Data Science In Agriculture

Advertisement



  data science in agriculture: Data Science in Agriculture and Natural Resource Management G. P. Obi Reddy, Mehul S. Raval, J. Adinarayana, Sanjay Chaudhary, 2021-10-11 This book aims to address emerging challenges in the field of agriculture and natural resource management using the principles and applications of data science (DS). The book is organized in three sections, and it has fourteen chapters dealing with specialized areas. The chapters are written by experts sharing their experiences very lucidly through case studies, suitable illustrations and tables. The contents have been designed to fulfil the needs of geospatial, data science, agricultural, natural resources and environmental sciences of traditional universities, agricultural universities, technological universities, research institutes and academic colleges worldwide. It will help the planners, policymakers and extension scientists in planning and sustainable management of agriculture and natural resources. The authors believe that with its uniqueness the book is one of the important efforts in the contemporary cyber-physical systems.
  data science in agriculture: IoT and Analytics for Agriculture Prasant Kumar Pattnaik, Raghvendra Kumar, Souvik Pal, S. N. Panda, 2019-10-01 This book presents recent findings on virtually every aspect of wireless IoT and analytics for agriculture. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. In turn, it addresses the latest innovations, trends, and concerns, as well as practical challenges encountered and solutions adopted in the fields of IoT and analytics for agriculture. In closing, it explores a range of applications, including: intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems.
  data science in agriculture: Deep Learning for Sustainable Agriculture Ramesh Chandra Poonia, Vijander Singh, Soumya Ranjan Nayak, 2022-01-09 The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm. - Introduces new deep learning models developed to address sustainable solutions for issues related to agriculture - Provides reviews on the latest intelligent technologies and algorithms related to the state-of-the-art methodologies of monitoring and mitigation of sustainable agriculture - Illustrates through case studies how deep learning has been used to address a variety of agricultural diseases that are currently on the cutting edge - Delivers an accessible explanation of artificial intelligence algorithms, making it easier for the reader to implement or use them in their own agricultural domain
  data science in agriculture: Intelligent Data Mining and Fusion Systems in Agriculture Xanthoula-Eirini Pantazi, Dimitrios Moshou, Dionysis Bochtis, 2019-10-08 Intelligent Data Mining and Fusion Systems in Agriculture presents methods of computational intelligence and data fusion that have applications in agriculture for the non-destructive testing of agricultural products and crop condition monitoring. Sections cover the combination of sensors with artificial intelligence architectures in precision agriculture, including algorithms, bio-inspired hierarchical neural maps, and novelty detection algorithms capable of detecting sudden changes in different conditions. This book offers advanced students and entry-level professionals in agricultural science and engineering, geography and geoinformation science an in-depth overview of the connection between decision-making in agricultural operations and the decision support features offered by advanced computational intelligence algorithms. - Covers crop protection, automation in agriculture, artificial intelligence in agriculture, sensing and Internet of Things (IoTs) in agriculture - Addresses AI use in weed management, disease detection, yield prediction and crop production - Utilizes case studies to provide real-world insights and direction
  data science in agriculture: AI, Edge and IoT-based Smart Agriculture Ajith Abraham, Sujata Dash, Joel J.P.C. Rodrigues, Biswaranjan Acharya, Subhendu Kumar Pani, 2021-11-10 AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming. - Integrates sustainable agriculture, Greenhouse IOT, precision agriculture, crops monitoring, crops controlling to prediction, livestock monitoring, and farm management - Presents data mining techniques for precision agriculture, including weather prediction, plant disease prediction, and decision support for crop and soil selection - Promotes the importance and uses in managing the agro ecosystem for food security - Emphasizes low energy usage options for low cost and environmental sustainability
  data science in agriculture: Data Mining in Agriculture Antonio Mucherino, Petraq Papajorgji, Panos M. Pardalos, 2009-09-22 Data Mining in Agriculture represents a comprehensive effort to provide graduate students and researchers with an analytical text on data mining techniques applied to agriculture and environmental related fields. This book presents both theoretical and practical insights with a focus on presenting the context of each data mining technique rather intuitively with ample concrete examples represented graphically and with algorithms written in MATLAB®.
  data science in agriculture: Federal Data Science Feras A. Batarseh, Ruixin Yang, 2017-09-21 Federal Data Science serves as a guide for federal software engineers, government analysts, economists, researchers, data scientists, and engineering managers in deploying data analytics methods to governmental processes. Driven by open government (2009) and big data (2012) initiatives, federal agencies have a serious need to implement intelligent data management methods, share their data, and deploy advanced analytics to their processes. Using federal data for reactive decision making is not sufficient anymore, intelligent data systems allow for proactive activities that lead to benefits such as: improved citizen services, higher accountability, reduced delivery inefficiencies, lower costs, enhanced national insights, and better policy making. No other government-dedicated work has been found in literature that addresses this broad topic. This book provides multiple use-cases, describes federal data science benefits, and fills the gap in this critical and timely area. Written and reviewed by academics, industry experts, and federal analysts, the problems and challenges of developing data systems for government agencies is presented by actual developers, designers, and users of those systems, providing a unique and valuable real-world perspective. - Offers a range of data science models, engineering tools, and federal use-cases - Provides foundational observations into government data resources and requirements - Introduces experiences and examples of data openness from the US and other countries - A step-by-step guide for the conversion of government towards data-driven policy making - Focuses on presenting data models that work within the constraints of the US government - Presents the why, the what, and the how of injecting AI into federal culture and software systems
  data science in agriculture: Machine Learning for Hackers Drew Conway, John Myles White, 2012-02-13 If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data
  data science in agriculture: Challenges and Applications of Data Analytics in Social Perspectives Sathiyamoorthi, V., Elci, Atilla, 2020-12-04 With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.
  data science in agriculture: Machine Learning for Big Data Analysis Siddhartha Bhattacharyya, Hrishikesh Bhaumik, Anirban Mukherjee, Sourav De, 2018-12-17 This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
  data science in agriculture: Agricultural Internet of Things and Decision Support for Precision Smart Farming Annamaria Castrignano, Gabriele Buttafuoco, Raj Khosla, Abdul Mouazen, Dimitrios Moshou, Olivier Naud, 2020-01-09 Agricultural Internet of Things and Decision Support for Smart Farming reveals how a set of key enabling technologies (KET) related to agronomic management, remote and proximal sensing, data mining, decision-making and automation can be efficiently integrated in one system. Chapters cover how KETs enable real-time monitoring of soil conditions, determine real-time, site-specific requirements of crop systems, help develop a decision support system (DSS) aimed at maximizing the efficient use of resources, and provide planning for agronomic inputs differentiated in time and space. This book is ideal for researchers, academics, post-graduate students and practitioners who want to embrace new agricultural technologies. - Presents the science behind smart technologies for agricultural management - Reveals the power of data science and how to extract meaningful insights from big data on what is most suitable based on individual time and space - Proves how advanced technologies used in agriculture practices can become site-specific, locally adaptive, operationally feasible and economically affordable
  data science in agriculture: Machine Learning and Artificial Intelligence for Agricultural Economics Chandrasekar Vuppalapati, 2021-10-04 This book discusses machine learning and artificial intelligence (AI) for agricultural economics. It is written with a view towards bringing the benefits of advanced analytics and prognostics capabilities to small scale farmers worldwide. This volume provides data science and software engineering teams with the skills and tools to fully utilize economic models to develop the software capabilities necessary for creating lifesaving applications. The book introduces essential agricultural economic concepts from the perspective of full-scale software development with the emphasis on creating niche blue ocean products. Chapters detail several agricultural economic and AI reference architectures with a focus on data integration, algorithm development, regression, prognostics model development and mathematical optimization. Upgrading traditional AI software development paradigms to function in dynamic agricultural and economic markets, this volume will be of great use to researchers and students in agricultural economics, data science, engineering, and machine learning as well as engineers and industry professionals in the public and private sectors.
  data science in agriculture: Precision Agriculture Basics D. Kent Shannon, David E. Clay, Newell R. Kitchen, 2020-01-22 With the growing popularity and availability of precision equipment, farmers and producers have access to more data than ever before. With proper implementation, precision agriculture management can improve profitability and sustainability of production. Precision Agriculture Basics is geared at students, crop consultants, farmers, extension workers, and practitioners that are interested in practical applications of site-specific agricultural management. Using a multidisciplinary approach, readers are taught to make data-driven on-farm decisions using the most current knowledge and tools in crop science, agricultural engineering, and geostatistics. Precision Agriculture Basics also features a stunning video glossary including interviews with agronomists on the job and in the field.
  data science in agriculture: Digital technologies in agriculture and rural areas Food and Agriculture Organization of the United Nations, 2019-06-01 This report aims to identify the different scenarios where the process of digital transformation is taking place in agriculture. This identifies those aspects of basic conditions, such as those of infrastructure and networks, affordability, education and institutional support. In addition, enablers are identified, which are the factors that allow adopting and integrating changes in the production and decision-making processes. Finally identify through cases, existing literature and reports how substantive changes are taking place in the adoption of digital technologies in agriculture.
  data science in agriculture: Internet of Things and Machine Learning in Agriculture Jyotir Moy Chatterjee, Abhishek Kumar, Pramod Singh Rathore, Vishal Jain, 2021-02-08 Agriculture is one of the most fundamental human activities. As the farming capacity has expanded, the usage of resources such as land, fertilizer, and water has grown exponentially, and environmental pressures from modern farming techniques have stressed natural landscapes. Still, by some estimates, worldwide food production needs to increase to keep up with global food demand. Machine Learning and the Internet of Things can play a promising role in the Agricultural industry, and help to increase food production while respecting the environment. This book explains how these technologies can be applied, offering many case studies developed in the research world.
  data science in agriculture: Data Science for Agricultural Innovation and Productivity S. Gowrishankar, Hamidah Ibrahim, A. Veena, K.P. Asha Rani, A.H. Srinivasa, 2024-02-12 Data Science for Agricultural Innovation and Productivity explores the transformation of agriculture through data-driven practices. This comprehensive book delves into the intersection of data science and farming, offering insights into the potential of big data analytics, machine learning, and IoT integration. Readers will find a wide range of topics covered in 10 chapters, including smart farming, AI applications, hydroponics, and robotics. Expert contributors, including researchers, practitioners, and academics in the fields of data science and agriculture, share their knowledge to provide readers with up-to-date insights and practical applications. The interdisciplinary emphasis of the book gives a well-rounded view of the subject. With real-world examples and case studies, this book demonstrates how data science is being successfully applied in agriculture, inspiring readers to explore new possibilities and contribute to the ongoing transformation of the agricultural sector. Sustainability and future outlook are the key themes, as the book explores how data science can promote environmentally conscious agricultural practices while addressing global food security concerns. Key Features: - Focus on data-driven agricultural practices - Comprehensive coverage of modern farming topics with an interdisciplinary perspective - Expert insights - Sustainability and future outlook -Highlights practical applications Data Science for Agricultural Innovation and Productivity is an essential resource for researchers, data scientists, farmers, agricultural technologists, students, educators, and anyone with an interest in the future of farming through data-driven agriculture.
  data science in agriculture: Science Breakthroughs to Advance Food and Agricultural Research by 2030 National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Environmental Change and Society, Health and Medicine Division, Food and Nutrition Board, Division on Earth and Life Studies, Water Science and Technology Board, Board on Life Sciences, Board on Atmospheric Sciences and Climate, Board on Agriculture and Natural Resources, Committee on Science Breakthroughs 2030: A Strategy for Food and Agricultural Research, 2019-04-21 For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
  data science in agriculture: Spatial Data Analysis in Ecology and Agriculture Using R Richard E. Plant, 2020-12-18 Key features: Unique in its combination of serving as an introduction to spatial statistics and to modeling agricultural and ecological data using R Provides exercises in each chapter to facilitate the book's use as a course textbook or for self-study Adds new material on generalized additive models, point pattern analysis, and new methods of Bayesian analysis of spatial data. Includes a completely revised chapter on the analysis of spatiotemporal data featuring recently introduced software and methods Updates its coverage of R software including newly introduced packages Spatial Data Analysis in Ecology and Agriculture Using R, 2nd Edition provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology, agriculture, and environmental science. Readers have praised the book's practical coverage of spatial statistics, real-world examples, and user-friendly approach in presenting and explaining R code, aspects maintained in this update. Using data sets from cultivated and uncultivated ecosystems, the book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Additional material to accompany the book, on both analyzing satellite data and on multivariate analysis, can be accessed at https: //www.plantsciences.ucdavis.edu/plant/additionaltopics.htm.
  data science in agriculture: Deep Learning Applications and Intelligent Decision Making in Engineering Senthilnathan, Karthikrajan, Shanmugam, Balamurugan, Goyal, Dinesh, Annapoorani, Iyswarya, Samikannu, Ravi, 2020-10-23 Deep learning includes a subset of machine learning for processing the unsupervised data with artificial neural network functions. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. When applied to engineering, deep learning can have a great impact on the decision-making process. Deep Learning Applications and Intelligent Decision Making in Engineering is a pivotal reference source that provides practical applications of deep learning to improve decision-making methods and construct smart environments. Highlighting topics such as smart transportation, e-commerce, and cyber physical systems, this book is ideally designed for engineers, computer scientists, programmers, software engineers, research scholars, IT professionals, academicians, and postgraduate students seeking current research on the implementation of automation and deep learning in various engineering disciplines.
  data science in agriculture: Smart Agricultural Services Using Deep Learning, Big Data, and IoT Gupta, Amit Kumar, Goyal, Dinesh, Singh, Vijander, Sharma, Harish, 2020-10-30 The agricultural sector can benefit immensely from developments in the field of smart farming. However, this research area focuses on providing specific fixes to particular situations and falls short on implementing data-driven frameworks that provide large-scale benefits to the industry as a whole. Using deep learning can bring immense data and improve our understanding of various earth sciences and improve farm services to yield better crop production and profit. Smart Agricultural Services Using Deep Learning, Big Data, and IoT is an essential publication that focuses on the application of deep learning to agriculture. While highlighting a broad range of topics including crop models, cybersecurity, and sustainable agriculture, this book is ideally designed for engineers, programmers, software developers, agriculturalists, farmers, policymakers, researchers, academicians, and students.
  data science in agriculture: Spatial Data Analysis in Ecology and Agriculture Using R Richard E. Plant, 2012-03-07 Assuming no prior knowledge of R, Spatial Data Analysis in Ecology and Agriculture Using R provides practical instruction on the use of the R programming language to analyze spatial data arising from research in ecology and agriculture. Written in terms of four data sets easily accessible online, this book guides the reader through the analysis of each data set, including setting research objectives, designing the sampling plan, data quality control, exploratory and confirmatory data analysis, and drawing scientific conclusions. Based on the author’s spatial data analysis course at the University of California, Davis, the book is intended for classroom use or self-study by graduate students and researchers in ecology, geography, and agricultural science with an interest in the analysis of spatial data.
  data science in agriculture: Internet of Things and Analytics for Agriculture, Volume 3 Prasant Kumar Pattnaik, Raghvendra Kumar, Souvik Pal, 2021-11-10 The book discusses one of the major challenges in agriculture which is delivery of cultivate produce to the end consumers with best possible price and quality. Currently all over the world, it is found that around 50% of the farm produce never reaches the end consumer due to wastage and suboptimal prices. The authors present solutions to reduce the transport cost, predictability of prices on the past data analytics and the current market conditions, and number of middle hops and agents between the farmer and the end consumer using IoT-based solutions. Again, the demand by consumption of agricultural products could be predicted quantitatively; however, the variation of harvest and production by the change of farm's cultivated area, weather change, disease and insect damage, etc., could be difficult to be predicted, so that the supply and demand of agricultural products has not been controlled properly. To overcome, this edited book designed the IoT-based monitoring system to analyze crop environment and the method to improve the efficiency of decision making by analyzing harvest statistics. The book is also useful for academicians working in the areas of climate changes.
  data science in agriculture: GIS Applications in Agriculture Francis J. Pierce, David Clay, 2007-02-13 As the first volume in a unique series concentrating on in-depth discussions of GIS topics, GIS Applications in Agriculture examines ways that this powerful technology can help farmers/firms to produce a greater abundance of crops with more efficiency and at lower costs. Each chapter describes the nature of the problem, examines the purpose of the GIS application, describes methods used to develop the application, provides results, and offers a conclusion as well as other supportive information. When appropriate, it presents the underlying statistical approach for the GIS software that is used. This text also includes a CD-ROM that features data sets and the full color maps produced by the use of GIS.
  data science in agriculture: Computer Vision and Machine Learning in Agriculture Mohammad Shorif Uddin, Jagdish Chand Bansal, 2021-03-23 This book discusses computer vision, a noncontact as well as a nondestructive technique involving the development of theoretical and algorithmic tools for automatic visual understanding and recognition which finds huge applications in agricultural productions. It also entails how rendering of machine learning techniques to computer vision algorithms is boosting this sector with better productivity by developing more precise systems. Computer vision and machine learning (CV-ML) helps in plant disease assessment along with crop condition monitoring to control the degradation of yield, quality, and severe financial loss for farmers. Significant scientific and technological advances have been made in defect assessment, quality grading, disease recognition, pests, insects, fruits, and vegetable types recognition and evaluation of a wide range of agricultural plants, crops, leaves, and fruits. The book discusses intelligent robots developed with the touch of CV-ML which can help farmers to perform various tasks like planting, weeding, harvesting, plant health monitoring, and so on. The topics covered in the book include plant, leaf, and fruit disease detection, crop health monitoring, applications of robots in agriculture, precision farming, assessment of product quality and defects, pest, insect, fruits, and vegetable types recognition.
  data science in agriculture: Artificial Intelligence in Agriculture Rajesh Singh, Anita Gehlot, Mahesh Kumar Prajapat, Bhupendra Singh, 2021-11-23 This book is a platform for anyone who wishes to explore Artificial Intelligence in the field of agriculture from scratch or broaden their understanding and its uses. This book offers a practical, hands-on exploration of Artificial Intelligence, machine learning, deep Learning, computer vision and Expert system with proper examples to understand. This book also covers the basics of python with example so that any anyone can easily understand and utilize artificial intelligence in agriculture field. This book is divided into two parts wherein first part talks about the artificial intelligence and its impact in the agriculture with all its branches and their basics. The second part of the book is purely implementation of algorithms and use of different libraries of machine learning, deep learning and computer vision to build useful and sightful projects in real time which can be very useful for you to have better understanding of artificial intelligence. After reading this book, the reader will an understanding of what Artificial Intelligence is, where it is applicable, and what are its different branches, which can be useful in different scenarios. The reader will be familiar with the standard workflow for approaching and solving machine-learning problems, and how to address commonly encountered issues. The reader will be able to use Artificial Intelligence to tackle real-world problems ranging from crop health prediction to field surveillance analytics, classification to recognition of species of plants etc. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
  data science in agriculture: Smart Agriculture Automation Using Advanced Technologies Amitava Choudhury, Arindam Biswas, T. P. Singh, Santanu Kumar Ghosh, 2022-01-01 This book addresses the challenges for developing and emerging trends in Internet-of-Things (IoT) for smart agriculture platforms. It also describes data analytics & machine learning, cloud architecture, automation & robotics and aims to overcome existing barriers for smart agriculture with commercial viability. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. The book explores a range of applications including intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems. This volume will be helpful for engineering and technology experts and researchers, as well as for policy-makers.
  data science in agriculture: Smart Agriculture Govind Singh Patel, Amrita Rai, Nripendra Narayan Das, R.P. Singh, 2021-02-10 This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.
  data science in agriculture: Artificial Intelligence and Smart Agriculture Technology Utku Kose, V. B. Surya Prasath, M. Rubaiyat Hossain Mondal, Prajoy Podder, Subrato Bharati, 2022-06-27 This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.
  data science in agriculture: Precision Agriculture Technologies for Food Security and Sustainability Abd El-Kader, Sherine M., Mohammad El-Basioni, Basma M., 2020-10-16 Precision agriculture integrates new technologies with the agronomic experience to intelligently manage the high spatial variability of all agricultural variables and the time scales at which these variables change. The right application of this approach increases the size and quality of the agricultural production; saves resources; improves environmental quality; helps to achieve self-sufficiency, food security, and agricultural sustainability; increases exports; and more. Precision Agriculture Technologies for Food Security and Sustainability is an essential reference source that compiles a comprehensive, multidisciplinary review of current research in the field of precision agriculture. It also discusses cutting-edge tools and models that can help facilitate and improve the systems implementation. Featuring coverage of a wide range of topics including agronomy, public policy, and internet of things, this book is ideally designed for agriculturalists, government officials, economists, environmentalists, academicians, researchers, students, and engineers in the fields of electronics, ICT, and agriculture.
  data science in agriculture: Data Science for Agricultural Innovation and Productivity Hamidah Ibrahim, A Veena, K P Asha Rani, 2024-02-13 Data Science for Agricultural Innovation and Productivity explores the transformation of agriculture through data-driven practices. This comprehensive book delves into the intersection of data science and farming, offering insights into the potential of big data analytics, machine learning, and IoT integration. Readers will find a wide range of topics covered in 10 chapters, including smart farming, AI applications, hydroponics, and robotics. Expert contributors, including researchers, practitioners, and academics in the fields of data science and agriculture, share their knowledge to provide readers with up-to-date insights and practical applications. The interdisciplinary emphasis of the book gives a well-rounded view of the subject. With real-world examples and case studies, this book demonstrates how data science is being successfully applied in agriculture, inspiring readers to explore new possibilities and contribute to the ongoing transformation of the agricultural sector. Sustainability and future outlook are the key themes, as the book explores how data science can promote environmentally conscious agricultural practices while addressing global food security concerns. Key Features:
  data science in agriculture: Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture Tomar, Pradeep, Kaur, Gurjit, 2021-01-08 As technology continues to saturate modern society, agriculture has started to adopt digital computing and data-driven innovations. This emergence of “smart” farming has led to various advancements in the field, including autonomous equipment and the collection of climate, livestock, and plant data. As connectivity and data management continue to revolutionize the farming industry, empirical research is a necessity for understanding these technological developments. Artificial Intelligence and IoT-Based Technologies for Sustainable Farming and Smart Agriculture provides emerging research exploring the theoretical and practical aspects of critical technological solutions within the farming industry. Featuring coverage on a broad range of topics such as crop monitoring, precision livestock farming, and agronomic data processing, this book is ideally designed for farmers, agriculturalists, product managers, farm holders, manufacturers, equipment suppliers, industrialists, governmental professionals, researchers, academicians, and students seeking current research on technological applications within agriculture and farming.
  data science in agriculture: Statistical Procedures for Agricultural Research Kwanchai A. Gomez, Arturo A. Gomez, 1984-02-17 Here in one easy-to-understand volume are the statistical procedures and techniques the agricultural researcher needs to know in order to design, implement, analyze, and interpret the results of most experiments with crops. Designed specifically for the non-statistician, this valuable guide focuses on the practical problems of the field researcher. Throughout, it emphasizes the use of statistics as a tool of research—one that will help pinpoint research problems and select remedial measures. Whenever possible, mathematical formulations and statistical jargon are avoided. Originally published by the International Rice Research Institute, this widely respected guide has been totally updated and much expanded in this Second Edition. It now features new chapters on the analysis of multi-observation data and experiments conducted over time and space. Also included is a chapter on experiments in farmers' fields, a subject of major concern in developing countries where agricultural research is commonly conducted outside experiment stations. Statistical Procedures for Agricultural Research, Second Edition will prove equally useful to students and professional researchers in all agricultural and biological disciplines. A wealth of examples of actual experiments help readers to choose the statistical method best suited for their needs, and enable even the most complicated procedures to be easily understood and directly applied. An International Rice Research Institute Book
  data science in agriculture: Remote Sensing in Precision Agriculture Salim Lamine, Prashant K. Srivastava, Ahmed Kayad, Francisco Munoz Arriola, Prem Chandra Pandey, 2023-10-20 Remote Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation compiles the latest applications of remote sensing in agriculture using spaceborne, airborne and drones' geospatial data. The book presents case studies, new algorithms and the latest methods surrounding crop sown area estimation, determining crop health status, assessment of vegetation dynamics, crop diseases identification, crop yield estimation, soil properties, drone image analysis for crop damage assessment, and other issues in precision agriculture. This book is ideal for those seeking to explore and implement remote sensing in an effective and efficient manner with its compendium of scientifically and technologically sound information. - Presents a well-integrated collection of chapters, with quality, consistency and continuity - Provides the latest RS techniques in Precision Agriculture that are addressed by leading experts - Includes detailed, yet geographically global case studies that can be easily understood, reproduced or implemented - Covers geospatial data, with codes available through shared links
  data science in agriculture: Improving Data Management and Decision Support Systems in Agriculture Leisa Armstrong, 2020-03-24 Part 1 reviews general issues underpinning effective decision support systems (DSS) such as data access, standards, tagging and security. Part 2 contains case studies of the practical application of DSS in areas such as crop planting and nutrition, livestock feed and pasture management as well as supply chains.
  data science in agriculture: Agriculture 5.0 Latief Ahmad, Firasath Nabi, 2021-03-24 Agriculture 5.0: Artificial Intelligence, IoT & Machine Learning provides an interdisciplinary, integrative overview of latest development in the domain of smart farming. It shows how the traditional farming practices are being enhanced and modified by automation and introduction of modern scalable technological solutions that cut down on risks, enhance sustainability, and deliver predictive decisions to the grower, in order to make agriculture more productive. An elaborative approach has been used to highlight the applicability and adoption of key technologies and techniques such WSN, IoT, AI and ML in agronomic activities ranging from collection of information, analysing and drawing meaningful insights from the information which is more accurate, timely and reliable.It synthesizes interdisciplinary theory, concepts, definitions, models and findings involved in complex global sustainability problem-solving, making it an essential guide and reference. It includes real-world examples and applications making the book accessible to a broader interdisciplinary readership. This book clarifies hoe the birth of smart and intelligent agriculture is being nurtured and driven by the deployment of tiny sensors or AI/ML enabled UAV’s or low powered Internet of Things setups for the sensing, monitoring, collection, processing and storing of the information over the cloud platforms. This book is ideal for researchers, academics, post-graduate students and practitioners of agricultural universities, who want to embrace new agricultural technologies for Determination of site-specific crop requirements, future farming strategies related to controlling of chemical sprays, yield, price assessments with the help of AI/ML driven intelligent decision support systems and use of agri-robots for sowing and harvesting. The book will be covering and exploring the applications and some case studies of each technology, that have heavily made impact as grand successes. The main aim of the book is to give the readers immense insights into the impact and scope of WSN, IoT, AI and ML in the growth of intelligent digital farming and Agriculture revolution 5.0.The book also focuses on feasibility of precision farming and the problems faced during adoption of precision farming techniques, its potential in India and various policy measures taken all over the world. The reader can find a description of different decision support tools like crop simulation models, their types, and application in PA. Features: Detailed description of the latest tools and technologies available for the Agriculture 5.0. Elaborative information for different type of hardware, platforms and machine learning techniques for use in smart farming. Elucidates various types of predictive modeling techniques available for intelligent and accurate agricultural decision making from real time collected information for site specific precision farming. Information about different type of regulations and policies made by all over the world for the motivation farmers and innovators to invest and adopt the AI and ML enabled tools and farming systems for sustainable production.
  data science in agriculture: Internet of Things and Analytics for Agriculture, Volume 2 Prasant Kumar Pattnaik, Raghvendra Kumar, Souvik Pal, 2019-10-24 This book addresses major challenges faced by farmers and the technological solutions based on Internet of Things (IoT). A major challenge in agriculture is cultivating and supplying high-quality produce at the best. Currently, around 50% of global farm produce never reaches the end consumer due to wastage and suboptimal prices. The book presents solutions that reduce the transport costs, improve the predictability of prices based on data analytics and the current market conditions, and reduce the number of middle steps and agents between the farmer and the end consumer. It discusses the design of an IoT-based monitoring system to analyze crop environments and a method to improve the efficiency of decision-making by analyzing harvest statistics. Further, it explores climate-smart methods, known as smart agriculture, that have been adopted by a number of Indian farmers.
  data science in agriculture: Data Science and Data Analytics Amit Kumar Tyagi, 2021-09-22 Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity.
  data science in agriculture: Modern Techniques for Agricultural Disease Management and Crop Yield Prediction Pradeep, N., Kautish, Sandeep, Nirmala, C.R., Goyal, Vishal, Abdellatif, Sonia, 2019-08-16 Since agriculture is one of the key parameters in assessing the gross domestic product (GDP) of any country, it has become crucial to transition from traditional agricultural practices to smart agriculture. New agricultural technologies provide numerous opportunities to maximize crop yield by recognizing and analyzing diseases and other natural variables that may affect it. Therefore, it is necessary to understand how computer-assisted technologies can best be utilized and adopted in the conversion to smart agriculture. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction is an essential publication that widens the spectrum of computational methods that can aid in agriculture disease management, weed detection, and crop yield prediction. Featuring coverage on a wide range of topics such as soil and crop sensors, swarm robotics, and weed detection, this book is ideally designed for environmentalists, farmers, botanists, agricultural engineers, computer engineers, scientists, researchers, practitioners, and students seeking current research on technology and techniques for agricultural diseases and predictive trends.
  data science in agriculture: Spatial Data Mining Deren Li, Shuliang Wang, Deyi Li, 2016-03-23 · This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
  data science in agriculture: Improving Crop Estimates by Integrating Multiple Data Sources National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Methods for Integrating Multiple Data Sources to Improve Crop Estimates, 2018-01-26 The National Agricultural Statistics Service (NASS) is the primary statistical data collection agency within the U.S. Department of Agriculture (USDA). NASS conducts hundreds of surveys each year and prepares reports covering virtually every aspect of U.S. agriculture. Among the small-area estimates produced by NASS are county-level estimates for crops (planted acres, harvested acres, production, and yield by commodity) and for cash rental rates for irrigated cropland, nonirrigated cropland, and permanent pastureland. Key users of these county-level estimates include USDA's Farm Services Agency (FSA) and Risk Management Agency (RMA), which use the estimates as part of their processes for distributing farm subsidies and providing farm insurance, respectively. Improving Crop Estimates by Integrating Multiple Data Sources assesses county-level crop and cash rents estimates, and offers recommendations on methods for integrating data sources to provide more precise county-level estimates of acreage and yield for major crops and of cash rents by land use. This report considers technical issues involved in using the available data sources, such as methods for integrating the data, the assumptions underpinning the use of each source, the robustness of the resulting estimates, and the properties of desirable estimates of uncertainty.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues …

Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to …

Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their …