Advertisement
data science conference boston: Big Data for Twenty-First-Century Economic Statistics Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, Matthew D. Shapiro, 2022-03-11 Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra. |
data science conference boston: The Economics of Artificial Intelligence Ajay Agrawal, Joshua Gans, Avi Goldfarb, Catherine Tucker, 2024-03-05 A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system. |
data science conference boston: The Ethical Algorithm Michael Kearns, Aaron Roth, 2020 Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design. |
data science conference boston: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2020-03-31 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. |
data science conference boston: Fighting Churn with Data Carl S. Gold, 2020-12-22 The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. Summary The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. This hands-on guide is packed with techniques for converting raw data into measurable metrics, testing hypotheses, and presenting findings that are easily understandable to non-technical decision makers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Keeping customers active and engaged is essential for any business that relies on recurring revenue and repeat sales. Customer turnover—or “churn”—is costly, frustrating, and preventable. By applying the techniques in this book, you can identify the warning signs of churn and learn to catch customers before they leave. About the book Fighting Churn with Data teaches developers and data scientists proven techniques for stopping churn before it happens. Packed with real-world use cases and examples, this book teaches you to convert raw data into measurable behavior metrics, calculate customer lifetime value, and improve churn forecasting with demographic data. By following Zuora Chief Data Scientist Carl Gold’s methods, you’ll reap the benefits of high customer retention. What's inside Calculating churn metrics Identifying user behavior that predicts churn Using churn reduction tactics with customer segmentation Applying churn analysis techniques to other business areas Using AI for accurate churn forecasting About the reader For readers with basic data analysis skills, including Python and SQL. About the author Carl Gold (PhD) is the Chief Data Scientist at Zuora, Inc., the industry-leading subscription management platform. Table of Contents: PART 1 - BUILDING YOUR ARSENAL 1 The world of churn 2 Measuring churn 3 Measuring customers 4 Observing renewal and churn PART 2 - WAGING THE WAR 5 Understanding churn and behavior with metrics 6 Relationships between customer behaviors 7 Segmenting customers with advanced metrics PART 3 - SPECIAL WEAPONS AND TACTICS 8 Forecasting churn 9 Forecast accuracy and machine learning 10 Churn demographics and firmographics 11 Leading the fight against churn |
data science conference boston: Artificial Intelligence and the Legal Profession Michael Legg, Felicity Bell, 2020-11-26 How are new technologies changing the practice of law? With examples and explanations drawn from the UK, US, Canada, Australia and other common law countries, as well as from China and Europe, this book considers the opportunities and implications for lawyers as artificial intelligence systems become commonplace in legal service delivery. It examines what lawyers do in the practice of law and where AI will impact this work. It also explains the important continuing role of the lawyer in an AI world. This book is divided into three parts: Part A provides an accessible explanation of AI, including diagrams, and contrasts this with the role and work of lawyers. Part B focuses on six different aspects of legal work (litigation, transactional, dispute resolution, regulation and compliance, criminal law and legal advice and strategy) where AI is making a considerable impact and looks at how this is occurring. Part C discusses how lawyers and law firms can best utilise the promise of AI, while also acknowledging its limitations. It also discusses ethical and regulatory issues, including the lawyer's role in upholding the rule of law. |
data science conference boston: Data Mining and Knowledge Discovery Handbook Oded Maimon, Lior Rokach, 2006-05-28 Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management. |
data science conference boston: The Mathematics of Data Michael W. Mahoney, John C. Duchi, Anna C. Gilbert, 2018-11-15 Nothing provided |
data science conference boston: R for Everyone Jared P. Lander, 2017-06-13 Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone, Second Edition, is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, manipulation, and visualization; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. After all this you’ll make your code reproducible with LaTeX, RMarkdown, and Shiny. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. Coverage includes Explore R, RStudio, and R packages Use R for math: variable types, vectors, calling functions, and more Exploit data structures, including data.frames, matrices, and lists Read many different types of data Create attractive, intuitive statistical graphics Write user-defined functions Control program flow with if, ifelse, and complex checks Improve program efficiency with group manipulations Combine and reshape multiple datasets Manipulate strings using R’s facilities and regular expressions Create normal, binomial, and Poisson probability distributions Build linear, generalized linear, and nonlinear models Program basic statistics: mean, standard deviation, and t-tests Train machine learning models Assess the quality of models and variable selection Prevent overfitting and perform variable selection, using the Elastic Net and Bayesian methods Analyze univariate and multivariate time series data Group data via K-means and hierarchical clustering Prepare reports, slideshows, and web pages with knitr Display interactive data with RMarkdown and htmlwidgets Implement dashboards with Shiny Build reusable R packages with devtools and Rcpp Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available. |
data science conference boston: SQL for Data Scientists Renee M. P. Teate, 2021-08-17 Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on how to think about constructing your dataset. Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward! |
data science conference boston: The Science of Science Dashun Wang, Albert-László Barabási, 2021-03-25 This is the first comprehensive overview of the exciting field of the 'science of science'. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists, policy makers, and administrators with an interest in the wider scientific enterprise. |
data science conference boston: Neuromorphic Photonics Paul R. Prucnal, Bhavin J. Shastri, 2017-05-08 This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of neuromorphic photonics. It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field. |
data science conference boston: Data Science and Analytics Sneha Kumari, K.K. Tripathy, Vidya Kumbhar, 2020-12-04 Data Science and Analytics explores the application of big data and business analytics by academics, researchers, industrial experts, policy makers and practitioners, helping the reader to understand how big data can be efficiently utilized in better managerial applications. |
data science conference boston: Competing on Analytics Thomas H. Davenport, Jeanne G. Harris, 2007-03-06 You have more information at hand about your business environment than ever before. But are you using it to “out-think” your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new tools to identify their most profitable customers and offer them the right price, to accelerate product innovation, to optimize supply chains, and to identify the true drivers of financial performance. A wealth of examples—from organizations as diverse as Amazon, Barclay’s, Capital One, Harrah’s, Procter & Gamble, Wachovia, and the Boston Red Sox—illuminate how to leverage the power of analytics. |
data science conference boston: Python Natural Language Processing Cookbook Zhenya Antić, 2021-03-19 Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book DescriptionPython is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You’ll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you’ll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you’ll have developed the skills to use a powerful set of tools for text processing.What you will learn Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects. |
data science conference boston: Data Science Pinle Qin, Hongzhi Wang, Guanglu Sun, Zeguang Lu, 2020-08-20 This two volume set (CCIS 1257 and 1258) constitutes the refereed proceedings of the 6th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2020 held in Taiyuan, China, in September 2020. The 98 papers presented in these two volumes were carefully reviewed and selected from 392 submissions. The papers are organized in topical sections: database, machine learning, network, graphic images, system, natural language processing, security, algorithm, application, and education. |
data science conference boston: Artificial Intelligence Stuart Russell, Peter Norvig, 2016-09-10 Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence. |
data science conference boston: Mediterranean Forum – Data Science Conference Jasminka Hasic Telalovic, Mehmed Kantardzic, 2021-04-01 This book constitutes selected and revised papers from the First Mediterranean Forum - Data Science Conference, MeFDATA 2020, held in Sarajevo, Bosnia and Herzegovina, in October 2020. The 11 papers presented were carefully reviewed and selected from the 26 qualified submissions. The papers are organized in the topical sections on human behaviour and pandemic; applications in medicine; industrial applications; natural language processing. |
data science conference boston: WebSci '18 Websci, 2018-10-31 It is our great pleasure to welcome you to the 10th ACM Conference on Web Science, Amsterdam, 27-30 May 2018. This year's edition of the WebSci conference (WebSci'18) celebrates the ten year anniversary of the unique conference series where a multitude of disciplines converge in a creative and critical dialogue with the aim of understanding the Web and its impacts. The WebSci conference brings together researchers from multiple disciplines, like computer science, sociology, economics, information science, anthropology and psychology. Web Science is the emergent study of the people and technologies, applications, processes and practices that shape and are shaped by the World Wide Web. Web Science aims to draw together theories, methods and findings from across academic disciplines, and to collaborate with industry, business, government and civil society, to develop our knowledge and understanding of the Web: the largest socio-technical network in human history. This year we were very pleased to receive 113 submissions for the regular research track. Given the high quality of submissions, it has been a hard job to decide which of the contributions to select for the conference. We are grateful for the support of the Program Committee which consisted of 10 senior members and 35 regular members. All PC members worked hard, based on which we could select an interesting, varied, exciting program comprising 30 long and 15 short papers. |
data science conference boston: Advances in Knowledge Discovery and Data Mining Usama M. Fayyad, 1996 Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher. |
data science conference boston: Social Sensing Dong Wang, Tarek Abdelzaher, Lance Kaplan, 2015-04-17 Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book |
data science conference boston: Drawdown Paul Hawken, 2017-04-18 • New York Times bestseller • The 100 most substantive solutions to reverse global warming, based on meticulous research by leading scientists and policymakers around the world “At this point in time, the Drawdown book is exactly what is needed; a credible, conservative solution-by-solution narrative that we can do it. Reading it is an effective inoculation against the widespread perception of doom that humanity cannot and will not solve the climate crisis. Reported by-effects include increased determination and a sense of grounded hope.” —Per Espen Stoknes, Author, What We Think About When We Try Not To Think About Global Warming “There’s been no real way for ordinary people to get an understanding of what they can do and what impact it can have. There remains no single, comprehensive, reliable compendium of carbon-reduction solutions across sectors. At least until now. . . . The public is hungry for this kind of practical wisdom.” —David Roberts, Vox “This is the ideal environmental sciences textbook—only it is too interesting and inspiring to be called a textbook.” —Peter Kareiva, Director of the Institute of the Environment and Sustainability, UCLA In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. If deployed collectively on a global scale over the next thirty years, they represent a credible path forward, not just to slow the earth’s warming but to reach drawdown, that point in time when greenhouse gases in the atmosphere peak and begin to decline. These measures promise cascading benefits to human health, security, prosperity, and well-being—giving us every reason to see this planetary crisis as an opportunity to create a just and livable world. |
data science conference boston: Social Network Data Analytics Charu C. Aggarwal, 2011-03-18 Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science. |
data science conference boston: Mining of Massive Datasets Jure Leskovec, Jurij Leskovec, Anand Rajaraman, Jeffrey David Ullman, 2014-11-13 Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets. |
data science conference boston: Data Science and Big Data: An Environment of Computational Intelligence Witold Pedrycz, Shyi-Ming Chen, 2017-03-21 This book presents a comprehensive and up-to-date treatise of a range of methodological and algorithmic issues. It also discusses implementations and case studies, identifies the best design practices, and assesses data analytics business models and practices in industry, health care, administration and business.Data science and big data go hand in hand and constitute a rapidly growing area of research and have attracted the attention of industry and business alike. The area itself has opened up promising new directions of fundamental and applied research and has led to interesting applications, especially those addressing the immediate need to deal with large repositories of data and building tangible, user-centric models of relationships in data. Data is the lifeblood of today’s knowledge-driven economy.Numerous data science models are oriented towards end users and along with the regular requirements for accuracy (which are present in any modeling), come the requirements for ability to process huge and varying data sets as well as robustness, interpretability, and simplicity (transparency). Computational intelligence with its underlying methodologies and tools helps address data analytics needs.The book is of interest to those researchers and practitioners involved in data science, Internet engineering, computational intelligence, management, operations research, and knowledge-based systems. |
data science conference boston: Predictive Analytics Eric Siegel, 2016-01-12 Mesmerizing & fascinating... —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a |
data science conference boston: Advances in Data Science Edwin Diday, Rong Guan, Gilbert Saporta, Huiwen Wang, 2020-02-05 Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. |
data science conference boston: Building Machine Learning Pipelines Hannes Hapke, Catherine Nelson, 2020-07-13 Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques |
data science conference boston: Practical Natural Language Processing Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, 2020-06-17 Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective |
data science conference boston: Predictive Analytics Eric Siegel, 2013-02-07 “Mesmerizing & fascinating...” —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive Analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated — and Hillary for America 2016 plans to calculate — the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 183 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics. |
data science conference boston: Roundtable on Data Science Postsecondary Education National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Division on Engineering and Physical Sciences, Board on Science Education, Computer Science and Telecommunications Board, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, 2020-09-02 Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting. |
data science conference boston: Game Analytics Magy Seif El-Nasr, Anders Drachen, Alessandro Canossa, 2013-03-30 Developing a successful game in today’s market is a challenging endeavor. Thousands of titles are published yearly, all competing for players’ time and attention. Game analytics has emerged in the past few years as one of the main resources for ensuring game quality, maximizing success, understanding player behavior and enhancing the quality of the player experience. It has led to a paradigm shift in the development and design strategies of digital games, bringing data-driven intelligence practices into the fray for informing decision making at operational, tactical and strategic levels. Game Analytics - Maximizing the Value of Player Data is the first book on the topic of game analytics; the process of discovering and communicating patterns in data towards evaluating and driving action, improving performance and solving problems in game development and game research. Written by over 50 international experts from industry and research, it covers a comprehensive range of topics across more than 30 chapters, providing an in-depth discussion of game analytics and its practical applications. Topics covered include monetization strategies, design of telemetry systems, analytics for iterative production, game data mining and big data in game development, spatial analytics, visualization and reporting of analysis, player behavior analysis, quantitative user testing and game user research. This state-of-the-art volume is an essential source of reference for game developers and researchers. Key takeaways include: Thorough introduction to game analytics; covering analytics applied to data on players, processes and performance throughout the game lifecycle. In-depth coverage and advice on setting up analytics systems and developing good practices for integrating analytics in game-development and -management. Contributions by leading researchers and experienced professionals from the industry, including Ubisoft, Sony, EA, Bioware, Square Enix, THQ, Volition, and PlayableGames. Interviews with experienced industry professionals on how they use analytics to create hit games. |
data science conference boston: Data Science for Healthcare Sergio Consoli, Diego Reforgiato Recupero, Milan Petković, 2019-02-23 This book seeks to promote the exploitation of data science in healthcare systems. The focus is on advancing the automated analytical methods used to extract new knowledge from data for healthcare applications. To do so, the book draws on several interrelated disciplines, including machine learning, big data analytics, statistics, pattern recognition, computer vision, and Semantic Web technologies, and focuses on their direct application to healthcare. Building on three tutorial-like chapters on data science in healthcare, the following eleven chapters highlight success stories on the application of data science in healthcare, where data science and artificial intelligence technologies have proven to be very promising. This book is primarily intended for data scientists involved in the healthcare or medical sector. By reading this book, they will gain essential insights into the modern data science technologies needed to advance innovation for both healthcare businesses and patients. A basic grasp of data science is recommended in order to fully benefit from this book. |
data science conference boston: Proceedings of 4th International Conference on BigData Analysis and Data Mining 2017 ConferenceSeries, September 07-08, 2017 Paris, France Key Topics : Cloud computing, Forecasting from Big Data, Optimization and Big Data, New visualization techniques, Social network analysis, Search and data mining, Complexity and Algorithms, Open Data, ETL (Extract, Transform and Load), OLAP Technologies, Big Data Algorithm, Data Mining Analysis, Kernel Methods, Frequent Pattern Mining, Clustering, Data Privacy and Ethics, Big Data Technologies, Business Analytics, Data Mining Methods and Algorithms, Data Mining Tasks and Processes, Data Mining Applications in Science, Engineering, Healthcare and Medicine, Big Data Applications, Data Mining Tools and Software, Data Warehousing, Artificial Intelligence, |
data science conference boston: Modeling the Internet and the Web Pierre Baldi, Paolo Frasconi, Padhraic Smyth, 2003-07-07 Despite its haphazard growth, the Web hides powerful underlying regularities - from the organization of its links to the patterns found in its use by millions of users. Probabilistic modelling allows many of these regularities to be predicted on the basis of theoretical models based on statistical methodology. |
data science conference boston: Data Science Vijay Kotu, Bala Deshpande, 2018-11-27 Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You'll be able to: - Gain the necessary knowledge of different data science techniques to extract value from data. - Master the concepts and inner workings of 30 commonly used powerful data science algorithms. - Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... - Contains fully updated content on data science, including tactics on how to mine business data for information - Presents simple explanations for over twenty powerful data science techniques - Enables the practical use of data science algorithms without the need for programming - Demonstrates processes with practical use cases - Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language - Describes the commonly used setup options for the open source tool RapidMiner |
data science conference boston: Secure Data Science Bhavani Thuraisingham, Murat Kantarcioglu, Latifur Khan, 2022-04-27 Secure data science, which integrates cyber security and data science, is becoming one of the critical areas in both cyber security and data science. This is because the novel data science techniques being developed have applications in solving such cyber security problems as intrusion detection, malware analysis, and insider threat detection. However, the data science techniques being applied not only for cyber security but also for every application area—including healthcare, finance, manufacturing, and marketing—could be attacked by malware. Furthermore, due to the power of data science, it is now possible to infer highly private and sensitive information from public data, which could result in the violation of individual privacy. This is the first such book that provides a comprehensive overview of integrating both cyber security and data science and discusses both theory and practice in secure data science. After an overview of security and privacy for big data services as well as cloud computing, this book describes applications of data science for cyber security applications. It also discusses such applications of data science as malware analysis and insider threat detection. Then this book addresses trends in adversarial machine learning and provides solutions to the attacks on the data science techniques. In particular, it discusses some emerging trends in carrying out trustworthy analytics so that the analytics techniques can be secured against malicious attacks. Then it focuses on the privacy threats due to the collection of massive amounts of data and potential solutions. Following a discussion on the integration of services computing, including cloud-based services for secure data science, it looks at applications of secure data science to information sharing and social media. This book is a useful resource for researchers, software developers, educators, and managers who want to understand both the high level concepts and the technical details on the design and implementation of secure data science-based systems. It can also be used as a reference book for a graduate course in secure data science. Furthermore, this book provides numerous references that would be helpful for the reader to get more details about secure data science. |
data science conference boston: Data Science and Big Data Analytics Durgesh Kumar Mishra, Xin-She Yang, Aynur Unal, 2018-08-01 This book presents conjectural advances in big data analysis, machine learning and computational intelligence, as well as their potential applications in scientific computing. It discusses major issues pertaining to big data analysis using computational intelligence techniques, and the conjectural elements are supported by simulation and modelling applications to help address real-world problems. An extensive bibliography is provided at the end of each chapter. Further, the main content is supplemented by a wealth of figures, graphs, and tables, offering a valuable guide for researchers in the field of big data analytics and computational intelligence. |
data science conference boston: Foundations of Machine Learning, second edition Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, 2018-12-25 A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition. |
data science conference boston: Mining Text Data Charu C. Aggarwal, ChengXiang Zhai, 2012-02-03 Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book. |
2024 Informatics Summit - American Medical Informatics …
AMIA 2024 Informatics Summit attendees will experience content dedicated to translational bioinformatics, precision medicine, clinical research informatics, data science, and artificial …
BOSTON, MA & VIRTUAL - bio-itworldexpo.com
BIO-IT WORLD: VENTURE, INNOVATION & PARTNERING CONFERENCE APRIL 17 8:00AM-4:30PM - New for 2024! 8:00 – 10:00am W1: Generative AI 101: Demystifying for Drug …
SPONSORSHIP & EXHIBITION OPPORTUNITIES - scdmlive.org
Clinical Data Management to Clinical Data Science. This conference will deliver key learning experiences where our Members, Partners, Thought Leaders and Organizations come together.
2025 IEEE International Conference on Artificial Intelligence
This new conference will emphasize the applications of AI and key AI verticals that impact technology applications and innovations. The conference aims to provide an experience that …
1 BSU Artificial Intelligence (AI) & Data Science Conference 2025
supports developing, prototyping, and idempotent deployment of Data Science, Natural Language Processing, Computer Vision, and Machine Learning applications. Resources: • CTPO: …
August 14-17, 2023 | Boston, MA Sheraton Boston + Virtual
Strategies for Biopharma fireside discussions and networking event taking place, Monday August 14, 2023 in Boston (part of the 15th Annual Bioprocessing Summit). AGENDA:
Networks and large scale optimization - jbento.info
Open Data Science Conference Boston, May 2018. Outline Why is optimization important? Large scale optimization Message-passing solver Benefits Application examples. Why is optimization …
WOMEN IN DATA SCIENCE @AUB CONFERENCE
On How Can Data Science Revolutionize Humanitarian Crises Response and Sustainable Human Development? On Who Contributes to Disaster Preparedness?
RESI Boston June Conference Brochure - lifesciencenation.com
RESI Boston June 2025 June 16-18 The Innovator’s Pitch Challenge (IPC) is an opportunity for early-stage companies to gain additional exposure to conference attendees, pitch directly to a …
Stabilizing Gradients for Deep Neural Networks - University of …
Harvard Data Science Conference Boston, MA Oct 17, 2018 Joint work with Jiong Zhang and Qi Lei (UT Austin), Vijai Mohan (Amazon Search), Po-Wei Wang (CMU) & Huan Zhang (UC …
Join us in Boston for the 2025 AAAS Annual Meeting, - Science
Join us in Boston, MA, February 13-15. Register for the 2025 AAAS Annual Meeting through January 22 for discounted advance registration rates (see below). Standard rates will apply …
MONDAY, APRIL 15, 2024 TUESDAY, APRIL 16, 2024 …
boston, ma omni boston hotel at the seaport & virtual event at-a-glance modern data platforms and storage infrastructure plenary keynote program plenary keynote program bio-it world: …
Advances in Data Science and Information Engineering
It gives us great pleasure to introduce this collection of papers that were presented at the following international conferences: Data Science (ICDATA 2020) and Information & …
CONNECT WITH LEADERS AND INNOVATORS - Society for …
August 4-7, 2024, at the Sheraton Boston Hotel in Boston, Massachusetts. The Annual Meeting program consists of over 30 symposia, special sessions, and poster sessions covering …
Welcome to Boston University
Undergraduate Major in Data Science(launched Fall 2021, first matriculates in Fall 2022) • Spiral approach for coverage of data science foundations (a.k.a. math on demand) • Two pathways …
A YEAR OF FIRSTS - Boston University
MS in Data Science In spring 2023, CDS proudly announced its Master of Science in Data Science program, with its inaugural cohort starting in fall 2023. Students completing the …
Echo State Networks for Time Series Data
Echo State Networks for Time Series Data Teal Guidici, PhD April 2021 Open Data Science Conference, Boston
ELEVATING ANALYTICS THROUGH HUMAN & ARTIFICIAL …
2025 Conference: Leading Edge Insights, Coastal Views » Be inspired by thought leaders » Connect analytics methodologies with business applications » Gain knowledge on innovative …
Faculty of Computing Data Sciences - BU
Undergraduate Major in Data Science(launched Fall 2021, first matriculates by Fall 2022) • Spiral approach for coverage of data science foundations (a.k.a. math on demand) • Two pathways …
How should we (correctly) compare networks?
Problem Given!graphs, "#,⋯,"&,wewanttofindanotionofsimilarity,'"#,⋯,"&,thatgivesasmallvaluewhenthe …
Softcite: Data-Driven Software Visibility in Science
software toolkits used by other data science researchers, Softcite is conceived for meeting such needs. By mining software mentioned in research publications, Softcite informs technology …
w i l l i a m .c a r m e l l o@ bc .e du ; ( 518) 795- 0080 21 R i …
Boston College, Boston, MA Master of Science in Applied Economics , Expected December 2021 ... Inducted into Pi Sigma Alpha, National Political Science Honor Society (2019) 2x nominee for the …
Fully-automated testing with - Open Data Science Conference
is the art and science of passing arbitrary inputs to programs, to see if they crash or hang. Using sanitisers and assertions to crash on logic errors is even more useful! Fuzzers like Atheris or …
Macroeconomic Conceptualization In EVE Online - odsc.com
they also allow for better data collection than what is available in the real world. I was able to employ publicly available information gathered from EVE Online, a sort of space-pirate themed …
Restaurant Services - odsc.com
BOSTON All wok fired entrees include of steam rice or fried rice BEEF AND BROCOLLI 10.00 CASHEW NUT CHICKEN 10.00 STIR FRIED TOFU 8.00 SIDES AND SALADS ASIAN CHICKEN …
Introduction Results Discussion - staging6.odsc.com
skewed data, as well as for handling the many related variablesinthedataset. −1 3 000 W les S a m p l e Q u a n t i l e s −1 3 5 W les S a m p l e Q u a n t i l e s −1 3 0 r nta g W les S a m p l e Q u a n t i l …