020: 5th International Workshop on Intelligent Data Analysis in Integrated Social CRM QOD 2020: 3rd Workshop on Quality of Open Data
  data quality assessment example: Ecological Informatics Friedrich Recknagel, William K. Michener, 2018-08-14 This book introduces readers to ecological informatics as an emerging discipline that takes into account the data-intensive nature of ecology, the valuable information to be found in ecological data, and the need to communicate results and inform decisions, including those related to research, conservation and resource management. At its core, ecological informatics combines developments in information technology and ecological theory with applications that facilitate ecological research and the dissemination of results to scientists and the public. Its conceptual framework links ecological entities (genomes, organisms, populations, communities, ecosystems, landscapes) with data management, analysis and synthesis, and communicates new findings to inform decisions by following the course of a loop. In comparison to the 2nd edition published in 2006, the 3rd edition of Ecological Informatics has been completely restructured on the basis of the generic conceptual f ramework provided in Figure 1. It reflects the significant advances in data management, analysis and synthesis that have been made over the past 10 years, including new remote and in situ sensing techniques, the emergence of ecological and environmental observatories, novel evolutionary computations for knowledge discovery and forecasting, and new approaches to communicating results and informing decisions.
  data quality assessment example: Quality Information and Knowledge Kuan-Tsae Huang, Yang W. Lee, Richard Y. Wang, 1999 PLEASE PROVIDE ?
  data quality assessment example: Cochrane Handbook for Systematic Reviews of Interventions Julian P. T. Higgins, Sally Green, 2008-11-24 Healthcare providers, consumers, researchers and policy makers are inundated with unmanageable amounts of information, including evidence from healthcare research. It has become impossible for all to have the time and resources to find, appraise and interpret this evidence and incorporate it into healthcare decisions. Cochrane Reviews respond to this challenge by identifying, appraising and synthesizing research-based evidence and presenting it in a standardized format, published in The Cochrane Library (www.thecochranelibrary.com). The Cochrane Handbook for Systematic Reviews of Interventions contains methodological guidance for the preparation and maintenance of Cochrane intervention reviews. Written in a clear and accessible format, it is the essential manual for all those preparing, maintaining and reading Cochrane reviews. Many of the principles and methods described here are appropriate for systematic reviews applied to other types of research and to systematic reviews of interventions undertaken by others. It is hoped therefore that this book will be invaluable to all those who want to understand the role of systematic reviews, critically appraise published reviews or perform reviews themselves.
  data quality assessment example: Data Quality Requirements Analysis and Modeling Y. Richard Wang, M. P. Reddy,
  data quality assessment example: District data quality assurance World Health Organization, 2023-01-30 This training package aims to improve the quality of routine health facility data through building capacity in the monthly use of District Health Information Software (DHIS)2-based data quality (DQ) tools at district level. The package includes tutorials with related exercises and uses a website (https://who-demos.dhis2.org/dq) to demonstrate the tools.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …